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1. INTRODUCTION 

In the past few years operator theorists have been studying the problem 
of solving systems of simultaneous equations of a particular type in the 
predual of certain dual operator algebras, and the knowledge gained 
thereby has led to significant advances in those areas of operator theory 
concerned with invariant subspaces, dilation theory, and reflexivity. (See 
the bibliography for a partial list of pertinent articles. For a more extensive 
bibliography, see [8].) In particular, the theory of the class A,, (to be 
defined below) has been quite successful, in the sense that several rather 
general sufficient conditions for membership in the class have been 
obtained [2, 3, 81, and, moreover, quite a lot of information (concerning, 
in particular, dilation theory and invariant-subspace lattices) about 
operators in A,, has been found [6, 5, 81). 

In this paper, which is most naturally regarded as a continuation of the 
sequence [6, 5,2, 3, 81, we improve some sufftcient conditions for mem- 
bership in A,, from [2, 81, and in so doing, we obtain as easy corollaries 
some new sufftcient conditions for a contraction on Hilbert space whose 
spectrum contains the unit circle to have nontrivial invariant subspaces 
(see Sect. 4). 

The notation and terminology employed herein agree with that in [8] 
and the sequence of papers listed above. Nevertheless we begin by review- 
ing a few pertinent definitions and important earlier results. Let ;X be a 
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separable, infinite dimensional, complex Hilbert space, and let Y(X) 
denote the algebra of all bounded linear operators on X. If TE Y(Z), the 
spectrum of Twill be denoted by c-r(T), and the essential (Calkin) spectrum 
of T by a,(T). It is well known (cf. [ 16, p. 401) that 9(X’) is the dual 
space of the Banach space (and ideal) V,(Z) of trace-class operators on 2 
equipped with the trace norm /I 11 I. This duality is implemented by the 
bilinear functional 

(T, L) = tr(TL), TEE’, LEV,(X). 

A subalgebra a of T(2) that contains 1, and is closed in the weak* 
topology on Y(X) is called a dual algebra. It follows from general prin- 
ciples (cf. [13]) that if r2 is a dual algebra, then 0E can be identified with 
the dual space of Qa =%?,(%)/‘a, where ‘a is the preannihilator in 
g,(X) of 05, under the pairing 

CT, CL1 > = tr(TL), TE a, CL1 E Qn. 

(Here and throughout the paper we write [Lln, or simply [IL], where no 
confusion will result, for the coset in Qct containing the operator 
LE%?~(%).) It is also easy to see (cf. [13]) that the weak* topology that 
accrues to GE by virtue of being the dual space of Qn is identical with the 
relative weak* topology that a inherits as a subspace of Y(X). 

If x and y.are vectors in X, then the associated rank-one operator x @ J, 
defined as usual by (x@y)(u) = (u, y) x, u E 2, belongs to V,(S) and 
satisfies 

(2) 

Thus if a is a given dual subalgebra of Y(X), [x 0 y] E Qcx. As is well 
known, every operator L in V1(X’) can be written as L =C,“=, xj@yi for 
certain square-summable sequences {x~} and { y,} (with convergence in the 
norm I( (Ii), and it follows easily that every element of Q, has the form 
C,“=, [xi@ yj]. A dual algebra GZ c 2’(%‘) is said to have property (A 1) if 
for every element [L] of Qa there exist vectors x and y in 2 satisfying 
[L] = [x @ y]. More generally, if n is any nonzero cardinal number not 
exceeding N,, and if for every doubly indexed family { [LLj] }Osr,, <,, of 
elements of Q, there exists a pair of sequences {x,} 0 G ( cn and ( yjjO <, < n of 
vectors from X such that 

CL;,1 = cx, 0 Y,l, Odi,j<n, 

then a is said to have property (A,,). 
Let N denote the set of positive integers, let 113, be the open unit disc in @, 
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and let T = aED. A set A c D is said to be dominating for T if almost every 
point of U is a nontangential limit of a sequence of points from I!. The 
spaces Lp= Lp(U) and HP= HP(U), 1 d p< m, are the usual function 
spaces. 

If T is an absolutely continuous contraction in Y(X) (i.e., a contraction 
whose maximal unitary direct summand is either absolutely continuous or 
acts on the space (0)), we denote by fir the dual algebra generated by T 
and we write Q r for the predual Q(!, (If [L] E Q7-, we will write [L] 7 for 

[Ll,t , when there is a possibiity of confusion.) For such T, as is well 
known (cf. [22, p. 1141) the Sz.-NagyyFoias functional calculus QD, is a 
weak* continuous, norm decreasing, algebra homomorphism of H’ onto a 
weak* dense subalgebra of r( I, and we define the class A = /I(.#) to be 
the set of all absolutely continuous contractions T for which Qr is an 
isometry of H”’ onto 0.. If TEA(Z), then one knows (cf. [13]) that Q7 
is a weak* homomorphism between H’ and 0, and that there exists a 
linear isometry d 7 of Q 7 = Ql, , onto L’/Hh (the predual of H”‘) such that 
4:=@,. When TEA, the pair of spaces {fl,, Q,) can be identified with 
the pair {H *, L’IH:,) via the pair of isometries { Q7., d7 } (for more detail 
see [8]). We recall also (cf. [S. Proposition 4.61) that if TEA, then 
(T(T)IU. 

If n is any cardinal number satisfying 1 d n 6 N,, we define the class A,, 
to consist of all those T in A for which the dual algebra d, has property 
(A,,). In particular, then, A,,,, which is the central object of study in this 
paper, consists of all T in A such that & I‘ has property (AN,)). 

We turn now to review briefly some earlier results concerning this class. 
Recall that C, (resp. C,) is defined to be the class of all (completely non- 
unitary) contractions T acting on some Hilbert space of dimension at most 
K,, with the property that the sequence { T’) (resp. { T*“} ) converges to 0 
in the strong operator topology, and CcHI is defined as C,. n C cl, In [6] a 
very useful dilation theory was developed for operators T belonging to 
some class A,,, and in [20] it was shown that the (BCP)-operators (first 
studied in 1131) belong to the class ANO. Furthermore, in [S] it was 
proved that if TE A,,,, then T is reflexive (and thus has a huge lattice of 
invariant subspaces), and (7 I‘ is closed in the weak operator topology (cf. 
183 for definitions). A better result about reflexivity was obtained later in 
[IS]. In [S] it was shown that n;;:, A,, = AX”, and in [2] the important 
formula A, n Coo = ANo n C,,, was established. Also in [2] some additional 
sufficient conditions for membership in AKc, were found, two of which we 
enumerate here because of their pertinence to what follows. 

THEOREM 1.1. Suppose TE C,,,( 2) and there exists a set A E D 
dominating for U such that each point of A belongs either to a,(T) or to the 
derived set of O( T). Then TE A,,,. 
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THEOREM 1.2. Suppose TE C,n A and the (relative) weak operator 
topology coincides with the weak* topology on a T. Then T E A.,,. 

The main idea of this paper is as follows: It is well known that the 
invariant subspace problem for operators Ton Hilbert space reduces to the 
case that TE CO.. Furthermore, if Q(T) 3 T, then by a theorem of Apostol 
[ 11, one may further assume that TE A. Therefore we establish some suf- 
ficient conditions for contractions T belonging to C, n A and satisfying 
o(T) 1 U to belong to AX,,, similar to Theorems 1.1 and 1.2, and as easy 
corollaries we obtain some new invariant-subspace theorems for contrac- 
tions T satisfying a(T) 3 U. 

The main results of this paper were announced in [ 151. 

2. PRELIMINARIES 

In this section we first recall some pertinent definitions and terminology 
that will be useful in establishing our new sufficient conditions for mem- 
bership in A,,. Next, for the reader’s convenience, we state the main results 
from [S] that we shall need. Finally, we prove four original propositions, 
containing some new ideas, and thereby facilitate the proofs of our main 
results in Section 3. 

We will suppose that the reader is familiar with the Fredholm theory for 
operators in L?(s), In particular, we denote the set of Fredholm operators 
in Y(X) by f?P(c#), the set of semi-Fredholm operators in Y(X) by 
,V.F(x‘), and the continuous (Fredholm) index function (taking values in 
Z u { + nj, --x }) defined on YP(Z) by i(.). By a hole in a compact sub- 
set K of @ we mean a bounded (connected) component of C\, K. Thus if 
TE P’(X), then each hole H in o,(T) is associated with a unique finite 
index i(H), defined by choosing any j, in H and setting i(H) = i( T- A). 
(This results, of course, from the facts that T-/IEF(X) if and only if 
iv $ a,( T), and i(.) is constant on connected sets.) If H is a hole in a,(T) 
such that i(H) # 0, then, of course, H c o(T). On the other hand, if H is a 
hole in o,(T) with i(H) = 0, then either H c a(T) or H r‘l a(T) consists of a 
countable (possibly empty) set of isolated points (cf. [ 19, Chap. I]). 

DEFINITION 2.1. For each T in P(Y) we shall write E(T) (resp. 
cF+( T)) for the (possibly empty) union of all holes in a,(T) such that 
i(H) ,< 0 (resp. i(H) 3 0) and H c c$ T). Thus E(T) n P+(T) consists of 
the union of all holes in H in a,(T) such that i(H) = 0 and H c a(T). 

Concerning this circle of ideas we shall need the following lemma, which 
is no doubt known, and could be proved, for instance, as in the second 
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paragraph of the proof of [S, Theorem 6.81. We give a different short 
proof. 

LEMMA 2.2. Suppose TE 9(X”) and H is a hole in a,(T) such that 
i(H) = 0 and H c a(T). Then, for every 1 E H, the sequence of subspaces 
{KNT- A)“},“=, ( as well, of course, as the sequence { Ker( T- %)*‘}) is 
strictly increasing. 

Proof Suppose there exists &E H such that {Ker( T- i&)“} is not 
strictly increasing. By translation we may assume that A,, = 0, and thus that 
Ker T” = Ker T”+ ’ for some n E f+J. To obtain a contradiction we will show 
that 0 is an isolated point of a(T). It is easy to see that Ker T” = Ker T”+ k 
for all k E N and that Ker T” n Ran T” = (0) so T” is one-to-one on the 
invariant subspace Ran T”. Since dim(Ker T”) = dim(Ker T”*) = 
dim( { Ran T”}I) is finite, it follows that X is the topological direct sum 
X = Ker T” i Ran 7”’ of the invariant subspaces Ker T” and Ran T” of T”. 
Since Ran T” = T”Z = T”(Ker T” i Ran rl) = T”(Ran 7”‘) it follows from 
the open mapping theorem that T” 1 (Ran T”) is an invertible operator on 
Ran T”. Thus for IA. > 0 and sufficiently small, 

T’-A=(T”-A) [Ker T” 4 (Y-3.)1 Ran 7”’ 

=A Ker 7‘” i {(Y) Ran T”)-i,,,..} 

is obviously an invertible operator (being a direct sum of invertible 
operators), and it follows immediately from the spectral mapping theorem 
that 0 is an isolated point of a(T), the contradiction we were seeking. 

Suppose next that TE 9(X), A’ is an invariant subspace for T 
(notation: A?’ E Lat(T)), and A = T I A. Then the operator A E .Y(Jl) is 
called a part of T. If A, .VC Lat(T) with A 2 A/, then the subspace 
A 0 JV is called a semi-invariant subspace for T and the compression 
T .KO,+. of T to J%’ 0 JV, defined by T,KO,t.=P,A(O.VTI (,R;e 0 -If), 
where P,, 0 .+. is the (orthogonal) projection of X onto A 0 .A’“, is easily 
seen to satisfy (T”) .M .c- = (T, o .+- )” for every n E /V. Furthermore, if 
n E f+4, we denote by A? 

p 
‘) the Hilbert space consisting of the direct sum of n 

copies of X and by T’“’ the n-fold ampliation of T acting on XC”’ defined 
by 

T’“‘(x,@ ... @x,)=Tx,@ ... @TX,. 

Moreover, if ol c Y(X) is a dual algebra, we denote by a@) the ampliated 
dual algebra acting on x(n) defined by aCnJ = {T(“): TE GE}. That acn’ is 
indeed a dual algebra on XC’) follows from [S, Proposition 2.51. For each 
Tin 9(X) it is clear that (a,)@) = 0lti.1. 

Suppose now that TE A(%‘), so the Sz.-Nagy-Foias functional calculus 
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@,: H”’ + aT is an isometry and a weak* homeomorphism onto LZT. If 
,J E ID, and ~~(8) = (I- 11j2) ( I- 1e”I p2, e” E T, is the Poisson kernel 
function in L’ corresponding to 1, then [pn] E L’/Hh, and we denote by 
[C,] (or CC,], when there is a possibility of confusion) the element of Q7- 
defined by CC,] = d,‘[pl]. Then we have 

<h(T), cc,1 > = MA). ~EH”;, IED, (3) 

as is proved by the one-line calculation 

<h(T)3 Cc,1 > = (@T(h), Cc21 > = <h dTCcj.l > 

= Ch, [Pi] > =h(J”). 

Concerning this circle of ideas we will need the following lemmas. 

LEMMA 2.3. Suppose TE A (I?), 1” E ED, k E N, and [L] E Qn satisfies 

<1.X> CL])= 1 and ((T-J-)“, CLl>=O, nEN. 

Then [L] = CC,]. Moreover, if A = T,, is a compression of T to a semi- 
invariant subspace Jtf, and e is a unit vector in 

Ker(A-l)*k+’ @ Ker(A-i)*k 

(= {Ran(A-i)k}p @ (Ran(A-L)kf’}m), 

then [e@e],= [C,Jr. 

Prooj The polynomials in ( T - A) are clearly weak * dense in a T. Since 
every element of Qr corresponds to a unique weak* continuous linear 
functional on a T, and the functionals corresponding to [L] and [CJ 
agree on a weak* dense subset of LET, we have [L] = CC,]. To prove the 
second statement, observe that for all Jo N, (A -E.)*‘e belongs to 
Ker(A - ;O*k and hence is orthogonal to e. Thus from (1) and (2) we 
obtain 

((T-A)-‘, [eOe])=tr((T-A)‘(e@e))=((T-i)‘e,e) 

=((A-;I)‘e,e)=(e, (A-i)*‘e)=O, .ie N 

and since 
(l~F, [e@e])=tr(e@e)=(e,e)=l, 

the result follows from what was already proved. 

LEMMA 2.4. Suppose TE A(X), n E N, and 2 E ID. Then the mapping 0 
defined by Q(S) = S’“‘, SE a,, is a linear, isometric, weak* homeomorphism 
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of a, onto 02,.‘“’ that is the adjoint of a linear isometry 8 of QT(“’ onto Q7,. 
Zf R=x,@ ... @x, and .F=y,@ ... @I,,, are vectors in .Y?‘~‘, then 
t3( [.Z @ J] fin)) = Cy= , [x; @I y;] r, and 0( [ Cj ] fin!) = [ Cj.1 r. 

Proof Only the last statement is not contained in [8, Proposition 2.51, 
and it follows easily from Lemma 2.3.. 

We turn now to record some known sufficient conditions for mem- 
bership in A,, from [2, 6, and S] that will be needed later. 

PROPOSITION 2.5. Let T he an absolutely continuous contraction in 
Y(X), and suppose there exists an n E N and an infinite dimensional semi- 
invariant s&space .X ,for T’“’ such that (T’“‘) x E A.,,(X). Then TE A,,,. 

Proof That T’“’ E A,,jX(“‘) follows from [6, Proposition 4.1 l] and 
that TE A,,) if (and only if) T(“)E A,,, is a consequence of [S, Theorems 3.8 
and 6.31. 

PROPOSITION 2.6. Suppose TE A(F). Then TE AK0 if there exists a set 
A c D dominating ,for U such that far each i. E A one can find a sequence 
{x: );= , = ix,,} is the closed unit hall af X .satisf$ng 

(a) lIIC,l - C.~,,O.~,,l/lQ, +O, aed 
(b) /I[.~,,O~l.ll/~,+ /III~O.~,,ll/y,-‘@ “‘~.%f. 

Proof If TE A and satisfies (a) and (b) for 1, in A, then by virtue of [8, 
Proposition 1.211, G’. has property X0,, (cf. [S, Definition 2.8]), and thus 
by [8, Theorem 6.31, TE A,,,. 

This proposition will be our fundamental tool used to prove that certain 
contractions belong to A,,,. Lemma 2.3 already gives a hint as to how (a) 
might be satisfied, and the next proposition shows one way that (b) can be 
satisfied. 

PROPOSITION 2.7. Suppose TE A(J?) und there exists a semi-invariant 
suhspace .& ,for T such that the compression T.,/ belongs to Co (resp. C ()). 
Then for any jixed w in .A’ and sequence {x,, ) z= , from .A converging weakly 
to zero, we have 

II CkV 0 xnl II Q, + 0 (rev. II CJG, 0 bvl II a, --f 0). (4) 

In particular, if’ T,# E C,,, then both sequences in (4) converge to zero. 

Proqf An easy calculation shows that //[u @ v] I/ o, = (1 [v @ u] // o/. for 
all u, v E 2, so it suffices to consider the case that T,, E C,. We recall from 
[ 14, Theorem 7.21 that if w E & and {k,,) is any sequence of functions 
from H” that is weak* convergent to zero, then Ilk,(T I/) 1~11 -+ 0. By a 
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corollary of the Hahn-Banach theorem, for each n E N there exists an 
operator B, E GZ, of norm one such that /j [w @ x,] /( oT = (B,, [w 0 x,,] ). 
Moreover, since TE A, each B, has the form h,(T) for some h,, in H’̂  
satisfying Ilh,,lj = 1. Thus 

and since w  and the x,, all belong to A’, we have 

IICwO-~,,Ill = (h(T.,) M’, x,), nEN. 

Now if the sequence { jl [w@ x,][l ) d oes not converge to zero, then there 
exists a subsequence (I/ [W 0 x~,] 1) } and a number I> 0 such that 
1) [w @I x,,] )I 3 1 for all j E tV. Since the unit ball in H” is sequentially weak* 
compact, we may extract a subsequence { ,fk = h,, 1 of the sequence {h,,) 
that is weak* convergent-say to f: Thus, upon setting uk = x,,,~, we have 

llCwO~~llI = ((Ii -.f )(T,) u’, u,)+ (.f(T.,) ~‘7 uk). (5) 

Since the sequence { ,I;; -f } IS weak* convergent to zero, it follows from 
the above remark that the sequence ( ij( fk -f )( T,,) W/I ) tends to zero, and 
since { uk} converges weakly to zero, the right-hand side of (5) converges to 
zero as k + co, contradicting (I [IV @ uk] (1 > I for all k E N. Thus the proof is 
complete. 

PROPOSITION 2.8. Suppose T is u contraction, $3 # A c D, and 
@ #M c N. Then the restriction T) .R% of T to the invariant .&space 
‘~=VVnt/LnEM Ker(T-A)” belongs to Co. 

Proqf: Clearly .X E Lat( T). Since I 4” = (X E A’: li( T ) &?‘)‘I .Y/I --t 0) is a 
subspace of AZ, it clearly s&ices to show that for any fixed E,,,E A and 
n, E N, 3’” = Ker( T - &)“” c .,V. But TX c X and (T / X - l,,)no = 0, so 
a(T/ X)= (A,}. Th us the spectral radius of T / X is less than 1, so 
jl(Z’i X)“ll -to and Xc.+‘, as desired. 

The last two propositions of this section move us a step closer to being 
able to employ Proposition 2.6. 

PROPOSITION 2.9. Suppose TE A(%), A is a compression of T to an 
infinite dimensional semi-invariant subspace, and 2 is a nonempty subset of 
.F (A). Then there exists a subspace ,Y‘ invariant for A* (and hence semi- 
invariant,for T) such that 

(a) The compression T, ,- E C ,,, and 

(b) For every L E f there exists an orthonormal sequence {ei }z= , in 
.I’ satislving [C/Jr= [ei@ei]. for every n E N. 
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Proof Set JV = VAEY,nE rm Ker(A - A)*“; clearly .&” is invariant for A* 
and thus semi-invariant for A and T. By Proposition 2.8, A* 1 “4” E Co., and 
hence its adjoint (A* 1 .X)* =A,&-= T,,-E Co. Now consider LEE. If 
i(A - A) <O we deduce easily from the definition of the index and the 
equality i((A - 1)‘) = ni(A - A) that the sequence { Ker(A - A)*n} is strictly 
increasing, and if i(A - A) = 0 the same property holds by virtue of Lemma 
2.2. Thus for each A E & there exists an orthonormal sequence fei};=, in 
-,I’ such that eb E Ker(A - ;.)*‘+I @ Ker(A -i)*” for each no N, and 
hence by Lemma 2.3 we have [ei @ eI;] T = [C,] 7. for each n E FU, as desired. 

The following proposition is an analog of Proposition 2.9, valid under 
the assumption that certain weak* continuous linear functionals on (r 7‘ are 
also continuous in the weak operator topology. 

PROPOSITION 2.10. Suppose T E A(X)), J is either N or some nonemptls 
finite subsef of N, {H,},,., is a collection qf (distinct) holes in a(T), and 
{j.,),,, is u sequence satis’j&rg 1,~ H,, ,j~ J, and c,,J (1 - [ii1 ) < wJ, Sup- 
pose also that there exists a summahle sequence { r,jltJ qf nonzero complex 
numbers such that x, t J r,[Cj.,] = [u@u] fiw some vectors u, v in X. Then 
there exists a semi-invuriant suhspace .4! for T such that 

(a) T., E C.,,, and 
(b) for every i in U,,., H, there exists an orthonormal sequence 

{ei}:=, in .A? sati$j+ng [ei@ei17.= [C,J.,for each nEN. 

Proof: Observe that since each 11 [C,,]ll = I and CltJ IQ,\ < z, the 
element [L] = CIE,, aj[ C,,] is well defined in QT. Since [L] = [U @ u], we 
conclude from (1) (2) and (3) that 

(4 T) u, g(T)* VI= 1 m, da,) h(i,), g, h E H”‘. (6) 
IEJ 

We introduce now the Blaschke products h( 5) and b,(t), Jo J, in H” 
defined by 

where, of course, it is understood that if ik = 0, then the corresponding fac- 
tor becomes 5. (Recall that J# 0 and these functions are well defined 
when J= N because of the condition C,E J (1 - Iijl) < co; cf. [17, p. 631.) 
From (6) we deduce immediately that 

(u, b,(T)* u) = +,(a,) zo, j E J, (7) 
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and 

((T4j)%, bj(T)*u)=O, kE N,jEJ. (8) 

We now define 

2q= v (T-%l)kU 
k 2 0 

= v (T-i”,)%, 
k3-O 

(9) 

and note that ??r’ E Lat(T). Furthermore, it is immediate from (7) and (8) 
that 

(T-41-X; 5 -x;, jE J. (10) 

On the other hand, since ,‘,$ a(T), (T- Aj) is invertible, and hence boun- 
ded below on &. This clearly implies (via (10)) that & is infinite dimen- 
sional, and (via (9)) that T 1 & - A,E YS(&), jE J, and satisfies 
i( T ) & - A,) = - 1. Since for any 1 E U.jG J H,, T - 1 is invertible and hence 
(T-A) / & = T ( 8 -,?EY’~($), the continuity of the index gives us, 
upon defining A = T ( 4, i(A -A) = -1 for every 1 E lJ,,J H,. Thus the 
desired conclusion follows from Proposition 2.9 with f = lJ,FI H,. 

3. MEMBERSHIP IN A,, 

In this section we establish some new sufficient conditions for mem- 
bership in A,,. Our results differ from most of those in [2; 81 in that the 
setting for our results is the class Co. as opposed to the class C,,. Our first 
theorem contains a new idea-that of being able to “work piecewise.” 

THEOREM 3.1. Suppose TE A(Z), m E N, A c D is dominating for T and 
can he written as A = u, < I <m A,, where A 1 c a,(T) and (in case m > 1) for 

i = 2,..., m, there exists aXsemi-invariant s&space Ai of T such that T,,S 
E Coo and.for every iW E A, there exists a sequence {xk > z= L of unit vectors in 
~4 converging weakly to zero and sati.$ving 

Il[C,l.- CT%34rll -to. (11) 

Then TE A,,. 

Proof: Suppose first that m = 1. Then o,(T) n D is dominating for T, so 
by definition T is a (BCP)-operator (cf. [20]), and that TEA,, follows 
from [20] or [7]. If m > 1, we note that A i may be void and we consider 
the ampliation 7’(“‘) acting on X’(m). It is easy to see that 

x=Y?@&~o ... @Am 
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is a semi-invariant subspace for T(“) whose compression ( T(“‘))x is 
(unitarily equivalent to ) 

T= T@ T,,:@ ... @T,,“, 

Thus, according to Proposition 2.5, to show that TE AK0 it suffices to show 
that F’E AR,. Moreover, since F has T as a direct summand, PEA, and 
thus it will be enough to show that, for every ,?. E /1, there exists a sequence 
of vectors {xR}T=, in the unit ball of .X satisfying (a) and (b) of 
Proposition 2.6 with respect to T (for every G in .X). If 3. E A, then 
A E a,(T), and thus by [20, Lemmas 3.2 and 3.41 such a sequence exists. If 
i. E /li for i > 1, then by hypothesis there exists a sequence {xi} of unit vec- 
tors in J$ converging weakly to zero such that (11) is satisfied. Consider 
now the sequence of vectors in x‘ defined by 

whose only nonzero components lie in the space J?,. It is easily checked 
that the linear isometry d$, . d-? of Qr onto Q firnl maps [C,] r to [C,] 7(m) 
and [a@ 1;] 7 to [,?@ 4;] -r(m) for all I. in ID and all B, j in X. (Use the facts 
qq = @T, qh~m, = @p?i , X is a semi-invariant subspace, and Lemma 2.4.) 
Combining this with another application of Lemma 2.4, we have 

and, furthermore, for any @ = M?, @ . @ u‘,,, in X, 

by virtue of (12), Lemma 2.4, and Proposition 2.7. Thus the sequence {,?$} 
satisfies the appropriate versions of conditions (a) and (b) of Proposition 
2.6, from which it follows that FE A,, as desired. 

We are now ready to give more concrete criteria for membership in A,,,. 
The first is of a purely spectral nature. 

THEOREM 3.2. Suppose TE C,.(X) and there exists an infinite dimen- 
sional semi-invariant subspace A! (possibly 2”) .for T such that 
((T,(T)~ID)uS?(T,,) is dominatingfor ?r. Then TEA,,. 

ProojI We first show that TE A, i.e., that (\h( T)I\ = \lh\\ ~ for every h in 
H”. Since TE C,,., T is a completely nonunitary contraction, and thus @I 
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iswelldefined.Setn,=a,(T)nDandn,=~~(T,).Since/1=~,~/1,is 
dominating for T, to prove that TE A it suffices to show (cf. [S, Definition 
4.51 that 

Ih( G Mm> AEA, hEH”. (13) 

Since A, ca(T)n D, by [14, Lemma 3.11 we have h(A,)ca(h(T)) for 
every h in H”, and thus (13) is satisfied for all 2 in /1 L. If i E A,, there 
exists a unit vector xi. in JY such that T>x, = 1.x;. Thus 

which shows that (13) is satisfied for all 1 in il,. Therefore TE A as asser- 
ted. Now let J& be the semi-invariant subspace for T obtained via 
Proposition 2.9 with A = T., and 2 = /i,. Since T belongs to C,., clearly 
the compression TA2 E C,, and that T belongs to A,, now follows 
immediately from Proposition 2.9 and Theorem 3.1. 

Remark 3.3. Of course Theorem 3.2 has a dual version corresponding 
to the case in which TE C., and there exists a semi-invariant subspace &Z 
for T such that (a,(T) n D) u F+( T,,) is dominating for U (Indeed, a 
semi-invariant subspace for an operator is also semi-invariant for its 
adjoint.) Furthermore, a special case of those theorems is the case in which 
.&’ = .# and thus T,, = T. 

Remark 3.4. Theorem 3.2 should be compared with Theorem 1.1, 
noting that the open set F(T) is contained in the derived set of g(T). 
However, the familiar example of the unilateral backward shift of mul- 
tiplicity one, which belongs to C,. n A, but not to A, ([6, Theorem 3.73) 
shows that there are real obstructions to be dealt with in trying to replace 
the hypothesis “TE C, ” in Theorem 1.1 by “TE C, .” 

The presence of “good hidden compressions” of an operator that would 
permit the application of Theorem 3.2 is not unusual, as is illustrated by 
the following example. 

EXAMPLE 3.5. Suppose IV,, is a weighted bilateral shift of multiplicity 
one in 2(X’) with weight sequence o = (..., w- ,, oO, o1 ,...) (see [S, 
Chap. IO] for definitions) such that I/ WJ = 1 and g( W,,) = U. Then either 
W,, E A,, or W,, is similar to the unweighted bilateral shift W, and belongs 
to A, \ A,. The main ideas of the proof, most of which are contained in the 
proof of [S, Theorem lO.S], are as follows. Since a( W,) = U, it follows 
easily from [21, Theorem 41 that all weights W, are nonzero, so W,,, is 
injective. Furthermore, if either of the infinite products n,,, oi or n;,, o, 
diverges to zero, then W,,, has a compression to a semi-invariant subspace 
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that satisfies the hypotheses of Theorem 3.2 (or its dual version), and thus 
W, belongs to A,,. On the other hand, if neither of these infinite products 
equals zero, then W, is similar to W, [21, Theorem 21, and it is easy to 
see that W, E A,\A, from [S, Theorem 10.5 and Corollary 4.141. 

THEOREM 3.6. Suppose TE C,. n A(X), J is either N or some nonempty 
finite subset of N, { Hj},EJ is a collection of holes in o(T), and there exists a 
sequence {Aj)jeJ satisfying A, E H,, j E J, and C, E J ( 1 - I I,1 ) < co. Suppose 
also that there exists a summable sequence {LX,}~,, of nonzero complex num- 
bers such that the linear functional induced on 6ET by the element 

c ,eJ crj[ CA,] of Q7 is continuous in the weak operator topology. Finally, sup- 
pose that the set 

(a,(T)nD)u8 (T)u u H, 
c ) 

(14) 
IEJ 

is dominating for 8. Then TE A,,. 

Proof Set [L] =cJE J , CI CC,,]. Since [IL] induces a linear functional on 
GE, that is continuous in the weak operator topology, there exists an m E N 
and vectors x ,,..., x,, y, ,..., y,, from X such that [L] =I?= I [xi@y,] (cf. 
[ 8, Proposition 1.71). 

We consider the ampliation T’“‘, and define 

2=x, @ ... ox,,, I;= y,@ .” @y,. 

Then, by Lemma 2.4, 8 ~‘([L])=[d@jj]~Q~-,. Of course, by 
Proposition 2.5, it suffices to show that Tern) E A,,, and to accomplish this, 
via Theorem 3.1, we note several relations: T(“’ E C,. n A, a( T’“‘) = a(T) 
(so the holes H,, Jo J, are also holes in (T( T’““)), F-( T’“‘) = F- (T), and 
o<,( T’“‘) = a,(T). Thus 

being equal to the set in (14), remains dominating for U. To complete the 
proof, using Theorem 3.1, it suffices to exhibit semi-invariant subspaces A& 
and J&Z’, (in case A, # a) having the appropriate properties. By Lemma 2.4, 
CjeJ CL,[C,] firnl = [Z 0 j] tirn), so by Proposition 2.10 there exists a semi- 
invariant subspace AZ for T’“’ satisfying (F”‘),A2~ C., and (b) of 
Proposition 2.10. Since T(“‘)E C,., ( T(m)).eZ~ Coo, so A&‘~ satisfies the 
appropriate conditions of Theorem 3.1. If A, = Fe (T’“‘) is void, then 
A I u A2 is dominating for T, and the result follows from Theorem 3.1. If 
A3 Z 0, then there exists a semi-invariant subspace A%‘~ for T(“) satisfying 
the appropriate conditions of Theorem 3.1 by Proposition 2.9, with 
A = T’“) and $ = A3, so the proof is complete. 
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Our next result, which is an easy corollary of Theorem 3.6, shows that 
the hypothesis “TE Coo” in Theorem 1.2 can be replaced by “TE Co. ,” 
again modulo the addition of a condition of a spectral nature. For T in A 
we denote by 9: (T) the (perhaps empty) union of all holes in H in a,(T) 
such that i(H) > 0. 

THEOREM 3.7. Suppose TE C,. n A(&), D \Fl (T) is dominating for U, 
and the weak* and (relative) weak operator topologies coincide on GL,. Then 
TE ANo. 

Proof: The main idea here is (*): since D \Fl (T) is dominating for U, 
one can construct a (possibly empty) collection { H,},EJ of holes in c(T) 
and a collection { Lj}iEJ with A,EHj, jEJ, and c,,J (l-IA,])<co, such 
that the set in (14) is dominating for T. Suppose this has been done. If 
J= 0, then TE A,, by Theorem 3.2, and if J# 0, let {LX,}~~~ be any sum- 
mable family of nonzero complex numbers. By hypothesis, the element 
cjEJ cc,[C,] of QT induces a linear functional on a, that is continuous in 
the weak operator topology, and the result then follows from Theorem 3.6. 
For the convenience of the reader, we now sketch a proof of (*). It is an 
easy consequence of spectral theory (cf. [ 19, Chap. I] ) that D \P; (T) is 
the disjoint union 

D\F;(T)=(a,(T)nD)uF~(T)up,(T)ua~T), 

where pb( T) is the union of the holes in a(T) and 

aiAT)= {~LE(T(T)\(~,(T)uE(T)): i(T-p)=O}. 

(15) 

One knows that the isolated Fredholm spectrum u;xT) of T consists at 
most of a countable set of isolated points 1 of a(T) each of which has a 
punctured neighborhood contained in some hole H in a(T) (so H c pb( T)). 
It thus follows from trivial geometric considerations and (15) that since 
D \ LP~ ( T) is dominating for %, then so is 

(a,(T)nD)u~-(T)up,(T). (16) 

Next observe that if U c pb( T) is the union of all holes H in C$ T) such that 
8H n T = 0, then since the set in (16) is dominating for lJ, so is the set 

h(T)nWu~ UJuh(T)\W (17) 

Since ph( T) is the union of at most countable many holes H in a(T), and 
all such holes H c pb( T)\ U satisfy dH n U # 0, it is easy to write 

pdT)\U= t.) H, (18) 
1EJ 

where (in case J # 0) each H, is a hole in G(T) and to choose a collection 
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{ibj>,eJ of points satisfying Aj E H,, j+z J, and cjEJ (1 - IAil ) < co. Putting 
together (17) and (18), we have now established (*), so the theorem is 
proved. 

Remark 3.8. Of course there is a dual version of Theorem 3.7 obtained 
by replacing “TE C,.” by “TE C.,” and the set .F;( T) by its counterpart 
9-L (T). 

COROLLARY 3.9. Suppose TE C, nA(X) (resp. TE C,n A(X)], the 
weak* and (relative) weak operator topologies coincide on rXT, and every 
hole H in o,(T) with i(H) > 0 (resp. i(H) < 0) satisfies dist(aH, U) > 0. Then 
TEA,,. 

It is well known (cf. [8, Theorem 6.3 and Proposition 2.091) that if 
TE ANo then @I, is closed in the weak operator topology and the weak* 
and weak operator topologies coincide on a,.. Thus it is natural to try to 
replace, in Theorem 3.7, the hypothesis that these two topologies coincide 
by the hypothesis that c% T= WT, where YK> is defined (for any TE -4p(X)) 
to be the closure of GE,. in the weak operator topology. Our next results are 
in this direction. 

Tf TE Y(X), [L] E QT, and there exists an rnE N with the properties 
that (a) there exist vectors x1 ,..., x,, J, ,..., I’,~, in X satisfying [L] = 
x, C*~,OY,l and (b) there exists no smaller m’ E N with the 
corresponding property, then [L] will be said to have length m (in Qr). 
(Thus the zero element of Qr has length one.) If, for a given [L] in Q,, 
there exists no such integer m, then [L] will be said to have infinite length. 
It follows (cf. [S, Proposition 1.71) that the elements of Q7 that induce 
linear functionals on a, that are continuous in the weak operator 
topology are exactly the elements of finite length. 

The following two lemmas are of independent interest. 

LEMMA 3.10. Suppose TE A(.#) and H is a hole in a(T). Then either (a) 
there exists some m E N such that for every 2 E H, [C,] has length m (and 
hence induces a linear functional on a, that is continuous in the weak 
operator topology), or (b) for every I. E H, [C,] has infinite length (and the 
linear functional induced on GET by [C,] fails to be continuous in the weak 
operator topology). Furthermore, (a) and (b) are equivalent, respectively, to 
(a’) for every (resp. some) IL E H, (T - A) ’ 4 %$, and (b’) .for ever-v (resp. 
some) AE H, (T-E.))’ EY&-. 

Proof If (b) is false, then there exists some A E H such that [C,] has 
finite length. Let m E N be the minimum length of any element CC,], as I. 
ranges over H, suppose that CC,,] has length m, and let 

Xl,-., x,, y  1 ,...’ Ym > 
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be vectors in 2 satisfying [C,] = CT=’ [x,@ y,]. Now consider the 
ampliation T(“) of T, and define 

R=x, @ ..’ ox,, p=y, 0 “’ oy,,. 

Then, by Lemma 2.4, CC,] nrn’ = [.Z 0 j] firn’, and from Proposition 2.10, 
applied to T’“’ with J a singleton, we see that for every A E H, [C,] T(~’ has 
length one. Applying Lemma 2.4 again, we learn that for every ~“EH. 
[Ci], has length at most m. But by the way m was defined, clearly every 
CC,] must have length equal to m. Since elements of Qr of finite length 
clearly induce linear functionals on OZT that are continuous in the weak 
operator topology ([ 10, Proposition 1.7]), the first statement of the lemma 
is proved. To prove the second statement, observe that for a fixed i in H, 
the linear functional Ji induced on M, by [C, J fails to be continuous in 
the weak operator topology if and only if Ker(f,) is dense in a, in that 
topology, which happens if and only if 1 X belongs to the closure of 
Ker(fj,) in the weak operator topology. Since 

Ker(,fJ = {(Y- ;) h(T): h E H” $, 

we see that if l,, belongs to this closure, then there exists a net 
jh,( T)( T- 3.)) converging to 1 ,w in the weak operator topology, and 
hence the net {h,(T)j converges to (T-n) -’ in the same topology. Thus 
(T-R)-’ E%&.. On the other hand, if (T-j&)- ’ E%$, then there exists a 
net (k,(T) ) contained in a, and converging to (T- i) ’ in the weak 
operator topology. Thus the net {(T- A) k,(T) > converges to 1 .K in that 
topology, so l,Y belongs to the closure of Ker(.f) in the weak operator 
topology. This clearly completes the proof. 

LEMMA 3.11. Suppose T E A and I;z: T = “w,. If H is any hole in a(T), then 
there exists an integer m E N such that for every I E H, [C,] has length m 
(and hence induces a linear jirnctional on 6X,- that is continuous in the weak 
operator topology). 

Proof: According to Lemma 3.10, it suffices to show that for some 
&EH, (T-&)‘&a,.=%$. But if (T-&-‘E~E., then, since TEA. 
there exists he H” such that QT(h)= (T--A,)-’ and consequently 
h( <)( 4 - E,,) _= 1, an obvious absurdity. 

We can now establish some sufficient conditions for membership in A,, 
for operators T in A that generate a dual algebra which is closed in the 
weak operator topology. The following theorem should be compared with 
[S, Theorem 6.101. 

THEOREM 3.12. Suppose TE CO. n A(X) and a,= WT. Then TE A,, in 
each qf the following cases: 
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(a) there exist a finite number of holes HI,..., H, in o(T) such that the 
set 

(a,(T)nD)uF-(T) 
Q!!, Hjl 

is dominating for T. 

(b) each hole in a,(T) of positive index is at a positive distance from T 
and there are only finitely many holes H in a(T) such that the (Lebesgue) 
measure of aH n T is positive. 

Proof Easy geometric considerations show that (b) is a particular case 
of (a), so it suffices to establish the theorem when T satisfies (a). In this 
situation, choose 1, E H,, i= l,..., k, and set [L] = cf=, cl,[C,,], where the 
C(~ are any nonzero complex numbers. By Lemma 3.11, each CC,,] induces 
a linear functional on a7 that is continuous in the weak operator 
topology, and thus the same is true of [L]. The result is now an immediate 
consequence of Theorem 3.6. 

Of course, Theorem 3.12 has a dual version. Slight variations on this 
theme are the following. 

COROLLARY 3.13. Suppose TE C.O n A is a quasitriangular operator, 
(XT = WT, and there are only finitely many holes H in o(T) such that the 
(Lebesgue) measure of dH n T # 0. Then TE A+,. 

Proof It is well known (cf. [ 19, Chap. 41) that if T is quasitriangular 
and H’ is a hole in rr,( T), then i(H’) > 0, so the corollary follows from the 
dual version of Theorem 3.12(b). 

COROLLARY 3.14. Suppose TE (C, u C.,) n A, a(T) = U, and GET= WT. 
Then TE Ax0. 

This corollary is an improvement of [8, Corollary 6.111. 

4. INVARIANT SUESPACES 

In this section we derive the promised corollaries concerning the 
invariant subspace problem for contractions on Hilbert space. 

THEOREM 4.1. Suppose that T is a contraction in 2’(Z) such that 
a(T) 1 T and the weak* and (relative) weak operator topologies coincide on 
6Ez,. Then T has a nontrivial invariant subspace. 
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Proof: There are a number of well-known reductions that one can 
make without loss of generality when looking for invariant subspaces. In 
the first place, one may suppose that a(T) = c,(T) (for, otherwise, either T 
or T* has an eigenvalue). Second, since T is a contraction, the sets 

A= {XE&? )IT”xll -O} and uhf,= (XES?: /)T*“xl/ -0) 

are both subspaces of &‘, and it is easy to see that JX and JZi are 
invariant subspaces for T. When one takes into account the various 
possibilities and recalls that if JX = J$$ = (0), then T is quasisimilar to a 
unitary operator and thus has a good supply of invariant subspaces (cf. 
[22, pp. 7679]), the only cases that remain to be dealt with are TE C, 
and TE C.0. Therefore, by taking adjoints if necessary, one may suppose 
that TE Co.. Finally, since a(T) 2 T, one may suppose that TEA by [I, 
Theorem 2.23. Thus these reductions combined give us TE C,. n A and 
G.,(T) = o(T), so TE A,, by Corollary 3.9, and that operators in AK,, (even 
A,) have nontrivial invariant subspaces is well known (see, for example, 
[S, Proposition 4.81). 

The following corollary of Theorem 4.1 answers a question that we were 
unable to answer for several years. 

COROLLARY 4.2. Suppose T is a contraction in Y(X) and m is a positive 
integer such that T(““E A, (equivalently, in the terminology of [IS], 
TE A,,,). Then T has a nontrivial invariant subspace. 

ProoJ Since Tcm’ E A 1, TE A, and therefore G(T) 13 T. It is an easy con- 
sequence of Lemma 2.4 that each [L] in Qr has length at most m, and 
hence induces on a, a linear functional that is continuous in the weak 
operator topology. Thus the weak* and (relative) weak operator 
topologies coincide on aT. 

Once again we may sometimes replace the coincidence of the topologies 
on fl, by the equality of the algebras aT and %$. 

THEOREM 4.3. Suppose that T is a contraction in 9(X’) such that 
a(T) 13 U, 6Z T = %‘& and there are only a finite number of holes H in c(T) 
such that the Lebesgue measure of 8H n U is positive. Then T has a non- 
trivial invariant subspace. 

Proof: As in the proof of Theorem 4.1, we may suppose that 
TE Co. n A and that a,(T) = a(T). That TE A,, now follows immediately 
from Theorem 3.12(b). 

Remark 4.4. It was recently shown by Westwood [23] that there do 
exist operators T in 5!‘(X) such that a,= Y#$ but the weak* and weak 
operator topologies do not coincide on 6X:,. Moreover, very recently it was 
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shown by W. Wogen that there exist operators T in 2?(X) such that 
a,# ^w,, and it was shown by the first author and J. Esterle that if GX is 
any dual algebra such that the weak* and weak operator topologies coin- 
cide on a, then a is closed in the weak operator topology. The authors 
conjecture that every operator T in A n Co has the property that the 
weak* and weak operator topologies coincide on a,. A positive answer to 
this conjecture would imply, of course, together with Theorem 4.1, that 
every contraction T in P’(X) satisfying a(T) 3 T has a nontrivial invariant 
subspace. 

Remark 4.5. The following consequence of Theorem 3.6 and Lemma 
3.10 seems worth pointing out: If T is a contraction in 2’(S), (T(T) = lJ, 
and Tpl # Y#$, then T has a nontrivial invariant subspace. 
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