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ABSTRACT 

PLANE-STRAIN crack-tip stress solutions for anisotropic perfectly-plastic materials are presented. These 
solutions are obtained using the plane-strain slip-line theory developed by RICE (1973). The plastic aniso- 
sotropy is described by the Hill quadratic yield condition. The crack-tip stress solutions under symmetric 
(Mode I) and anti-symmetric (Mode II) conditions agree weil with the low-hardening solutions for the 
corresponding power-law hardening materials. The crack-tip stress solutions under mixed Mode I and II 
conditions are also presented. All the solutions indicate that the general features of the siip-line field near 
a crack tip in orthotropic plastic materials with the elliptical yield contours in the Mohr plane are the same 
as those associated with isotropic plastic materials. However, the angular variations of the crack-tip stress 
fields for the materials with large plastic orthotropy differ substantially from those for isotropic plastic 
materials. Modifications due to polygonal yield contours are outlined and implications of solutions to the 
fracture analysis of ductile composite materials containing macroscopic flaws are discussed. 

1. INTRODUCTION 

PLASTIC anisotropic behavior of engineering materials may be due to their 
crystallographic microstructure and/or prior plastic deformation as the result of 
manufactu~ng processes. However anisotropic behavior of enginee~ng composite 
materials is mainly due to fiber reinforcement in the materials. 

Cracks or flaws, still, may exist in these anisotropic engineering materials. In order 
to assure the structural integrity of the materials, an investigation of the stress and 
strain fields near a crack tip in the materials is necessary. 

HUTCHINSON (1968a,b) and RICE and ROSENGREN (1968) presented the strain- 
hardening and perfectly-plastic solutions of the crack-tip field for isotropic materials 
under pure Mode I and pure Mode II conditions. SHIH (1973, 1974) presented the 
strain-hardening and perfectly-plastic solutions of the crack-tip field for isotropic 
materials under mixed Mode I and II conditions. HAYASHI (1979) and PAN and SHIH 

(1986) presented the strain-hardening solutions of the singular crack-tip field for 
orthotropic materials under pure Mode I and pure Mode II conditions. 

In this paper, the plane-strain crack-tip stress solutions for anisotropic perfectly- 
plastic materials are presented. The solutions are constructed using the plane-strain 
slip-line theory of RICE (1973) for arbitrary anisotropic rigid-plastic materials. The 
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quadratic yield function introduced by HILL (1948, 1950) is used to describe aniso- 
tropic plastic behavior. Note that the yield surface based on the quadratic function is 
smooth. However, for materials with highly oriented microstructure such as single 
crystals, the yield surfaces have corners and flats when discrete crystalline slip is 
considered to be the primary mechanism for plastic deformation (BISHOP and HILL, 
1951). RICE (1973) suggested that we can use a simple polygon as the yield contour 
to describe approximately the plastic behavior of ductile composite materials under 
plane-strain conditions. Therefore we also discuss the crack-tip stress solutions for 
the materials with polygonal yield contours and the implications of these crack-tip 
stress solutions to the fracture analysis of ductile composite materials. 

2. THE RICE PLANE-STRAIN SLIP-LINE THEORY 

The plane-strain slip-line theory for isotropic rigid-plastic materials is well known, 
for example, see HILL (1950). HILL (1950) extended the theory to include plastic 
anisotropy for incompressible materials with ellipsoidal yield surfaces. RICE (1973) 
generalized the theory for incompressible materials with arbitrary anisotropic convex 
yield contours. By employing the Rice method which is remarkably simple, we can 
construct the stress field near the tip of a crack in anisotropic perfectly-plastic 
materials. 

Here we briefly discuss the plane-strain slip-line theory of RICE (1973). Rice 
considered a plane-strain deformation in the x, y plane as shown in Fig. 1 b. Denote 
ox, aY and gXY as the associated in-plane normal stresses and shear stress. Rice showed 
that under plane-strain conditions incompressible rigid-plastic materials, with arbi- 
trary anisotropy, in which the plastic deformation complies with the principle of 
maximum plastic work, have a reduced yield criterion which is a function of (CJ- 0))/2 
and cXy. In Fig. la, an arbitrary but smooth yield contour is plotted in the Mohr plane 
in terms of (ox-a,)/2 and or,,. Denote the orientation of the outward normal at a 
point P* on the yield contour by 24 which is measured counterclockwise from the 
direction of the oX.Y axis. Then by considering the maximum plastic work inequality 
and equilibrium conditions, two orthogonal families of slip-line, labelled a and fi, 
about a point P (which corresponds to point P* on the yield contour) in the plastic 
region of the x, y plane as shown in Fig. lb can be constructed. The mesh of the slip- 
lines is defined such that the counterclockwise angle between the CI lines through point 
P and the x direction is 4. The integrated equations of stress equilibrium become 

fl- 1 = constant along an TX line 
(2.1) 

f.~ + 1 = constant along a p line 

where cs is the mean in-plane stress ( = (ox+ 0,)/2), and 1 represents the arc length 
around the yield contour to point P, increasing counterclockwise as shown in Fig. la. 

When there is a corner on the yield surface, there is a jump in C# at the corner. 
Therefore the direction of the c1 lines associated with the corner has a jump, When 
there is a flat segment on the yield surface, a stress discontinuity may arise. Further 
details of the slip-line theory for anisotropic plastic materials can be found in RICE 
(1973). 
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I \Yield Contour 

(0) 

(b) 

FIG. 1. (a) A yield contour in the Mohr plane. (b) The slip-line field in the physical plane. 

3. CRACK-TIP STRESS FIELDFOR ORTHOTROPIC PLASTIC MATERIALS 

Consider a plane-strain problem of a crack in an anisotropic solid as shown in Fig. 
2. The crack tip is located at the origin of the Cartesian coordinate system x, y. The 
polar coordinates r, 8 with respect to the crack tip are shown in Fig. 2. Note that the 
Cartesian coordinate z is perpendicular to the xy plane. For a material with the plastic 
behavior described by the Hill quadratic yield condition, when the symmetry axes of 

FIG. 2. A crack in an anisotropic solid with the insert indicating the direction of fiber reinforcement for 
the composite material. 
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the orthotropy, XI, Xl and X,, coincide with the .?iY , _J, z axes, the p~a~~e-~tra~n yield J 
condition can be written (Hr~t, 1948, t95fi ; PAN and SHE& l!X%j as 

(r,2/3 = r; =J?ffcr,-0J2)~+ (D& (3. I) 

where G, is the generalized effective tensile stress, rt^, is the generalized effective shear 
stress, and p is a material constant, The yield condition is written to be consistent 
with the crack-tip field study for power-law hardening materials by PAN and SHIH 

(1986). 

As shown in Fig. 3a, the yield condition of (3.1) is plotted as an ellipse in the Mohr 
plane. The elf&se is symmetric with respect to the c,, and (~,X-(r,)/2 axes. When 
p C 1, the ~em~major axis and the sern~i~jnor axis of the elIipsc, denoted as i. and A, 
res~t~vc~y~ are shown in Fig. 3a, where a = t,j$ir2 and fr = 2,. When y = 1, e~ua~~o~~ 
(3. i> represents a circular yield contour in the Mohr plane and represents the plane- 
strain yield condition for isotropic plastic materials. However, as discussed in HILL 
(1950) and PAN and SHIH (19X%), plastic materials with orthotropic structural sym- 
metry can still have the plane-strain isotropic yield condition. When p > I, the semi- 
major axis will be in the o.,,, direction and the semiminor axis in the (a,-o,)/2 
direction. 

As discussed in RICE (1968), slip-line theory may be used to construct the crack- 
tip stress for elastic perfectly-plastic materials under small-scale yielding conditions. 
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When we consider a stationary crack in a perfectly-plastic material under small-scale 
yielding conditions, the stresses near the crack tip as r -+ 0 can be treated as functions 
of 0 only under the assumption that the material surrounding the crack tip is fully 
yielded. Note that due to boundedness of the J integral, the displacement gradient is 
required (RICE, 1968) to have a l/r singularity as r + 0. We here use the Rice plane- 
strain slip-line theory, as summarized above, to construct possible crack-tip stress 
solutions for the perfectly-plastic material with the yield condition of equation (3.1). 

Mode I crack- tip field 

We first examine the Mode I crack-tip stress field for the orthotropic plastic material. 
The stress dist~bution of the Mode I plane-strain near-tip field for isotropic perfectly- 
plastic material under small-scale yielding conditions was presented by RICE (1968), 

HUTCHINSON (1968a,b) and RICE and ROSENGREN (1968). The near-tip field has the 
slip-line field similar to the Prandtl field which is the field under a flat-ended, rigid, 
frictionless punch on a half plane of isotropic rigid-plastic material. RICE (1973) 

showed the stress distribution under such a punch on a half plane of anisotropic rigid- 
plastic material. When we assume that the material surrounding the crack tip is fully 
yielded, we can construct the Mode I crack-tip stress field according to the general 
procedure to construct the solution of the punch problem for anisotropic plastic 
materials as in RICE (1973). Then we compare the crack-tip stress solutions for 
perfectly-plastic materials with the low-hardening crack-tip stress solutions for the 
corresponding power-law hardening materials presented in PAN and SHIH (1986). 

The stress-free boundary on the upper and lower faces of the crack requires that 
oXY = oY = Cl at 8 = - 180” and 8 = 180”. For the symmetric Mode I stress field, we 
consider the case that a, > 0 on the stress-free crack faces. Therefore, as shown in 
Fig. 3a, the stress state on the stress-free crack faces must correspond to the stress 
state of point A (or E) because (ax--a,)/2 > 0. Note that both point A and point E 
represent the same stress state. However, the angle of the normal for point E, 24, is 
larger than that of point A by 2~. 

In front of the crack tip, the shear stress CF, at 0 = 0” must vanish for the symmetric 
Mode I stress field. Therefore, the stress state directly ahead of the crack tip could 
correspond to the stress state of point C as shown in Fig. 3a because we anticipate 
that ou > ET, ahead of the crack tip. By examining the crack-tip stress of the Prandtl 
field for isotropic plastic materials and the solution of the punch problem for general 
anisotropic plastic materials in RICE (1973), the stress field around the crack tip can 
be constructed as follows. 

As shown in Fig. 3b, we have the constant stress sector A with the angle of span 
of 7r/4 below the lower crack face. The constant stress sector A corresponds to the 
stress state at point A on the yield contour as shown in Fig. 3a and has the cc lines 
with the angle of 4 = 37c/4 as shown in Fig. 3b. 

Adjacent to sector A we have the fan sector B with the angle of span of rc/2. The 
fan sector B represents the stress state along the yield contour from point A to point 
C counterclockwise as shown in Fig. 3a. This fan sector B has the a lines with the 
angle 4 increasing from # = 3~1’4 to 6 = 5?r/4 as shown in Fig. 3b. 

Adjacent to sector B and ahead of the crack tip we have the constant stress sector 
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C corresponding to the stress state of point C on the yield contour as shown in Fig. 
3a. This sector C has the angle of span of7~/2 as shown in Fig. 3b. The a lines in sector 
C have the angle of 4 = 5~14 as shown in Fig 3b. 

By symmetry, we again have the fan sector D with the angle of span of n/2. The 
fan sector D represents the stress state along the yield contour from point C to point 
E counterclockwise as shown in Fig. 3a. The a lines of the fan sector D have the angle 
4 increasing from (b = 57c/4 to 4 = 77114 as shown in Fig. 3b. 

Finally we have the constant stress sector E with the angle of span of n/4. The 
constant stress sector E corresponds to the stress state of point Eon the yield contour 
as shown in Fig. 3a and the E fines in this sector have the angle I$ = 7z/4 as shown in 
Fig. 3b. 

Employing the methodology of RKE (t973), the solutions of the crack-tip stress 
field have been obtained for the materials with p = 10, 2, 1, 0.5 and 0.1. The yield 
contour for p = 1 is circular in the Mohr plane and it represents isotropic plastic 
behavior. The yield contours for p = 10 and 2 are ellipses with the semimajor axis in 
the 0’) direction in the Mohr plane. The yield contours forp = 0.1 and 0.5 are ellipses 
with the semimajor axis in the (ax-o,,)/2 direction in the Mohr plane. The yield 
contours for p = 0.5 and 2 represent mildly orthotropic plastic behavior and the yield 
contours for p = 0.1 and 10 represent strongly orthotropic plastic behavior. 

The solutions of the crack-tip stress field for p = 10, 2, 1, 0.5 and 0.1 are plotted 
in Figs. 4a-e. respectively. Note that the stresses shown in Figs. 4a-c are normalized 
by G, and the stresses labelled with the “bar” shown in Figs. 46 and e are normalized 
by a&‘/‘. The results for p = 1 shown in Fig 4c are the crack-tip stresses for isotropic 
plastic materials or for orthotropic plastic material with the plane-strain isotropic 
yield condition, The results forp = 1 agree with the well-known Prandtl field solution 
presented in Eiu~c3~rnso~ (1968a) and RICE and RQSENGREN (1968). It is interesting 
to note that the crack-tip slip-line fields for the orthotropic plastic materials with 
elliptical yield contours in the Mohr plane are the same as the Prandtl field associated 
with isotropic plastic materials. However, as shown in Figs. 4aae, as the p deviates 
substantially from I, the angular variations of the stresses deviate significantly from 
those for p = 1 I 

Note that, because of the hyperbolic nature of the governing equations, the sol- 
utions which we obtained here are not unique. In the study of PAN and SHIH (19X6), 
solutions of the crack-tip field for orthotropic power-law hardening materials with 
the yield criterion of equation (3.1) were obtained. The crack-tip stress and strain 
solutions for power-law hardening materials with the same five p’s are shown in Figs. 
2 and 3 in PAN and SHIW (1986). Comparisons of the solutions for power-law hardening 
materials with the solutions for perfectly-plastic materials shown in Fig. 4 in the 
present paper suggest that the present solutions for rigid-plastic materials indeed 
correspond to the perfectly-plastic limit of the solutions for the power-law hardening 
materials. 

Now we construct the anti-s~metric Mode If stress fieId. The stress-free condition 
on the crack faces requires that G,, = G? = 0 at 8 = - 180” and 8 = 180”. We consider 
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FIG. 4. The solutions of the Mode I crack-tip stress field; (a) p = 10, (b) p = 2, (c) p = 1, (4 p = 0.5, 
(e) p = 0.1. 
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the loading condition which produces the anti-symmetric Mode II stress field near 
the crack tip with d, > 0 at 8 = - 180” and B,~ K 0 at 8 = 180”. The stress state on 
the lower face of the crack (0 = - 1809 therefore can correspond to the stress state 
of point A on the yield contour as shown in Fig, 5a. The stress state on the upper 
face of the crack (0 = 180“) can correspond to the stress state at point G on the 
yield contour as shown in Fig. 5a. 

Directly ahead of the crack tip (@ = 0’) the normal stresses gX and a; should vanish 
for the anti-symmetric Mode II stress field. Therefore, the stress state ahead of the 
crack tip can possibly correspond to the stress state of point D’ on the yield contour 
as shown in Fig, 5s. By examining the Mode II crack-tip slip-line field for isotropic 
plastic materials presented in HUTCETINSON (1968b) and SHIH fI973, 1974), the stress 
field around the crack tip for the orthotropic plastic materials can be constructed as 
f0110ws. 

4s shown in Fig. 5b, we have the constant stress sector A with the angle of span 
of rc/4 below the lower crack face. The constant stress sector A corresponds to the 
stress state of point A on the yield contour as shown in Fig. 5a. The sector has the Q 
lines with the angle of 4 = 37~14 as shown in Fig. 5b. 
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Adjacent to sector A we have the fan sector B with the angle of span of n/4-t?,. 

The fan sector B represents the stress state along the yield contour from point A to 
point C counterclockwise as shown in Fig. 5a. This fan sector B has the c1 lines with 

the angle 4 increasing from 4 = 37c/4 to 4 = n-o1 as shown in Fig. 5b. The angle 81 
is determined by consideration of the continuity of the stress state and the slip-line 

field as shown in Fig. 5b. 
Adjacent to sector B we have the constant stress sector C corresponding to the 

stress state of point C on the yield contour. This sector C has the angle of span of 
7cj2. The a lines in sector C have the angle of 4 = n-0, as shown in Fig. 5b. 

Adjacent to sector C we have the fan sector D with the angle of span of 28,. The 
fan sector D represents the stress state along the yield contour from point C to point 
E counterclockwise as shown in Fig. 5a. This fan sector D has the CI lines with the 
angle 4 increasing from 4 = n- 8, to 4 = x+0, as shown in Fig. 5b. Because the 
direction of the normal at point D’ has 4 = 71, the stress state at (3 = 0” where 4 = 7c 
corresponds to the stress state of point D’ on the yield contour. 

By anti-symmetry of the Mode II stress field, we can then construct the rest of the 
slip-line field. Adjacent to the fan sector D we have the constant stress sector E 
corresponding to the stress state of point Eon the yield contour. Due to anti-symmetry 
of the Mode II stress field point C and point E are symmetric with respect to the oXY 
axis as shown in Fig. 5a. Sector E has the angle of span of 7~12 and the a lines of the 
sector have the direction 4 = 7~ + 8,. 

Then we have the fan sector F with the angle of span of 7c/4 - 8,. The fan sector 
F represents the stress state along the yield contour from point E to point G counter- 
clockwise as shown in Fig. 5a. This fan sector F has the c1 lines with the angle &J 
increasing from 4 = 7~ + 8, to 4 = 57~14 as shown in Fig. 5b. 

Finally we have the constant stress sector G with the angle of span of 7c/4. The 
constant stress sector G corresponds to the stress state of point G on the yield contour 
as shown in Fig. 5a and the CI lines in this sector have the angle 4 = 5x14 as shown in 
Fig. 5b. 

The solutions of the crack-tip stress field are obtained and plotted in Figs. 6a+ for 
p = 10,2, 1,0.5 and 0.1, respectively. As for the Mode I solutions, the stresses shown 
in Figs. 6a-c are normalized by oe and the stresses labelled with the “bar” shown in 
Figs. 6d and e are normalized by a,/p”‘. The results shown in Fig. 6c are the crack-tip 
stresses for isotropic plastic materials and agree well with the results in HUTCHINSON 
(1968b) and SHIH (1973, 1974). As shown in Fig. 5b the general features of the crack- 
tip slip-line fields for the orthotropic plastic materials with elliptical yield contours in 
the Mohr plane are the same as those for isotropic plastic materials with the circular 
yield contour in the Mohr plane. The values of 0, for p = 10, 2, 1, 0.5 and 0.1 are 
41.2”, 38.3”, 36.8”, 35.2” and 31.50”, respectively. As shown in Figs. 6a-e, when plastic 
orthotropy becomes large (p deviates significantly from 1), the angular variations of 
the crack-tip stresses differ substantially from those of the solutions for p = 1. 

Comparisons of the solutions of the crack-tip stress for p = 10, 2, 1,0.5 and 0.1 as 
shown in Figs. 6a-e with the solutions of the crack-tip stress field for power-law 
hardening materials as reported in Figs. 6 and 7 in PAN and SHIH (1986) suggest that 
the present solutions for rigid-plastic materials indeed correspond to the perfectly- 
plastic limit of the solutions for the power-law hardening materials. 
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FIG. 6. The solutions of the Mode II crack-tip stress field; (a) p = 10, (b) p = 2, (c) p = 1, (d) p =O.S, 

(e)p = 0.1. 



Plane-strain crack-tip stress solutions 627 

The study of BWDIANSKY and RICE (1973) indicates that due to the boundedness of 
the conservation integrals the ratio of the dominant singularity of ox below and above 
the crack line must be either + 1 or - 1 for all mixed Mode I and II cases. The ratio 
is + 1 for Mode I and - 1 for Mode II. The study of SHIH (1973, 1974) strongly 
suggests that for any amount of deviation from Mode I to mixed mode the ratio will 
jump from + 1 to - 1 for isotropic power-law hardening materials. Also, as indicated 
in the isotropic perfectly-plastic solutions in SNIH (1973, 1974). the ratio of a, below 
and above the crack line jumps from + 1 to - 1 for any deviation from Mode I to 
mixed mode. By examining the mixed mode crack-tip stress field of SHnr (1973, 19T4) 
for isotropic plastic materials and the present solutions of the crack-tip field under 
pure Mode I and pure Mode II conditions, we can construct the mixed Mode I and 
II stress field for the orthotropic plastic materials, 

On the lower crack face, the stress-free condition requires that gXY = c), = 0 at 
fl= - 180”. We consider the loading condition which produces crX > 0 at 8 = - 180”. 
The stress state at 8 = - 180” thus corresponds to the stress state of point A as shown 
in Fig. 7a. As suggested from the Shih solutions (1973, 1974) for isotropic plastic 
materials we assume that for any deviation from Mode I stress field we will have 
cX < 0 at 0 = 180” on the upper crack face. The stress state at 6 = 180” on the upper 
crack face therefore corresponds to the stress state of point G as shown in Fig. 7a. 
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At this moment we will use the Mode I stress field as shown in Fig. 3 as the basis 
to construct the mixed Mode I and IT stress field. As shown in Fig. 3a for the Mode 
I case, point E shares the same position with point A. We consider the loading 
conditions where a small load, which alone would produce a Mode II crack-tip field, 
is combined with a dominant load which alone would produce a Mode I crack-tip 
field. To generate a possible mixed mode solution we move point E (corresponding 
to the constant stress sector E at the crack tip) on the yield contour as shown in Fig. 
3a clockwise to a position as shown in Fig. 7a. The amount of the move depends 
upon the ratio of the Mode II load to the Mode I load. Point C (corresponding to 

the constant stress sector C at the crack tip) consequently has to move clockwise from 
the position as shown in Fig. 3a to the position as shown in Fig. 7a in order to satisfy 
the equilibrium conditions. Since the stress state on the upper crack face has to 
correspond to the stress state of point G, we therefore expect that a jump of the radial 
stress may occur. 

Figure 7 shows the complete picture of the mixed mode stress field. Below the lower 
crack face we have the constant stress sector A corresponding to the stress state of 
point A on the yield contour. Sector A has the span of angle of 7c/4. Then we have 
the fan sector B corresponding to the stress state along the yield contour from point 
A to point C as shown in Fig. 7a. The angle of span of sector B depends upon the 
exact position of point C on the yield contour. 

Adjacent to sector B, we have the constant stress sector C (corresponding to the 
stress state of point C on the yield contour) with the angle of span of 7rj2. Then we 
have the fan sector D which represents the stress state along the yield contour from 
point C to point E. The angle of span depends upon the positions of point C and 
point Eon the yield contour. 

Then we have the constant stress sector E corresponding to the stress state of point 
E on the yield contour. Finally we have the constant stress sector G corresponding 
to the stress state of point G on the yield contour. Since point E and point G have 
different positions on the yield contour, the stress states are different. However, the 
continuity of the traction along the border line F between the two sectors gives 

E 
~00 = &, 

E G gro = Crfl on the border line F, 
(3.2) 

where the stress with a superscript “E” represents the stress on the side of sector E 
and one with a superscript “G” represents the stress on the side of sector G. Conse- 
quently the radial stresses or, are discontinuous across the border line F. Note that 
the directions of the c( and p lines in each sector are shown in Fig. 7b. From equations 
(3.2) and (2.1), we can solve for the angle of the border line F, On and the exact 
position of point C for a given position of point E. 

For example we select point E such that the angle [ of the radial line which passes 
through point E is 315” as shown in Fig. 7a. The results of the crack-tip stress field 
are plotted in Figs. 8a-e for p = 10, 2, 1, 0.5 and 0.1, respectively. Note that the 
stresses shown in Figs. 8a-c are normalized by oe and the stresses labelled with the 
“bar” shown in Figs. Sd and e are normalized by ~,/p’!~. When the elliptical yield 
contour becomes circular in the Mohr plane for isotropic plastic materials, the quali- 
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FIG. 8. The solutions of the mixed Mode I and II crack-tip stress field with stress discontinuity for 5 = 3 f 5” ; 
(a)p= lO,(b)p=Z,(c)p= t,(d)p=OS.(e)p=O.t. 
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tative features of the crack-tip stress field as shown in Fig. 8c agree with those 
presented in SHIH (1973, 1974). Because of the different stress states in the constant 
stress sectors E and G, we can see the discontinuity of the radial stress in these figures. 

For a crack in a ductile material under mixed mode loading conditions, the mean 
in-plane stress and the hoop stress near the tip are important parameters for crack 
initiation and growth. Note that under plane-strain conditions the out-of-plane normal 
stress depends upon the details of the three-dimensional yield condition for the 
orthotropic plastic materials, see HILL (1950) and PAN and SHIH (1986). By comparing 
Figs. 4a--e with Figs. Sa-e, we found that for mixed mode crack-tip field the maximum 
mean in-plane stress and the maximum hoop stress are less than those associated with 
the corresponding pure Mode I crack-tip field. This can be explained easily when we 
compare the arc length from point A to point C in Figs. 3a and 7a. The constant 
stress sector C corresponding to point C has the maximum mean in-plane stress 
around the crack tip. The increase of the mean in-plane stress from point A to point 
C equals the arc length from point A to point C. This qualitative result can be 
obtained from equation (2.1) for the CI lines which are shown in Figs. 3b and 7b. For 
the mixed mode crack-tip field, point C is moved clockwise along the yield contour 
as point E is moved from the position of point A when the crack-tip field deviates 
from the Mode I stress field. As the Mode II contribution under mixed mode con- 
ditions increases, the arc length /I C decreases ; the maximum mean in-plane stress 
and the maximum hoop stress therefore decrease. 

When point E moves to the position of point G as the Mode II contribution 
becomes large, the radial stress discontinuity on the border line F disappears. This 
mixed mode crack-tip field has the slip-line field similar to the Mode II crack-tip field 
shown in Fig. 5b but with sector F degenerated to a line and different span angles for 
sectors B and D when compared to those of the Mode II crack-tip field. When we 
further move point E clockwise as the Mode II contribution increases further, the 
degenerated sector F expands. We will have the mixed mode crack-tip field similar to 
the Mode II crack-tip field but the span angles of sectors B, D and F are different 
from those of the Mode II crack-tip field. When we further move point E clockwise 
to the position where point E and point C are symmetric with respect to the g,,, axis, 
the crack-tip stress state will reach the anti-symmetric Mode II crack-tip field. 

In summary, by moving point E from the position of A shown in Fig. 3a to the 
position as shown in Fig. 5a, we can generate a complete range of mixed mode crack- 
tip fields. The solutions for the stress field can be obtained easily by the Rice plane- 
strain slip-line theory. However, the crack-tip stress solutions for the perfectly-plastic 
orthotropic materials under mixed mode conditions obtained here should be cor- 
related to the perfectly-plastic limit of the crack-tip stress solutions for the corre- 
responding power-law hardening materials. 

4. r)ISCUSSION 

As in RICE (1973), we note that the mean in-plane stress in front of a Mode I 
crack tip equals the semimajor (or semiminor) axis a( = z,/p’!‘) plus half of the 
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circumference of the ellipse. As p decreases, a and the ~ircumferen~ of the ellipse 
increase. Consequently, the mean in-plane stress ahead of the Mode I crack tip 
increases. This is shown in Figs. 4a-e. Note that the stresses labelled with the “bar” 
shown in Figs. 4d and e are normalized by o,/p”‘. 

For a Mode 1 crack, the fan sectors in which the displacement gradient has a l/r 
singularity have the angle of span of n/2. The reason is that, as shown in Fig. 3a, the 
directions of the normals at point A and point C on the yield contour differ by rr. 
Therefore the angle of span for the fan sectors of the Mode I crack-tip field in the 
orthotropic plastic materials is the same as that associated with the Mode I crack-tip 
field in isotropic plastic materials. 

As in PAN and SHIH (1986) implications of the present crack-tip field to the fracture 
analysis of fiber reinforced materials are discussed below. Note that the discussions 
for composite materials are valid when the characteristic sizes of the fibers such as 
the fiber diameter as well as the fiber spacing are small compared to the relevant 
macroscopic dimensions of the composite structure such as the plastic zone size, 
physical dimensions of the component and other characteristic macroscopic lengths. 

We consider a crack in an anisotropic material as shown in Fig. 2 where a family 
of fibers is reinforced in the o direction (as shown in the insert) in an otherwise 
isotropic material. We consider the case where the crack line is perpendicular to 
the fiber reinforcement direction (o = 0). In this case the tensile strength of the 
reinforced material in the JJ direction may increase significantly ; however,the tensile 
strength in the n and z direction and the shear strength with respect to the X, y axes 
may not change significantly. When plastic flow is considered as the defo~ation 
mechanism, we can ex~rimentalIy measure two plane-strain parameters, a and b, 
where a represents the shear yield strength of the material in the direction 0 = n/4 
and b represents the shear yield strength of the material in the direction 0 = 0. As 
discussed in RICE (1973), when the yield contour of the composite material is convex, 
a yield contour of rectangular shape as shown in Fig. 10a may be an upper bound for 
the yield contour of the material and the yield contour of diamond shape as shown 
in Fig. 1 la may be a lower bound for the yield contour of the material. For a simple 
estimation we can choose an elliptical yield contour with the semimajor axis u and 
semiminor axis b as the yield criterion for the composite material. The yield contours 
of the materials of this class can be described by equation (3.1) with p < I. 

Therefore the solutions in Figs. 4d and e for p = 0.5 and 0.1 represent the Mode I 
crack-tip stresses for the materials of this class. As discussed earlier, the crack-tip 
stresses ahead of the crack tip increase as p decreases. For p = 1, 0.5 and 0.1, ahead 
of the crack tip the values of the mean in-plane stress CT/G~ are 2.39, 3.02 and 5.85, 
respectively; the values of the hoop stress gOB/~e are 2.97, 3.84 and 7.67, respectively ; 
the values of the radial stress o,,/a, are 1.81, 2.21 and 4.03, respectively. 

Note that cr, = 3’122, where z, ( = b) is the material shear yield strength with respect 
to the x, y axes. When we reinforce the materials by strong fibers in the y direction 
we significantly increase the value of a (the semimajor axis) and may increase the 
value of b (the semiminor axis); as discussed above, we also significantly increase 
the crack-tip stresses (normalized by the increased b) of a Mode I crack which may 
exist in these materials. The large macroscopic crack-tip stresses may cause a great 
deal of local damage such as fiber breakage, fiber pullout, decohesion between the 
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matrix and the fiber, and failure of the matrix in these high strength composite 
materials. 

Next we consider a composite material with a family of fibers in the or) direction as 
shown in the insert of Fig. 2. We assume the yield contour of the composite material 
in the Mohr plane is elliptical. The yield contour in the Mohr plane for this case is 
shown in Fig. 9a. Compared to the contour shown in Fig. 3a the yield contour shown 
in Fig. 9a has a counterclockwise rotation by 2w in the Mohr plane. Similar to the 
symmetric Mode I case with o = 0, we can construct a slip-line field at the crack tip, 
The result is shown in Fig. 9b. This is a possible crack-tip field where the shear stress 
ahead of the crack tip disappears, but the stress field is not symmetric with respect to 

the crack line as the conventional symmetric Mode I stress field. 
Similarly, we can construct a slip-line field around the crack tip corresponding to 

point A to point C on the yield contour as for the anti-symmetric Mode II case with 
ccl = 0. But the stress field constructed in this manner is not exactly anti-symmetric as 
is the conventional anti-symmetric Mode II stress field. 

For a given ratio of or0 to go8 ahead of the crack tip, we can find a corresponding 
stress field using the method for constructing the conventional mixed Mode I and II 
crack-tip stress field as presented earlier. As noted before the stress field may involve 
radial stress discontinuity. 

Now let us discuss some interesting properties due to the geometric symmetry of 
the elliptical yield contours. When the direction of fiber reinforcement is rotated by 
w, the yield contour in the Mohr plane is rotated by 2~. Consider material A with 
u = 0 and material B with o = n7r/4 (n = 1, 3). The yield contour of materiaf A has 

FIG. 9. (a) The elliptical yield contour. (b) The “Mode I” crack-tip field. 
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the general shape described by equation (3.1) with p < 1. Material B has the yieId 
contour described by equation (3.1) with p > 1. The crack-tip stress distribution of 
material B then can be estimated using the solutions for p > 1. The general features 
of the slip-line field near the crack tip under Mode I, Mode II and mixed Mode I and 
II conditions for materials A and B are the same. However, the angular variations of 
the stresses for material B (p > 1) are quite different from those for material A (p < l), 
as shown in Figs. 4a-e, 6a+ and 8a-e. 

When we reinforce the material by fibers in the direction of o = 7cj2 (in the x 
direction), because of the symmetry of the ellipse we have the same yield condition as 
that of the material with co = 0. The crack-tip stress fields are therefore the same as 
those for cu = 0. In general the rotation of 7~ of the yield contour in the Mohr plane 
corresponds to the rotation of 7c/2 for the material in the physical plane. Therefore, 
under a given loading condition the same stress field at the tip of a crack prevails 
when we reinforce the material either in say, the o, direction or in the w, +z/2 
direction when we assume that the yield contour is elliptical in the Mohr plane. This 
qualitative feature for incompressible materials with the reduced yield condition was 
noted in the studies of HILL (1950) and PAN and SHIH (1986). 

As mentioned earlier, a yield contour of rectangular shape can be used as an upper 
bound for the yield contour of the composite materials. A yield contour of diamond 
shape can be used as a lower bound for the yield contour of the composite materials. 
We can construct crack-tip fields for the yield contours mentioned above according 
to the method in RICE (1973). As shown in Fig. lob, the Mode I crack-tip field for 
the rectangular yield contour has seven constant stress sectors with radial stress 

FIG. 10. (a) The rectangular yield contour. (b) The Mode I crack-tip field. 
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discontinuity along the borders between the sectors. The sectors labelled with A, 1, 
2, C, 3,4, A have constant stress states corresponding to the stress states of point A, 
1, 2, C, 3,4, A on the yield contour as shown in Fig. 1Oa. As shown in Fig. 1 I b the 
Mode I crack-tip field for the diamond yield contour has five constant stress sectors 
with radial stress discontinuity along the borders between the sectors. The sectors 
labelled with A, B, C, D, A have constant stress states corresponding to the stress 
states of points A, B, C, D, A on the yield contour as shown in Fig. 1 la. The details 
of the construction of the crack-tip field for single crystals with this kind of polygonal 
yield contour can be found in RICE (1973, 1986). 

Similar to the remarks in RICE (1973) for punch problems, the mean in-plane stress 
ahead of a Mode I crack tip is the shear strength for the orientation P = x/4 plus haff 
of the circumference of the yield contour. Therefore, the estimation of the mean in- 
plane stress ahcad of a crack tip under Mode I conditions lies between a+ 2(a2 + b2)li2 
for the diamond shape yield contour and 3a + 2h for the rectangular shape yield 
contour. Note that u represents the shear yield strength in the direction 0 = n/4 and 
that b represents the shear yield strength in the direction 0 = 0. The simple estimation 
formula may be useful for the design of fracture-resistant composite materials. 

RICE (1986) studied the crack-tip field for stationary and growing cracks when the 
crack planes are coincident with the symmetry planes in b.c.c. and f.c.c. single crystals. 
The yield contour for the b.c.c. crystal in Rice’s study can be represented by a diamond 
yield contour as shown in Fig. I la. However, when the crack plane is not coincident 
with one of the symmetry planes, the symmetry of the yield contour with respect to 
the axes of the Mohr plane is not preserved. Then we wilf not have the conventional 
symmetric Mode I and a~t~-synlmetric Mode TI crack-tip field. 
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