Pituitary Localization of 3H-Spiroperidol by an Uptake/Storage Mechanism?

CHARLOTTE A. OTTO*, PHILLIP S. SHERMAN, SUSAN J. FISHER, VALERI L. VALOPPI, JOHN C. MARSHALL, RICARDO V. LLOYD, W. LESLIE ROGERS and DONALD M. WIELAND

Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI 48128 and Departments of Internal Medicine and Pathology, University of Michigan Medical Center, Ann Arbor, MI 48109, U.S.A.

(Received 25 August 1985)

The lack of a pituitary imaging agent combined with the considerable clinical value for such an agent prompted an examination of 3H-spiroperidol (3HSp). Spiroperidol was selected for initial evaluation based on its high affinity for D$_2$ receptors which are known to be present in the pituitary. A time course study of 3HSp concentration in rat pituitary and other tissues was conducted. Pituitary activity levels were found to be constant from 5 min to 4 h and were about 8 times levels in corpus striatum at 1 h. Blocking studies with (+)-butaclamol and with unlabelled spiroperidol suggested the existence of both a D$_2$ receptor mediated binding localization and a second uptake which is postulated to be an internalization process. Further studies involving ultracentrifugation of pituitary homogenates resulted in evidence for association of 3HSp with dense subcellular particles. 3HSp thus appears to be internalized by pituitary cells.

Introduction

Previous workers have evaluated radiolabelled spiroperidol derivatives as brain imaging agents. These studies have relied on the high affinity of spiroperidol, a potent D$_2$ antagonist, for the dopamine receptor. In particular, [14C]spiropiperidol, [3H-3-N-[14C]methylspiropiperidol, [1H]spiropiperidol (position emitter), and 77Br-p-bromospiropiperidol (β emitter) showed sufficient uptake in the corpus striatum, known to contain D$_2$ receptors, to permit imaging in both animals and man. Although the pituitary is known to contain D$_2$ receptors similar to those in corpus striatum, few of these studies have addressed the possibility of pituitary imaging.

Indeed, reports on radionuclidic imaging of the pituitary are scarce. [99Tc]pertechnetate was employed as an imaging agent to detect pituitary adenomas. Reported data clearly demonstrated the increased vascularity and activity of pituitary tumors, but pertechnetate does not functionally characterize pituitary adenomas. Various pituitary tumor pathologies are known, and prolactin secreting adenomas (prolactinomas) are common, being found in 20–25% of all women with amenorrhea. Pituitary tumors are usually detected by physical symptoms, abnormal hormone levels and CT scans of the sella turcica. However, CT scans do not functionally characterize pituitary adenomas; and thus diagnosis may be imprecise and often rests on association of abnormal hormone levels with a possible CT scan abnormality.

Thus the availability of imaging agents which would permit specific differentiation between pituitary pathologies and normal tissue would be of considerable clinical value. The presence of dopamine receptors capable of binding 3H-neuroleptics raises the possibility of imaging the pituitary with a radio-labelled D$_2$ receptor antagonist.

3H-Spiropiperidol was selected for initial evaluation based on several factors:

1. The existence of data establishing its binding to dopamine receptors in normal pituitary tissue of rat, sheep, and human.
2. Its high affinity for the D$_2$ receptor and its commercial availability as a tritiated compound of high specific activity.
3. Spiropiperidol is a potent antagonist of inhibition of prolactin release by dopamine or dopamine agonists.
4. Spiropiperidol can be radiobrominated and the radiolabelled analog, 77Br-p-bromospiropiperidol (77BrSp), exhibits similar binding to dopamine receptors and is comparable to spiroperidol in ability to stimulate prolactin release. Tissue distribution studies with 77BrSp in normal rats have been promi-
ing in terms of pituitary concentration (22) but the data are insufficient for evaluation of this compound in terms of pituitary imaging.

Thus we have studied (1) the time course of 3H-spiroperidol (3HSp) in male and female Fischer F344 rats, (2) the degree of D\textsubscript{2} receptor-mediated localization, and (3) evidence for a possible alternative localization mechanism.

Materials and Methods

The following compounds or reagents were obtained from commercial sources: 3H-spiroperidol (25–30 Ci/mmol) (New England Nuclear), (+)-butaclamol hydrochloride (Research Biochemicals, Inc.), and reserpine (Sigma Chemical Company). Scintillation fluid used in counting, Ox-triti-scint, was obtained commercially (Romac).

Fischer F344 rats, male and female, were purchased (Charles River). Animals were exposed to alternating 12 h periods of light and dark and received rat chow and water ad libitum during the study.

Tissue distribution studies

Normals. Tissue distribution studies were performed on normal, 10 week old female rats at 5, 30 and 60 min and at 2 and 4 h post injection, and on normal, 10 week old male rats at 5 min and 4 h post injection. For these studies, approximately 25 \(\mu\)Ci (approximately 0.3–0.4 \(\mu\)g) of 3HSp in 0.25–0.35 mL of formulation (40\% ethanol in sodium acetate buffer, pH 4.5) were administered intravenously in the femoral vein to rats anesthetized with sodium pentobarbital. Animals, five at each time interval, were killed by decapitation and tissues removed rapidly. Representative 1–20 mg tissue samples (in duplicate) of cerebral cortex, cerebellum and corpus striatum were obtained only at \(t = 1\) h. For all other time intervals, the anterior and posterior pituitary were removed, separated and processed individually. Duplicate samples of uterus and blood were also obtained. Each sample was weighed on an analytical balance interfaced to computer printout and oxidized in a Packard Model 306 Oxidizer. Samples were counted in a liquid scintillation counter with corrections made for counting efficiency and background. The values of resulting tissue concentrations were calculated as \% dose/organ and/or as \% kg dose/g in which body weights are normalized to 1 kg and are reported as mean \(\pm\) SEM.

\((+)-\text{Butaclamol treated.}\) Six normal female rats were treated with \((+)-\text{butaclamol (2 mg/kg)}\) 45 min prior to 3HSp injection (25 \(\mu\)Ci). Tissue distribution studies were performed as described above at \(t = 1\) h post 3HSp injection.

\(\text{Spiroperidol treated.}\) Six normal female rats were coinjected with 25 \(\mu\)Ci of 3HSp and unlabelled spiroperidol (2 mg/kg). Tissue distribution studies were performed at \(t = 1\) h post injection.

\(\text{Reserpine treated.}\) Normal female rats were injected with reserpine (\(n = 6\)) (1 mg/kg) or with an equal volume of reserpine vehicle (\(n = 6\)) 3 h prior to injection of 3HSp (25 \(\mu\)Ci). Animals were sacrificed at \(t = 1\) h post 3HSp injection and tissue distribution studies were conducted.

Analysis of pituitary homogenates. Twenty-four female rats were injected with 3HSp (25 \(\mu\)Ci) and sacrificed 1 h later. The anterior pituitaries were rapidly removed and divided into groups of six. The experimental protocol for tissue preparation and sucrose density gradient centrifugation was as described (22) The final gradient was fractionated into 200 \(\mu\)L fractions, each fraction diluted with 12 mL aqueous scintillation fluid and counted.

In a related study, groups of eight bisected anterior pituitaries were incubated with 0.50 nM 3HSp in medium 199 at 37°C for 2 h. The pituitaries were washed thoroughly and then homogenized. The remaining steps were followed as above.

Control studies consisted of preparing and centrifuging a sucrose density gradient in which only homogenizing medium containing 0.25 nM 3HSp was layered on the gradient. A second control consisted of homogenizing pituitary in the presence of 0.5 nM 3HSp at 0–4°C and then proceeding as described. In all controls, the final gradients were fractionated and counted. Each control was repeated a minimum of three times.

For purposes of comparison, homogenates of corpus striatal tissue were similarly analyzed. The brains from 24 rats injected with 3HSp as above were rapidly removed after sacrifice and frozen. Striatal tissue from each group of 6 brains was combined and kept frozen until analysis. The tissue was washed and treated exactly as described for pituitary tissue.

Results

In order to assess the specific pituitary imaging potential of spiroperidol, a time–activity curve in the tissues of normal rats was necessary.

Time course in normal rats

The concentration of 3HSp in selected tissues in normal, 10 week old female rats for time intervals from 5 min to 4 h is presented in Table 1. Over this time frame, constant levels of radioactivity were observed in the anterior and posterior pituitary which were approximately 10 times the levels observed at \(t = 1\) h in cerebral cortex, cerebellum and corpus striatum. Male rats showed similar values in blood but levels in the anterior pituitaries were lower (Table 1). The values in posterior pituitary were similar for males and females at 5 min but levels had fallen by 4 h in males.

The observation that both anterior and posterior pituitary concentrations were similar was not unexpected. Earlier studies have shown that in male Sprague–Dawley rats the maximal number of binding sites for 3HSp is slightly greater in the posterior
The pituitary localization of \(^3\)HSp 535

Table I. Time course of \(^3\)H-spiroperidol activity levels in normal male and female Fischer rats

<table>
<thead>
<tr>
<th>Time</th>
<th>Tissue</th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 min</td>
<td>Anterior pituitary</td>
<td>0.238 ± 0.082</td>
<td>0.159 ± 0.015</td>
</tr>
<tr>
<td></td>
<td>Posterior pituitary</td>
<td>0.306 ± 0.110</td>
<td>0.443 ± 0.040</td>
</tr>
<tr>
<td></td>
<td>Cerebral cortex</td>
<td>0.35 ± 0.004</td>
<td>0.33 ± 0.005</td>
</tr>
<tr>
<td></td>
<td>Cerebellum</td>
<td>0.37 ± 0.003</td>
<td>0.37 ± 0.003</td>
</tr>
<tr>
<td></td>
<td>Corpus striatum</td>
<td>0.32 ± 0.002</td>
<td>0.48 ± 0.003</td>
</tr>
<tr>
<td></td>
<td>Blood</td>
<td>0.32 ± 0.001</td>
<td>0.33 ± 0.001</td>
</tr>
<tr>
<td></td>
<td>Uterus</td>
<td>0.266 ± 0.032</td>
<td>0.266 ± 0.032</td>
</tr>
<tr>
<td></td>
<td>Testes</td>
<td>0.266 ± 0.032</td>
<td>0.266 ± 0.032</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Tissue</th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 min</td>
<td>Anterior pituitary</td>
<td>0.229 ± 0.003</td>
<td>0.355 ± 0.021</td>
</tr>
<tr>
<td></td>
<td>Posterior pituitary</td>
<td>0.395 ± 0.102</td>
<td>0.244 ± 0.056</td>
</tr>
<tr>
<td></td>
<td>Cerebral cortex</td>
<td>0.022 ± 0.001</td>
<td>0.022 ± 0.005</td>
</tr>
<tr>
<td></td>
<td>Cerebellum</td>
<td>0.022 ± 0.001</td>
<td>0.022 ± 0.001</td>
</tr>
<tr>
<td></td>
<td>Corpus striatum</td>
<td>0.121 ± 0.016</td>
<td>0.121 ± 0.016</td>
</tr>
<tr>
<td></td>
<td>Blood</td>
<td>0.122 ± 0.005</td>
<td>0.122 ± 0.005</td>
</tr>
<tr>
<td></td>
<td>Uterus</td>
<td>0.085 ± 0.004</td>
<td>0.085 ± 0.004</td>
</tr>
<tr>
<td></td>
<td>Testes</td>
<td>0.045 ± 0.001</td>
<td>0.045 ± 0.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Tissue</th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 h</td>
<td>Anterior pituitary</td>
<td>0.355 ± 0.021</td>
<td>0.240 ± 0.025</td>
</tr>
<tr>
<td></td>
<td>Posterior pituitary</td>
<td>0.231 ± 0.030</td>
<td>0.262 ± 0.046</td>
</tr>
<tr>
<td></td>
<td>Cerebral cortex</td>
<td>0.014 ± 0.002</td>
<td>0.014 ± 0.002</td>
</tr>
<tr>
<td></td>
<td>Cerebellum</td>
<td>0.010 ± 0.001</td>
<td>0.010 ± 0.001</td>
</tr>
<tr>
<td></td>
<td>Corpus striatum</td>
<td>0.012 ± 0.002</td>
<td>0.012 ± 0.002</td>
</tr>
<tr>
<td></td>
<td>Blood</td>
<td>0.017 ± 0.002</td>
<td>0.017 ± 0.002</td>
</tr>
<tr>
<td></td>
<td>Uterus</td>
<td>0.066 ± 0.008</td>
<td>0.066 ± 0.008</td>
</tr>
<tr>
<td></td>
<td>Testes</td>
<td>0.017 ± 0.001</td>
<td>0.017 ± 0.001</td>
</tr>
</tbody>
</table>

* Data in % kg dose/g, mean ± SEM.
* 10 week old Fischer F344 rats, n = 5.
* n = 6.

The approximately constant concentration of \(^3\)HSp in normal pituitary tissue was expected based on time course studies of \(^3\)HSp in striatal tissue as both tissues contain D₂ receptor sites. Striatal concentrations of \(^3\)Br-p-bromospiroperidol in Sprague–Dawley rats and in cats have been shown to be approximately constant over a time period from 2 to 4 h.

Receptor blocking studies

\(^3\)HSp values at \(t = 1\) h post injection in rats pretreated with (+)-butaclamol are compiled in Table 2. (+)-Butaclamol pretreatment did not significantly alter uptake of \(^3\)HSp in the uterus or blood. No change in uptake in posterior pituitary was observed which is suggestive of negligible amounts of specific D₂ receptor binding in this tissue. Creese et al. using bovine pituitary, reported negligible specific binding in the posterior pituitary. A reduction of radioactivity was observed for the anterior pituitary which was expected based on the in vitro studies mentioned above. In a second blocking study, unlabelled (cold) spiroperidol was coinfected with \(^3\)HSp. The results, compiled in Table 2, indicate that the unlabelled spiroperidol had little or no effect on \(^3\)HSp pituitary concentration.

Cellular incorporation studies

Table 3 contains the results of \(^3\)HSp uptake in rats...
In vivo pituitary analysis (---) and for a control (O---O).

The results of the incubation (in vitro) study were similar and are not shown. Unbound 3HSp remains at the top of the gradient in both the supernatant layer and buffer layer. Two peaks of radioactivity were observed in the in vivo study; the first, and largest, peak contains unbound 3HSp and 3HSp presumably bound to light membrane fragments which remain at the top of the gradient. This was also observed for dopamine. The second peak of radioactivity occurs in the same region of the gradient with reserpine or vehicle pretreatment. Data from normals is included for comparison. Reserpine treatment results in an approximate 20% reduction in 3HSp localization in anterior pituitary. Concentration data in other tissues were apparently unaffected by reserpine treatment.

A second set of experiments was performed in order to obtain evidence for 3HSp association with dense subcellular granules to confirm that 3HSp was taken into pituitary cells. In one case bisected anterior pituitaries were incubated in the presence of 3HSp; in a second case anterior pituitaries were removed from rats previously injected with 3HSp. All anterior pituitaries were washed and homogenized as described. Centrifugation to remove whole cells and cell debris was followed by ultracentrifugation of supernatant through a sucrose density gradient as described. The final gradients were fractionated and counted. Figure 1 shows plots of CPM vs fraction number for the in vivo study and a control.

Discussion

Evaluation of 3HSp as a model for other radio-labelled analogs or derivatives of spiroperidol was begun assuming that only two types of localization would occur in the pituitary: specific, D$_2$ receptor mediated, binding and nonspecific binding. That spiroperidol binds to pituitary D$_2$ receptors has been amply demonstrated in in vitro studies. Binding to these receptors in vivo has not been clearly demonstrated but would be expected based on analogy with studies on the corpus striatum. Because evidence for receptor labelling typically includes reduction of binding in the presence of either (+)-butaclamol or unlabelled spiroperidol, the effects of these agents on 3HSp pituitary concentration in vivo were evaluated. Treatment with (+)-butaclamol reduced 3H-activity concentration in the anterior pituitary by 36% rather than 70% reduction to cerebellum levels. Previous work has shown differences between the dopamine receptors in the anterior pituitary and the striatum or the caudate nucleus and spiroperidol is a more potent competitor of 3HSp binding in the rat striatum than in anterior pituitary. These facts do not seem sufficient to explain the observed effect of (+)-butaclamol. As the time course of butaclamol effect on the pituitary is not documented, a second blocking study was conducted. The data from this study parallel data reported for 36BrSp in the pituitary when unlabelled spiroperidol was coinjected. It was suggested that the relative inability of unlabelled spiroperidol to displace 36BrSp was due to a relatively small portion of total binding which was specific. However, if this were true, then the blocking study with (+)-butaclamol should have yielded similar results, i.e. (+)-butaclamol should have had little or no effect on 3HSp concentration.

Thus, although data from the (+)-butaclamol blocking study supports the presence of some specific D$_2$ receptor binding of 3HSp, the fact that radioactivity levels are not reduced to cerebellum (nonspecific binding) levels is suggestive of an additional mode of retention. Further evidence for an additional retention mechanism consists of the negligible effect of unlabelled spiroperidol on 3HSp pituitary concentration.

Cellular uptake and localization of 3HSp in dense subcellular particles, possibly prolactin secreting storage vesicles, are possible as the alternative means of retention. There is some evidence in the literature to support an internalization mechanism. The endo-
genous inhibitor of prolactin secretion, dopamine, has been shown to be incorporated into prolactin-secreting granules.[23,29,31] An immunofluorescent study using haloperidol, a D\textsubscript{2} antagonist similar in structure to spiroperidol, presented evidence suggestive of haloperidol incorporation via endocytosis.[32] An uptake study using cultured pituitary tumor cells (F\textsubscript{44}C\textsubscript{1} strain) showed that spiroperidol uptake could be reduced by 50\% in the presence of reserpine, which was interpreted as evidence for a biogenic amine vesicular uptake.[33] The effect of reserpine on \textit{in vivo} 3HSp uptake was tested. Radioactivity levels were reduced by 20\% which provides some evidence for the existence of a biogenic amine vesicular uptake mechanism for spiroperidol.

Further support is seen in the finding of radioactivity associated with dense subcellular particles obtained from homogenates of the pituitary but not from homogenates of striatal tissue. This finding was confirmed for pituitary by both \textit{in vivo} and \textit{in vitro} experiments. If no metabolism of 3HSp occurs, then the observed location of 3H activity is strong evidence for the cellular uptake of 3HSp and for the association of 3HSp with dense subcellular particles. This process of internalization of 3HSp suggests that alternative approaches to the design of radiopharmaceuticals specific for the pituitary may be useful. The release of prolactin elicited by spiroperidol and previously attributed to D\textsubscript{2} receptor interaction may need to be re-examined in light of this evidence.

Clearly, there is significant 3HSp localization in the anterior pituitary. Analysis of a worst case scenario suggests that radiolabelled spiroperidol has excellent potential for imaging normal pituitary. In the worst case, uptake in normal (control) pituitary was 1.5\% dose/g for 0.15 kg male rats. Adjusting this specific uptake for body mass gives 0.0032\% dose/g for a 70 kg human (1.5\% x 0.15/70). The average human pituitary weighs 0.7 g which would then concentrate 2.25 x 10-3 of the injected dose which would amount to 0.225 \textmu Ci for a 10 mCi dose. Sensitivity for various brain imaging instruments ranges from 240 to 1400 counts/min/\textmu Ci in air or 50-300 counts/min/\textmu Ci in 10 cm of water. One might, therefore, detect from 12 to 70 cpm from the hypothalamic pituitary under discussion. Since specific uptake in cerebellum is only 7\% of this worst case example and since the pituitary is isolated at the base of the brain, it should be well visualized above any cerebellar background. Problems with radioactivity background from blood should be minimal as the anterior pituitary-to-blood ratio is 14.3.

\textbf{Acknowledgements} — Research was supported jointly by Grant No. RR 05383, Biomedical Research Support Grant from NIH, by a Biomedical Research Support Grant to the Vice-President for Research at the University of Michigan from NIH, and by a grant from Phoenix Memorial Laboratory at the University of Michigan.

The authors thank Larry Brown for technical assistance and Linder Markham, Irene Sayer, and Elizabeth Van Wormer for help in preparing the manuscript. The authors also thank Janssen Pharmaceutica, Inc. for the gift of spiroperidol.

\textbf{References}