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The performance of multiple-bus interconnection networks for multiprocessor 
systems is analyzed, taking into account conflict arising from memory and bus 
interference. A discrete stochastic model of bandwidth is presented for systems in 
which each memory is connected either to all the buses or to a subset of the available 
buses. The effects of the assumptions made concerning independence among requests 
for different memories (spatial independence) and resubmission of blocked requests 
(temporal independence) are investigated systematically. The basic bandwidth model 
is extended to account for spatial dependence, and compared to previously proposed 
models. Finally, the various analytic models are shown to be in close agreement with 
simulation results. Q 1986 Academic Press, Inc. 

I. INTRODUCTION 

A great deal of attention has been paid to the design and analysis of 
interconnection networks for multiprocessor systems. Most of the previous 
research has dealt with crossbar networks or multistage networks [ 11. While 
these networks are attractive for applications where high bandwidth is re- 
quired, their high cost and special implementation requirements have pre- 
vented them from being used for the full range of multiprocessor applications. 
Most commercial systems containing more than one processor employ a 
single bus; consider, for example, the design philosophy advocated for the 
iAPX 86 family in which the Multibus (IEEE 796 standard bus) provides all 
the intrasystem communication [2]. Single-bus systems are inexpensive and 
easy to implement but have limited bandwidth and lack fault tolerance. A 
natural extension is to employ several shared buses to increase bandwidth and 
fault tolerance at moderate cost. Figure 1 shows typical systems in which B 
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FIG. 1. Two multiprocessor systems with multiple-bus interconnection networks. (a) Com- 
plete; (b) partial. 

buses are used to interconnect N processors to M memory modules (B I N). 
Unlike a crossbar or multistage network, a multiple-bus interconnection 
scheme allows easy incremental expansion of the number of processors and 
memories in the system. Furthermore, the buses can be configured in various 
ways to provide a wide range of trade-offs between bandwidth, connection 
cost, and reliability. 

Lang et al. [3, 41 were among the first to investigate the performance of 
multiple-bus systems of the kind depicted in Fig. 1. Using simulation they 
determined the bandwidth characteristics of two representative bus con- 
figurations, complete and partial. In the complete case, which is illustrated in 
Fig. la, every processor and memory module is connected to every bus; in 
the partial case, which is illustrated in Fig. lb, each memory need only be 
connected to a subset of the buses. In particular, Lang et al. [3] showed that 
a complete multiple-bus configuration with B = N/2 has almost the same 
bandwidth as an N X A4 crossbar, as well as higher fault tolerance. Partial bus 
configurations can achieve the same bandwidth at lower cost and lower fault 
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tolerance. Recently, others have derived analytical models for the per- 
formance of multiple-bus systems under a variety of assumptions [5-91. 

In this paper, we develop a discrete stochastic model for the bandwidth of 
both complete and partial multiple-bus systems following the approach in [7]. 
A similar result for the complete case is presented in [6]. These papers, and 
those of most other authors, employ the following temporal independence 
assumption: successive memory requests by a processor are independent, 
i.e., blocked requests are, in effect, discarded. The basic model of [6, 71 also 
implicitly employs the following simplifying assumption: the event Ej that 
there is at least one request for a particular memory Mj is independent of the 
&‘s for k # j. We will refer to this as the spatial independence assumption. 
A Markov chain model that avoids both of these assumptions is postulated by 
Valero et al. in [8]; however, it is intractable for systems with more than 
about four processors. The same authors derive a somewhat simpler model 
assuming only temporal independence, which they term the memoryless 
property. A more elegant formulation based on the same assumptions is 
presented by Bhuyan [5], which employs Stirling numbers. Nevertheless, the 
bandwidth formulas of [5] are computationally complex compared to those’of 
[6, 71, and do not extend readily to the partial bus case. A more general model 
that does not assume temporal independence but does assume spatial indepen- 
dence is presented in [9]. It extends the models of [5-81 by allowing variable- 
length memory accesses. 

In Section II the basic model for the bandwidth BW of complete and partial 
multiple-bus systems is derived. A bandwidth model that accounts for spatial 
dependence is derived in Section III, and shown to be equivalent to, but 
simpler than, those of [5, 81. It is also demonstrated that spatial dependence 
considerations can be ignored when B 2 M, generalizing an earlier result of 
[lo]. Section IV develops an iterative scheme to reduce the error caused by 
the assumption of temporal independence, and also gives some simple asymp- 
totic approximations to BW. Finally, some simulation data are presented in 
Section V and compared to the analytic results. It is concluded that concern 
about the spatial dependence of memory requests is usually not warranted, as 
inaccuracies caused by the spatial independence assumption appear to be 
masked by those due to temporal independence. 

II. BASIC MODEL 

The bus systems under consideration (Fig. 1) are assumed to be syn- 
chronous, and processor-memory transactions are assumed to occur during 
discrete time intervals termed bus cycles. (Continuous time analogs of such 
systems are discussed in [ 11, 121.) For the purposes of this paper, bandwidth 
will be defined as the expected number of buses in use during a bus cycle. 
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Apart from the dimensions of the system, i.e., the values of B, M, N, and the 
bus grouping used, the most important factors affecting bandwidth are the rate 
at which memory requests are made by processors and the degree of conflict 
that those requests experience. 

There are two sources of conflict due to memory requests in a multiple-bus 
system. First, more than one request can be made to the same memory 
module, resulting in memory interference. Second, there may be an 
insufficient number of buses available to accommodate all the memory re- 
quests, resulting in bus interference. In [3] and later papers, a two-stage 
arbitration scheme is used to resolve these conflicts. In the first stage, memory 
interference is resolved by M 1 -out-of-N arbiters each of which selects at most 
one outstanding request per memory module. In the second stage, bus inter- 
ference is resolved by a B-out-of-it4 arbiter which assigns the buses to the 
memory requests selected in the first stage. The assignment is done on a 
round-robin basis by each bus arbiter. In a realistic system requests that are 
blocked by either memory or bus interference are resubmitted during the 
following bus cycle. This policy for handling rejected requests is imple- 
mented in the simulation model of [3]. Analytic models that capture this 
temporal dependence feature appear to be intractable except in those cases 
where B, M, and N are very small [8]. 

The basic assumptions underlying our model follow those of Lang et al. 
[3]. Each processor is assumed to generate independent requests (Bernoulli 
trials) for memory with probability p at the start of each bus cycle. This value 
of p will be referred to as the request rate. Modeling the memory access 
process as a Bernoulli process has been validated empirically in [ 13-151, and 
is widely used as a basis for memory interference models. The memory 
requests are assumed to be uniformly distributed across all the memories with 
probability l/M; this is a reasonable assumption when address interleaving 
based on the low-order address bits is used. Hence, the probability that 
processor e requests memory Mj is p/M for all i andj. Note that the foregoing 
assumptions imply temporal independence, so that the rejected requests are 
in effect discarded. 

The analysis can be treated in two parts corresponding to memory inter- 
ference and bus interference. Our development follows that presented in [7]. 

Memory Inter$erence Analysis. As noted above, the probability that pro- 
cessor B requests memory Mj is p/M. It follows that the probability that B 
does not request Mj is (1 - p/M), and further, that the probability that none 
ofB(i = 1,. . . , N) requests Mi is (1 - P/M)~. This last expression can 
also be interpreted as the probability that the l-out-of-N arbiter associated 
with Mj has no input requests from which to choose. Conversely, if Ej is the 
event that there is at least one request for Mj, then the probability of Ej is 

Pr[Ej] = 4 = 1 - (1 - p/M)N. (1) 
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From the behavior of the arbiters, we can conclude that the probability that 
one request gains access to Mj is q for any j. 

Bus Znteflerence Analysis. Only the requests from at most B of the M 
l-out-of-N memory request arbiters can be handled during any bus cycle, 
since there are only B buses. If the events Ej are assumed to be independent, 
(the spatial independence assumption), then the probability that exactly i of 
the M memory request arbiters output a memory request is given by 

f(i) = r qi(l - q)M-i. 
0 

The effects of this independence assumption are examined in Section III. The 
probability that B or more of the M memory request arbiters output a memory 
request can be written as 

F(B) = 5 f(i). 
i=B 

This is the probability that all B buses are in use, i.e., the interconnection 
network is saturated. Since the bandwidth BW is defined as the expected 
number of buses in use during a bus cycle, (2) and (3) yield the following 
expression for BW of a complete multiple-bus system: 

B-l 

BW = BF(B) + c if(i). (4) 
i=l 

As is shown in Section IV, this expression for BW is in close agreement with 
simulation results. 

We now generalize (4) for the case of partial buses (Fig. 1 b) . The memory 
interference analysis is the same as before, since it is independent of the bus 
configuration, i.e., Eq. (1) continues to apply. However, the bus interference 
analysis needs modification. Let the B buses be divided into g equal groups, 
assuming g is a factor of B and M. With m = M/g and b = B/g, Eqs. (2) 
and (3) become 

fgW = 0 T qi(1 - q)“-i 

F,(B) = T&(i). 
i=b 
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Consequently, the bandwidth can be written as 

which is simply g times the bandwidth of any one of the g subsystems formed 
from N processors, b buses, and m memories. In the case where g = 1, the 
subscript is omitted as in (2), (3), and (4). 

III. MODEL WITH SPATIAL DEPENDENCE 

In deriving Eq. (2) forf(i), the events Ej were assumed to be independent. 
Strictly speaking this is not so, as can be seen if one considers the case where 
M > N; according to (2),f(M) # 0, which is clearly impossible as there are 
only N possible sources of memory requests. The dependence between the 
events Ej can be formulated explicitly as follows. 

Pr[Ej 1 Ek] = 5 Pr[Ej 1 Ek results from i requests] X 
i=l 

Pr[E, results from i requests] 

Therefore, pr[Ej 1 Ek] # Pr[Ej], so the events Ej and Ek are dependent. 
The effects of spatial dependence can be taken into account by replacing 

f(i) with a new function h(i) denoting the exact probability that i of the M 
memory request arbiters output a memory request. An expression for h(i) can 
be developed as follows. If Q is the event that a processor sends at most one 
request to i particular memories, then 

Pr[Q]= 1 -p+;. 

If R is the event that each of the N processors sends at most one request to 
i particular memories, then 

Pr[R] = (1 -p + j$. 
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The quantity R can also be viewed as the event that no more than min(i, N) 
of the i particular memories are busy. Thus, if Si is the event that no more than 
i of the M memories are busy, then 

Pr[Si] = (r)(l -p + i)“, 

Note that (y) = 0 if i > M and M is a positive integer. If sij is the event that 
exactly j of any subset of i of the M memories are busy, then 

Furthermore, if si is the event that exactly i of the memories are busy, then 
i-l 

Si=Si- U Sjjy i > 0. 
j=O 

From the definition of sij it follows that sij fl sik # fl iff j = k. Therefore, 

i-l 

that is, 

h(i) = Pr[Si] = Pr[Si] - C Pr[+], 
j=O 

Two alternative expressions for h(i) were developed in [5, 81. They can 
both be expressed in the form 

h(i) = g, @“cl - P)“‘(~)M-~S. 

In [8], the term 8 of (6) is written as 

8 = x,,, k! (7) . . . . Tli! ’ 

where the summation is carried out over all nl, . . . , nj > 0 such that 
nl + * * * + ni = k. In [5], on the other hand, we find the closed-form 
expression 

f)=i! k 
iI i ’ (8) 
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where { !} denotes a Stirling number of the second kind. {i”> is defined as the 
number of ways to partition a set X, of k elements into i nonempty disjoint 
subsets [18]. Thus (8) denotes the number of ways to partition X, into i 
subsets, taking their ordering into account; this is precisely the intended 
meaning of (7). It can be shown that (5) is identical to (6) for both inter- 
pretations of 8. Our formulation has the advantage of expressing explicitly the 
recurrence implicitly required to evaluate (7) and (8), which simplifies the 
computation of h (i). 

Equations (3) and (4) can now be rewritten as 

H(B) = 5 h(i) 
i=B 

and 

B-l 

BW = BH(B) + 2 ih(i). 
i=l 

(9) 

To distinguish between the expressions for bandwidth given by (9) and (4), 
the symbols BWh and BWf, respectively, will be used in the remainder of this 
paper. The superscript will be omitted if the bandwidth can be represented by 
either expression. Unlike BWf, the formula for BWh does not appear to extend 
easily to the partial bus case. 

The spatial dependence among memory requests implies that B Wh # B Wt. 
However, in the bus-sufficient case where B L M we have BWh = BWf, as 
was proved in [lo] for the case p = 1. We now briefly present the proof for 
the bus-sufficient case with arbitrary p. Define an indicator random variable 
4 as follows: 

J= 1 if Mj is busy, i.e., if Ej occurs 
0 otherwise. 

From the earlier discussion of spatial dependence, the different 4 variables are 
dependent. Using these indicator variables, we can express the bandwidth 
BWh as follows: 

Since the expected value of the sum of random variables is equal to the sum 
of their expected values, even if the variables are not independent, the ex- 
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petted value operator can be moved inside the summation to yield the 
expression 

BWh = 5 Epj], 
j=l 

in which E[&] can be replaced by F’$Ej] thus: 

BWh = 5 Pr[Ej]. (10) 
j=l 

To develop an expression for pr[Ej] we can follow an argument similar to 
that presented in the memory interference analysis of Section II. The proba- 
bility that no processor requests a particular memory is (1 - P/M)~. In the 
bus-sufficient case this is the same as the probability that a particular memory 
Mj does not receive a request. Thus, in the bus-sufficient case, the probability 
that Mj receives a request is 

pr[Ej] = 1 - (1 - P/M)~; 

hence from (lo), 

BWh = M[l - (1 - P/M)~]. 

Rewriting (4) for B 2 M yields 

M-l 

BWf = Mf(M) + 2 if(i) 
i=l 

= M[l - (1 - p/M)N], 

which shows that BWf = BWh. This simple analysis no longer applies in the 
bus-deficient case (B < M), as the probability that Mj does not receive a 
request may be greater than (1 - P/M)~ due to lack of available buses. The 
distribution h (i) must then be determined explicitly in order to compute BWh. 

IV. OTHER MODELS 

A major source of error arises from the assumption that blocked requests 
are discarded. In reality, and also in the simulations of [3] and later papers, 
blocked requests are repeatedly resubmitted or queued until the memory they 
request allows them access. The BW expressions derived in the preceding 
sections can be refined by taking this into account in the manner described 
below. 



MULTIPLE-BUS INTERCONNECTION NETWORKS 337 

The probability that a memory request is accepted in the bus cycle in which 
it is made is given by 

p,2!!!. 
NP 

(11) 

The numerator of (1 l), i.e., the bandwidth, measures the number of requests 
that obtain memory access during a bus cycle. The denominator of (11) 
measures the total number of requests made by all the processors during a bus 
cycle. It is convenient, following [15], to define an “adjusted” request rate (Y, 
that accounts for resubmission of rejected requests, where 0 I p 5 a 5 1. 
By assumption, each memory request is a Bernoulli trial with success proba- 
bilityp or, in the case of the adjusted rate, CX. It follows that the mean number 
of bus cycles before a request (trial) is l/p - 1, or in the case of the adjusted 
rate, l/a - 1 [ 161. Thus, the ratio of the number of successful requests to 
the total number of requests, i.e, Pa, is given by 

(W 

Equations (11) and (12) can be used in an iteration scheme to get an improved 
estimate for BW due to the adjusted rate (Y, as follows: 

ffk+l - -l - 1 + !z@ -p) 

Here BW(ak) is defined by (4) or (9) with (Y replacingp in the equations for 
f(i) and h (i), respectively. Solution of (13) for &+ t yields an improved value 
BW(ak+,) for the bandwidth. Any remaining deviations from the simulated 
bandwidth occur because (Y does not take into account the fact that re- 
submissions are all directed to the same memory. This technique is an adap- 
tation of a method first proposed by Hoogendoorn [15] (for details see [ 171) 
and will be referred to as the iterative improvement method. For systems with 
large values of M or N, a higher-order iterative scheme may be used in place 
of Eq. (13) to reduce the number of steps to solution. Notice from (13), that 
in the limiting case of p = 1 .O, iteration is unnecessary as (Y = 1 .O also. 

Finally, we consider some asymptotic approximations to the bandwidth of 
multiple-bus systems. From (4) we see that BWf is bounded above by 
Z%, Bf(i), that is, BWf 5 B. We obtain another upper bound by replacing 
the first term on the right-hand side of (4) by X,eB if(i), to yield BWf I 
C% if(i), that is, BWf 5 Mq. It follows that B and A4q define asymptotic 
bounds on SW, as illustrated in Fig. 2. The equation 

BW = min(B, Mq) 
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FIG. 2. Asymptotic behavior of the bandwidth BW. 

is a simple, but useful, bandwidth approximation with the following intuitive 
interpretation. When the number of buses B is less than the total bandwidth 
Mq demanded of the memory, the buses become the limiting factor, i.e., 
BW = B. When the number of buses available exceeds Mq, the buses are no 
longer a scarce resource, and the bandwidth can achieve its maximum value 
Mq, which we refer to as the bus-sufJicient bandwidth. This suggests that 
making B greater than the bus-sufficient bandwidth Mq will have little 
influence on bandwidth. 

To measure the effect ABW on bandwidth of removing or losing a bus, we 
note that 

ABW = BW[B] - BW[B - 11, 

where BW[B] is the bandwidth with B buses. From (4) it follows that 

ABW = F(B). 

Equation (3) indicates that F(B) is the sum of the last M - B + 1 terms of 
a binomial series. This can be approximated by the tail of a normal distribu- 
tion using the de Moivre-Laplace limit theorem [ 161, which states that 

lim 2 n-m 0 
; q1 - t)n-r = N(a) - N(P), 

T=Z, 
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where0 5 t I 1, a! = (22 - nt)/m,p = (zi - nt)/w, 
and N(x) is the area under the normal or Gaussian distribution function from 
--co to x, i.e., N(x) = JYa; e-y2’2 dy. Applying this theorem to (3) yields 

ABW = N(a) - N(P), 

where, in this case, (Y = (M - Mq)/dMq(l - q) and /3 = 
(B - Mq)/vMq(l - q). NOW N(2) = 0.98; therefore N(o) = 1, and 
N(P) = 1, i.e., ABW = 0 if the inequality 

B > Mq + 2dMq(l - q) 

holds, assuming M > B. For example, when M = N = 16 andp = 0.5, a 
value of B > 10 yields a bandwidth that changes by no more than 2% if a bus 
is removed. 

V EVALUATION OF RESULTS 

In this section we compare the results obtained from our analytic models 
with the simulation data of Lang ef al. [3]. Following [3], only N X N 
multiprocessor configurations (N = M) are considered for the complete case, 
and the partial case with two groups of buses. We present our results in the 
form of graphs showing the percentage difference or error E between the 
simulated BW and the predicted SW, with and without iterative improvement. 
The actual values of BW for the basic model of Section II and the correspond- 
ing simulated values can be found in [7] for both complete and partial bus 
configurations. 

Figure 3 compares simulation results with the basic model (BWf) for the 
complete bus configuration with request rate p = 1.0. The value of E is 
plotted against the number of buses B for four representative values of 
N (= M). It can be seen that for these four cases the maximum error is less 
than 7%. Since p = 1 .O, identical results are obtained using the iterative 
improvement scheme of Section IV The data for p = 0.5 are shown in Fig. 
4. Here we have two distinct sets of four plots: the basic model, and the basic 
model with iterative improvement. Iteration reduces the maximum value of 
E from about 13% to about 4%. Figures 5 and 6 show the analogous results 
for the case when spatial dependence is taken into account, i.e., for BW* 
instead of BWf. Again, iteration on (Y reduces the error. However, replacing 
BWf by BWh does not necessarily yield greater accuracy. In fact, the data 
presented in Figs. 3-6 do not show one to be consistently better than the 
other. Apparently the errors associated with temporal dependence can nullify 
the spatial dependence correction. Since BWh is more complicated to compute 
than BWf, the usual assumption of spatial independence seems justified. 
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FIG. 3. Simulation vs SW/ for the complete bus configurations with p = 1 .O. 
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FIG. 4. Simulation vs BWf for the complete bus configurations with p = 0.5. 
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FIG. 5. Simulation vs BWh for the complete bus configurations with p = 1 .O. 

In conclusion, note that we have focused on one particular performance 
measure for multiple-bus interconnection networks, namely their bandwidth. 
Several other related measures exist, and may be useful in some situations, 
in particular: the probability Pa of a request being accepted, which is defined 
by (11); the average utilization U of a processor; and the expected waiting 

t 

Percent 
4 error e 

Iterative %del 
2 
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FIG. 6. Simulation vs BW* for the complete bus configurations with p = 0.5. 
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time W, before a request is allowed memory access. The equations for U and 
W are given in [ 191: 

u = 1 - p(l - P,) 

W=$- 1. 
a 

Equation (11) for P, and these equations for U and W have accuracy similar 
to that of the BW models reported here. 
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