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Abstract- -The problem of  a thermally conducting cylinder sliding steadily over the surface of  an 
elastic half-plane with different thermal properties was analyzed. Appropriate Green's functions are 
used to reduce the problem to an integral equation which is solved numerically. Thermoelastic 
distortion due to frictional heating causes the contact patch to be smaller than that predicted for 
isothermal (Hertzian) contact although solutions assuming a single, perfectly conducting contact 
patch are not found for all values of parameters. 

I N T R O D U C T I O N  

Rubbing contact between convex bodies occurs frequently in engineering, in particular in 
certain types of brakes, in sliding electrical contacts and in wear tests. It has been 
conventional in analyzing these configurations to ignore the effect of thermal distortion 
produced by the heat generated, and to utilize Hertzian contact theory. However recent work 
by Barber and others (see Johnson [1] ) has shown that because of thermoelastic coupling 
between the distorted profile and heat generation at the interface, very pronounced 
differences from isothermal contact are found, with much higher contact pressures. In 
particular, Barber [2] has shown that steady sliding of a conducting cylinder over an 
insulating half-plane (such that the contact is stationary in the conducting body) always 
results in a contact width which is narrower than that obtained in the isothermal problem. As 
the contact load is increased whilst the sliding speed is kept constant, the contact width 
asymptotically approaches a constant value which it cannot exceed. This is in contrast to the 
isothermal problem, where the contact size increases indefinitely with the applied load, within 
the other limits prescribed for Hertzian contact. It is the principal object of this paper to relax 
the assumption that the cylindrical contacting body is non-conductive, and investigate the 
effects of this generalization on the contact behaviour. 

The more general case of two surfaces sliding together such that the contact patch is 
moving with respect to each body may be formulated by a similar technique. However, this 
serves to introduce further parameters into the argument, and hence for the present the 
particular case of one body being stationary is considered. This has the added advantage that 
comparison with an exact solution may be made. 

F O R M U L A T I O N  

The geometry of the contacting pair is shown in Fig. 1. It is assumed that the cylinder is 
rotating with a peripheral velocity v, and that the region of contact is spatially fixed with 
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FIG. I. Geometry of  contact. 
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respect to the lower plane. The elastic and thermal properties of the cylinder and the half- 
plane will generally be different and will be distinguished by the subscripts 1, 2, respectively. 

First, we write down the y-direction displacement of body I at point (x, 0) due to a line heat 
source of magnitude ql at point (~, 0), travelling at constant speed v which is 

l/th I = 2 exp Io(  x > ~ {1) 

Uth I = 2 61kl,  x < ~, 
t: 

where 6, k are, respectively, the thermal distortivity and diffusivity, and Io is a modified 
Bessel function (Barber [3-1 ). It will be convenient to cast the problem in terms of the 
derivative of the normal displacement with respect to x, whereupon equations (1) become 

dutm 
dx  - - 6 ,q l  ( { ) N ( x  - ¢ )H(x  - ~), (2) 

where N(s)  = exp ( -  vs/2kl)  [Io (-,vs/2kl) - I~ (vs/2k~)] and H(s) is Heaviside's step 
function. 

Similarly, the slope of the surface of body 2 at point x due to a static line heat source of 
magnitude q2, located at ¢, is given by (Barber [4] ) 

dUth2 ~2q2 (~) sgn(x -- ~) 
dx - 2 (3) 

In addition, the surface displacements of the surfaces due to interfacial tractions are 

duel I l - v 1  ~b p(~)d~ 1 - 2 v l  t(x) 

duel2 1 - v a ~ ' b  p(~)d~ 1-2v2 (4) 
dx  - p27r J ,  x - ¢  2p2 t(x), 

where p, v are, respectively, the modulus of rigidity and Poisson's ratio, and p(x), t(x) are, 
respectively, the normal and shear traction present on the free surface. 

It should be noted that since the bodies are sliding the direct and shear tractions are related 
at every point by the coefficient of Coulomb friction f, i.e. 

t(x) = fp(x). (5) 

Furthermore the heat sources q~(x), q2(x) result from frictional work done against the 
tractions t(x) and hence 

ql  (X) + q2(x )  = - f p ( x )  v. (6) 

(Note that this expression does not preclude the presence of a net heat flux due to an 
impressed temperature gradient between the bodies.) 

Lastly, it will be assumed that the curvature of the bodies in the neighbourhood of contact 
may adequately be represented by parabolae, so that the initial gap, go(X) between the bodies 
satisfies the equation 

dgo x 
-- (7) 

dx R' 

where R is the radius of the cylinder. After deformation the gap becomes 

g(x) = g o ( x ) -  ul (x) + u2(x), (8) 

where u l, u2 are the normal displacements of the surface due to both thermoelastic and elastic 
effects, i.e. u = uel + Uth. In the contact region a < x < b, however, d g / d x  = 0 is required and 
hence, differentiating (8) with respect to x and using equations (2)-(4) and (7) the following is 
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obtained 

{ 1 - v ~ + l - v 2 } l f ~ p ( ¢ ) d ¢ / ~ l  /~2 x ~  {1-2v1~_~ 1-2v2tfP-~(2X)la2 

+-~- j .  q2 (~) s g n ( x -  ~)d~ + ~1 ql (~)N(x-~)H(x-~)d~  

x 
= - - -  a < x < b .  (9) 

R 

Now define the following 

q(x) = ql (x) - q2 (x) 

and simplify the appearance of (9) by introducing the notation 

A = ½ (b - a) 

a =½(b+a) 
p (r) R 

p(r) = - -  
P 

q(r)R 
q(r)- Ply 

vA 
Pc - (the Peclet number) (10) 

2k2 

k292 H =  

(1 - 2vl)/kq - (1 - 2v2)/kt2 
fl = (Dundurs' constant). 

(1 - vl)/l~l + (1 - v2)//~2 

It should also be noted that for the corresponding isothermal problem, the contact half- 
width, A, and contact load, Pn, are related by (Timoshenko and Goodier [5]) 

A2 4PnR 1 -v l  1 - + (11) 
n /zl /~2 

and hence, equation (9) may be re-written a s  

f + l {  I - 1  ~(s--r) fPeH[4 _ ~ N ( s _ r ) + ~ s g n ( s _ r ) l } , ( r ) d r  flf,(s)2 

~ J -1  r) - ~ sgn (s - r) } ~(r) dr (12) 

This equation can be regarded as a singular integral equation of the second kind for p(r) in 
terms of  q(r) and known functions. It is noted that only the first term in the kernel has a 
Cauchy singularity, and the other terms are regular. The free term (flf~(s)/2) corresponds 
physically to the coupling between the tangential traction and the vertical displacement and 
has been shown by Goodman [6] to have only a small influence on the result in frictional 
contact problems. Therefore, subsequently, this term will be omitted, with the effect that (12) 
is reduced to a single integral equation of the first kind. Further, if it is assumed that body 1 is 
rigid, terms involving (1 - v i  )//~l become zero. 

The interfacial contact pressure must be in equilibrium with the applied load P, and hence 

P = - p(~)d~ 
a 
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or in normalized variables 

A f  +1 - = /~ (r) dr. t13) 1 ~ 1 

Equations (12, 13) describe the relationship between surface tractions, heat flux and the 
contact geometry. A second equation must now be developed which relates the heat fluxes q 
to the surface temperatures of the contacting bodies. It is assumed that there is no resistance 
to heat flow in the contact region so that the corresponding points on either side of the 
interface are at the same temperature. This requires 

~T, ~T2 
. . . . .  (14) 

?,x ~?x ' 

where T~, T2 are the surface temperatures. 
Body 1 experiences a distribution of moving heat sources. The surface temperature at a 

point (x, 0) due to a line heat source q ~ currently located at (~, 0) and moving at speed r is 
given by Carslaw and Jaeger [7] as 

7rK1 2kl J ° L 2-kl ' t15) 

where K ~ is the thermal conductivity, and K 0 is the modified Bessel function. Differentiating, 
and summing the effects of a heat source distributed over the interval a < x < b, it is found 
that 

c~T1 - v  f b  - M(x-()q,(~)d~, (161 
0x 2 n ~ K l  , 

where 

M (s) = exp [ _ ~k~ ] J ° L2~-[ vs ] + K , [2~'i-] t. 
Body 2 experiences a fixed heat source which gives rise to 

distribution (Carslaw and Jaeger [7] ) 

t~ 7" 2 1 f b ~q2(~) d~. 
~X ~K2 a X-- ~ 

Substituting equations (16) and (17) into (14) and making use of (101 gives 

j M(x-~)+ q(~) d~ 
a X - - ~  

-Jb M ( x - ~ ) + x ~  p(~)d~=O 
a 

or, in terms of dimensionless variables 

l Pe[_k~K~jM[A(s-r)]+s~rr c~(r)dr 

a surface temperature 

(17) 

(18) 

Af÷x = 0 (r) dr. (20) 

f +l ( Vk2K27 1 } 
- , : , ' t d r = O .  

Lastly, it is convenient to introduce a variable quantifying the apportioning of frictional heat 
between the two bodies. Defining 

_ Q 1 - O 2  

(2, + Q2' 

where Qi is the total heat flux into body i, gives 
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Thus, ;~ = - 1 when all the frictional heat is conducted into the half-plane, 2 = 1 when it is all 
conducted into the cylinder, whilst 2 = 0 corresponds to equipartition. In the physical 
problem involving bodies of finite dimensions, the value of 2 will depend upon the thermal 
boundary conditions distant from the contact region. It is not necessarily restricted to the 
range - 1 < 2 < 1, since there may be a superposed heat flux due to an externally imposed 
temperature difference between the contacting bodies. 

As written, both integrals in equation (19) contain Cauchy singularities. However, a new 
function O'(r) may be introduced, defined by 

•(r) =/~(r)t/+ 0'(r). (21) 

Substituting into equation (19) gives 

+t ( p  [-k2K23 
- ,  eL jMeA('-r)l+ f + l  f [-k2K2-] l o ' (r)dr-  i~o[~--~:j 

s i r  - 1  

x M [ A ( s - r ) ] ( 1 - r l )  (1+~)}/6(r)dr=0"s- (22) 

For small arguments 1 
M [ A ( s - r ) ]  ,,~ Pe ( s - r )  

and thus the Cauchy singularity in the second integral of equation (22) may be avoided by 
setting 

k[ K2/kl K1 - 1 
rl = kEK2/klKi  + 1" (23) 

D1SCRETIZATION 

The simultaneous integral equations (12) and (19) cannot be solved analytically and, in 
view of the Cauchy terms present in both, Gauss-Chebyshev quadrature is most appropriate. 
It was anticipated that/~(r) will be bounded at the end points whilst 0'(r) will be singular, and 
hence it was decided to represent the solutions as the product of fundamental solutions and 
bounded continuous functions q~ (r), ~(r), thus 

/~(r) = (1 - r2)  1/2 ~b(r) 
(24) 

gl'(r) = (1 - r2) - 1/2 qJ(r). 

Hence, the discretized form of equation (12) is (Erdogan et al. [8]); 

i = 1  ~ 1  - S k - - r i  - -  - A  

~ ~(r) 
+ ~ - G2 (Sk, r) - -  -- F- Sk (25) 

i = l n  - A  A 

k = l . . . n + l ,  

w ere r:cos[ 

Sk = COS n + 1 J 

A - 4RP .  
nAP 

Gl(S,r)= - N ( s - r ) ( 1 - r l ) + ~ s g n ( s - - r ) ( l + t l )  

6~ 1 
G2 (s, r) = ~ N (s - r) - ~ s g n  (s - r) 
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and equation (13) becomes 

i.e. 

A ~ ~, (1-r2)q~(ri), (26) - l - R n ~ l  i= 1 

P, _ 2 ~ (l_r2i )O(ri) 
P (n+ 1)A i= 1 

thereby defining the dimensionless load parameter, Pu/P. 
Similarly, the discretized form of (22) is: 

= G3 {s~, rl) + n ~ -  riG4 (s~, r) - -  = 0 (27) 
i = l  F/ i = 1  

k = l . . . n - l ,  

I- 2 i - 1 ]  
where 

s k = cos 

G3(s,r)=pe[k2]2 1 L~J M[A(s-r)]+--s_r 

G4(s , r )= - p e [ k 2 ]  2 ( M [ A ( s - r ) ] ) ( 1 - ~ / ) -  1 ( l+r/)  
L]~I J S -- r 

and, lastly, equation (20) becomes 

i l  /o 1-r  
2 = -  -O(rl) ~= n-~c~(rl)-q. (28) 

i = 1  v/ i 1 

The 2n simultaneous linear algebraic equations given in equations (25) and (27) are 
sufficient to enable q~(ri), ¢(r'0 to be found at the integration points, after which Pn/P and 2 
can be found from equations (26) and (28). 

VALIDITY OF SOLUTION 

The classical existence and uniqueness theorems of heat conduction and elasticity do not 
apply to thermoelastic contact problems with unilateral boundary conditions. Indeed, 
counter-examples have been discovered to both in steady-state problems (see Barber [-4], 
Comninou and Dundurs [9]). There is therefore no guarantee that the stated problem will 
have a solution for all values of the physical parameters, nor that a solution when obtained 
will be physically reasonable. 

It is therefore necessary to check the solution when obtained, to ensure that the inequalities 
of unilateral contact are satisfied, i.e. (a) that the interfacial traction in the contact region is 
non-tensile and (b) that the gap in the separation region is non-negative (so that there is no 
interpenetration of material). 

Violations of type (a) are readily detected from the calculated values of/~, but further 
analysis is required to determine the gap between the bodies, exterior to the contact region. 
Equations (1) and the integrated form of equation (3) were used to describe the effect of heat 
flux on surface displacement; and the integrated form of equations (4) to describe the effect of 
surface tractions. Their combined influence, neglecting the effect of shear tractions, is to 
produce a gap g(x) given by; 

x z i i _ V l + l _ v 2 l  1 f b  I x - ( ]  f b  Iv ~ { V(X_~) t g(X)=~-~+ - -  - -  -- p(¢)log ~ d ~ -  2 6 ~exp 
( ktl /12 ) n  , , 2kl 

[ v ( x -  ~)} 1 × Io~ ~ [  q~i{)-~62{x-g)qi(g)dg+cl x>b  (29) 



Steady sliding of a circular cylinder 619 

{,_. 
= + - p(~) log d~ g(X) ~ Jr /21 1"/2 ) /~ 

+ ~ 2 (~ --  X) q2 (¢) d e  + c2 x < a,  (30)  

where the rigid body terms q ,  c2 are adjusted so that g(x) vanishes at x = b, a. Equations 
(29, 30) are normalized and discretized in the same manner as the principal equations (9, 18). 

R E S U L T S  

In practice, it is natural to regard j; H, K2/K1, k2/kl, c~2/61 as parameters, P, v, 2 as 
independent variables (the last controlled by adjusting the far field temperatures), and A, a 
(i.e. Pe, Pu/P) as dependent variables. Whilst f, H, KE/K1, k2/kl, 62 61 remain parameters in 
this formulation it is more convenient to treat a/R, b/R and Pe as independent variables, and 
to deduce values of PH/P, 2 and fHPe (note that the last quantity is equivalent to the 
dimensionless quantity designated aft by Barber [2] ). Further, to reduce the number of free 
variables to manageable proportions, set 62/61 = 1 and K2/K1 = k2/kl, which may 
be interpreted physically as assigning the same specific thermal capacity to the two bodies. 
The effect of 2 is of  greater interest than the location of  the contact patch (a/R) and hence in 
obtaining the results frequent adjustments of this quantity were made to enable convenient 
values of 2 to be yielded. 

The system analyzed reduces to that treated by Barber [2] in the limit where K~ tends to 
zero, i.e. where the cylinder is a non-conductor. Figure 2 compares this limiting solution with 
the present results for the case where KE/K 1 = 100, so that the cylinder is a much poorer 
conductor than the half-plane. Iteration was used to maintain the value of  2 at - 1, i.e. to 
ensure that all the frictional heat flowed into the stationary body (though of  course for any 
non-zero value of  K1, there will be local heat flow into the cylinder in parts of the contact 
region, balanced by regions of  heat outflow). For a Peclet number of 5.0, convergence of the 
numerical scheme was obtained with n -- 50, which yields the largest matrix (100 x 100) 
which can conveniently be inverted. 

In the limit, the solution should be independent of velocity except through the parameter 
fHPe. Therefore the calculations were repeated for Pe = 10.0 (see Fig. 2). Convergence on the 
limiting solution is good at larger values o f f H P e ,  but less good at smaller values. 
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FIG. 2. Convergence of present solution on existing one for the case of a sliding insulated cylinder. 
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It should be noted that these values of Peclet number are large in the context of  heat 
conduction theory and correspond to situations where there is very little conduction of heat 
in the cylinder parallel to the direction of motion, because the period during which a specific 
point is in contact is very short in comparison with the heat induction transient. One 
consequence is that the Green's function for thermoelastic distortion in the cylinder 
[equation (1)] approaches closely to a step function, and its derivative [equation (2)] to a 
6 function. This necessitates the use of a large number of  discretization points at large values 
of  Peclet number, if adequate accuracy is to be obtained. This question is further discussed by 
Hills and Barber [-10], in the solution of a related problem for a moving rigid punch. 

The ratio K2/K1 was reduced to 10, whilst ,:. was again maintained at - 1 by iteration. 
giving the results shown in Fig. 3. The same general trend was observed, but the contact width 
is in each case larger than that obtained with an insulating cylinder, the difference increasing 
as the Peclet number is reduced. It is also found that (a/A) increases wi thJH Pe and Pc. In 
other words, the contact region becomes progressively displaced downstream around the 
cylinder as fHPe (and hence the magnitude of the thermoelastic effects) increased. 

A more striking conclusion is that some of the solutions obtained violate the physical 
inequalities, indicating that there is no solution of the type assumed in some ranges of tile 
physical parameters. In particular, violations are obtained at high values of applied load. t'. 
The dependence on speed is somewhat more complicated, since Pe appears both explicitly 
and in the combination fHPe and the Peclet number also contains the contact semi-width, A. 
which also appears in the definition of P , .  However, it seems that violations are more 
prevalent at lower values of speed V, where presumably thermoelastic efl'ects in the cylinder 
become more significant. No attempt was made to obtain results for Peclet numbers in excess 
of  10, in view of the accuracy problems discussed above and it proved impossible to obtain 
any solutions without violations for Peclet numbers less than unity. 

The point at which violations start to occur is well-defined and is usually signalled by the 
occurrence of interpenetration just downstream of the trailing edge of the contact region. 
x = a, often with the simultaneous occurrence of tensile contact tractions near to the same 
transition. This behaviour is very similar to that demonstrated by Comninou and Dundurs 
[ 11 ] in steady-state thermoelastic contact when the heat flow is locally directed into the body 
with the smaller distortivity. In steady-state problems, this difficulty has been overcome by 
postulating the existence of a pressure dependent thermal contact resistance between the 
bodies (Barber [ 12] ), but it is not clear whether such a device would be sufficient to guarantee 

0 '8  

0'71 ~ X X ~  Violations in this 

o.ot \ \ \ '%,  

0'4 "~~~ 
0'3 Pe= 50 

0.1 . . . . .  ~ i .  __ 

'f' 02 0"4 0"6 O.B 1-0 1'2 fHPe 

FIG. 3. The eflect of sliding speed on contact patch size where net heat flux corresponds to all heat 
dissipating in the stationary body. 



Steady sliding of a circular cylinder 621 

09- 

0 6  

0 7  

0 6  

O"2, 

0"4 

0.3 

02 

0.1 

), °o ),:  -o.5 

), 10 

\ 
\ 

', X : -15 

I i I I I I 

02 04  0 6  0 8  10 12 IHPe 

FIG. 4. The effect of  partitioning of total heat generated on contact patch size. 

existence in the present problem, or whether some different kind of configuration is to be 
anticipated, such as one involving several disconnected contact regions, or a cyclic behaviour 
of  some kind. 

Figure 4 shows the effect of varying J, whilst keeping K2/K~ and Pe fixed at 10 and 5, 
respectively. In interpreting this Figure, it is helpful to remember that if there were no 
thermoelastic effects, the load (for a given contact width and hence for a given value of fHPe)  
would always be equal to the Hertzian load, giving a horizontal line in Fig. 4. The fact that all 
the lines fall with increasingfHPe indicates that the thermoelastic distortion always causes 
the contact width for a given load to be smaller than the Hertzian, but this effect is reduced as 
2 increases and is relatively small for/ i  = 1, when all the frictional heat is directed into the 
moving body. This argues that the thermoelastic distortion of  the stationary half-plane is 
principally responsible for the modification of the Hertzian solution--a conclusion which 
seems reasonable in view of  the fact that the moving body is continually presenting new 
'isothermal' material to the contact region, so that there is relatively little opportunity for 
extensive thermal distortion to occur during a simple passage through the contact region. 

Confirmation of this conclusion is presented in Fig. 5, which shows the load required to 
establish a given contact width over a wider range of 2 from - 1 to 4. For 2 > 1, there is a net 
heat flow out of the half-plane (which implies the imposition of a temperature difference 
between the distant boundaries of the bodies, with a corresponding superposed heat flux). In 
this range, the load P is less than the Hertzian value, as might be anticipated, since the half- 
plane will contract locally to the contact region, making the bodies more conforming. 

C O N C L U S I O N S  

A solution has been given for the steady-state thermoelastic contact of an elastic cylinder 
sliding against a stationary elastic half-plane. The thermoelastic distortion due to frictional 
heating causes the contact region to be smaller than the Hertzian value and the results 
approach the previously published solution for a rigid, non-conducting cylinder at large 
values of  the ratio of  conductivities. 

In general, the contact problem is dominated by the distortion of the stationary half-plane. 
When most of the heat flows into the moving cylinder, the contact width is much closer to the 
Hertzian and is less sensitive to variation of speed or coefficient of friction. 

Physically acceptable solutions are not obtained in certain ranges of the parameters, 
indicating that either the boundary conditions are too idealized or the contact configuration 
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Flo. 5. Variation of partitioning of total heat with applied load. 

differs from that assumed. The behaviour of the system in such ranges will be a topic of future 
investigations. 

The most obvious application of this analysis is to the contact of composite brake blocks 
on steel railway-vehicle wheels. It might be anticipated that such configurations lead to the 
conduction of the majority of the heat into the wheel, and hence into the moving body. 
However, recent work by Barber et al. [13] indicates that the hot spots developed are 
stationary in the wheel and traverse the block. Thus, the present analysis, where we place an 
emphasis on the majority of the heat passing into the stationary body, is quite relevant to such 
cases. 
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