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INTRODUCTION 

The role of acetylcholine in the retina has recently been reviewed by Neal (i) 

and Puro (2). Although histochemical and immunocytochemical studies indicate the 

presence of acetylcholine in the retina in many species, physiological evidence 

for its action as a neurotransmitter has been obtained in only a few of these, 

including rabbit (3-8), cat (9-11) and carp (12,13). These studies suggest that 

acetylcholine is used as a transmitter by certain types of amacrine cells and 

mediates some of the synaptic input to ganglion cells. Therefore it was of 

interest to investigate the effects of cholinergic agonists and antagonists on 

ganglion cells in mudpuppy, where other aspects of the physiology of the inner 

retina have been extensively studied. The results reported here suggest that 

mudpuppy ganglion cells have nicotinic acetylcholine receptors and that they 

receive tonic, depolarizing, cholinergic input in darkness. However, neither 

transient nor sustained responses to stationary light stimuli appear to be 

mediated by this input. 

METHODS 

Intracellular recordings were made from ganglion cells in the eyecup of the 

mudpuppy (Necturus maculosus) using micropipettes of 300-800 MQ resistance filled 

with 4 M potassium acetate. The eyecup preparation and the stimulating and 

recording systems have been described in detail previously (14). The eyecup was 

superfused with a continuous flow of Ringer solution of the following Composition 

(in mM): NaCI 110, KCI 2.5, CaC12 1.8, glucose 11, HEPES buffer 5.0, adjusted to 

a pH of 7.8. During the recording the superfusate could be switched to a solution 

which was identical except for the addition of specific test substL~ces. 

Current-voltage relations were made by passing constant current steps through the 

recording electrode and measuring the resulting steady-state voltage displace- 

ments using an active bridge circuit. Current-voltage relations measured when 

the electrode was outside the cell were used to correct for electrode rectifica- 

tion, which often occurred with current intensities greater than ±0.05 nA. 

Responses were stored on magnetic tapes and displayed on a chart recorder, frca 

which the illustrated responses were photographed. 
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The light stimulus was a 100 um diameter spot of white light centered in the 

cell's receptive field. The preparation was dark adapted for more than 30 min 

before experiments were begun. The range of light intensities used was such that 

both rod and cone responses were elicited, as judged by recordings from horizon- 

tal cells, where the two types of inputs could be identified (15). The unat- 

tenuated light intensity at the plane of the retina was 4-10 -2 ,W.cm -2. Stimulus 

intensities in the figures are expressed as log10 units of attenuation by neutral 

density filters. 

RESULTS 

Responses to acetylcholine and carbachol 

Figure I shows the response of an on-center ganglion cell to 5 n~ acetyl- 

choline, which caused a depolarization in darkness and a reduction in the 

amplitude of the light-evoked responses. The same result was observed in all 

three classes of ganglion cells (on-center, off-canter and on-off), to both 

acetylcholine and carbachol. The reduction in light response was probably due to 

shunting since the agonists caused a large increase in conductance. Current- 

voltage relations from another on-center ganglion cell in the presence and ab- 

sence of acetylcholine are shown in Fig. 2. In this cell 5 mM acetylcholine 

caused a depolarization of 14 mV and a decrease in input resistance from 160 to 

110 MQ. Both acetylcholine and carbachol were also effective when transmitter 

release was blocked with 4 mM cobalt chloride, indicating that this was a direct 

effect of acetylcholine and carbachol on the ganglion cell rather than an in- 

direct effect via a presynaptic tel1. Figure 3A shows the response of an off- 

canter ganglion cell to carbachol in the presence of Co 2+ . 

5ram ACh 
20 mV 

10 S 

Fig. 1. Effect of acetylcholine on an on-center ganglion cell. Solid horizontal 
line under response trace indicates presence of 5 mM ACh. Dashed horizontal line 
indicates level of mad~rane potential in darkness before application of ACh. 
Gaps in the traces are each ! min duration. Light stimuli (intensity -4.8, dura- 
tion 5 sec) indicated by upward deflection of the top trace. 
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Fig. 2. Current-voltage relations of an on-center ganglion cell in darkness in 
the absence (o) and presence (e) of 5 mM acetylcholine. Potential changes are 
plotted relative to control membrane potential in darkhess. 

The responses of all ganglion cells to carbachol were of long duration. Eve~ 

with brief exposures, as in Fig. 3_A, it often took more than 20 rain for the 

membrane potential to recover to the control value. ~le recovery of membrane re- 

sistance was often more rapid than that" of membrane potential. For example, in 

Fig. 3A the break near the end of the trace indicates a period of 6 rain. After 

this period the membrane potential had changed only slightly, but membrane re- 

sistance had nearly doubled. Measurements before and after the recording con- 

firmed that the resistance changes were not due to changes in electrode proper- 

ties. A possible explanation for the lack of correspondence between membrane 

potential and resistance during recovery may be that carbachol acts with dif- 

ferent time courses at two (or more) types of receptors which control different 

ionic conductances. 

In the cell described in Fig. 3A the bathing solution was switched back to con- 

trol Ringer before the response to carbachol had reached its peak. In the con- 

tinued presence of carbachol (Fig. 3B) both the voltage response and the conduc- 

tance increase reached an initial peak and then declined back to a lower value, 

suggesting that there was some kind of desensitization of the acetylcholine 

receptors. The degree of desensitization, as Judged by the amount of this 

decline, was quite variable and did not seem to be related to the type of 
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Fig. 3. Effect of carbachol on off-canter ganglion cells. A and B are different 
cells. A, 200 ,M carhachol in normal Ringer solution; B, i00 ,M carbachol in the 
presence of 4 n~4 cobalt chloride. Downward deflections of trace are voltage drops 
produced by -0.04 nA currant pulses. Break in trace A is 6 rain duration. 

ganglion cell or the concantration of carbachol. A second exposure to carbachol 

within the next 20 min usually had little or no effect. Because of this it was 

not possible to determine dose response curves in a given cell. However, based 

on the responses of 50 ganglion cells (9 on-canter, 26 off-canter, and 15 on-off 

cells> to the first application of the agonist it appeared that the effective 

concentration range (threshold to saturation) was about 10 to 500 ,M for car- 

hachol and 0.5 to 5 n~4 for acetylcholine. No consistant differences in sen- 

sitivity to carbachol or acetylcholine were seen between the different types of 

ganglion cells. 

Physostigmine. The effects of the cholinesterase inhibitor physostigmine were 

tested on 18 ganglion cells (4 on-center, 6 off-canter and 8 on-off cells), i00 

,M physostigmine caused a depolarization in darkness (2-17 mY) and a decrease in 

input resistance (25-120 MQ). There was no noticeable difference between dif- 

ferent types of ganglion cells. These results suggest that physostigmine poten- 

tiated a tonic, excitatory, cholinergic input that was active in darkness. It is 
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unllkel¥ that the observed changes were due to a direct action of physostigmine 

on the ganglion cell membrane since it had no effect when transmitter release was 

blocked with cobalt. Physostigmine did not cause an increase in the amplitude of 

the light-evoked responses in any type of ganglion cell; llke carbachol or 

acetylcholine, it usually caused a decrease in the amplitude of the light 

response. 

Acetylchollne receptor antagonists 

d-tubocurarlne. The responses of ganglion cells to acetylcholine and carbachol 

were measured in the presence and absence of the nicotinic antagonist d- 

tubocurarine. It was not possible to make this comparison in a given cell, since 

cells usually did not respond to a second application of the agonist under any 

conditions. However, in the presence of 100 ,M d-tubocurarine there was little 

or no response to the first application of carbachol or acetylcholine at con- 

centrations which normally produced a response of about 20 mY, suggesting that 

the agonists were acting at nicotinic receptors. This result was observed in all 

of the 9 cells tested; in 5 of these cases 4 mM cobalt was also present. 

Figure 4 shows the effect of d-tubocurarine on the synaptic input to an off- 

center ganglion cell; 100 ,M d-tubocurarlne caused a hyperpolarization and in- 

crease in resistance in darkness, and an increase in the size of the light-evoked 

response. 

A B C 
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Fig. 4. Effect of d-tubocurarine on an off-cen~or ganglion cell. _A, in normal 
Ringer; _B, in the presence of 100 ,M d-tubocurarine; C, 5 rain after return to 
normal Ringer solution. Light stimulus indicated by horizontal llne above each 
trace. Light intensity -4.8, duration 2 sec. Downward deflection following 
each light response is the voltage drop produced by a -0.04 nA current pulse. 
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Current-voltage relations from an on-off ganglion cell are shown in Fig. 5. 

These measurements show the resistance of the cell in darkness in the presence 

(filled circles) and absence (open circles) of d-tubocurarine. In this cell d- 

tubocurarine caused a 9 mV hyperpolarization in darkness and increased the input 

resistance from 270 to 510 MQ. The mean change in 27 ganglion cells (4 on- 

center, ii off-center and 12 on-off cells) was a hyperpolarization of 4.7 mV and 

a resistance increase of 86 MQ, with no obvious differences between cell types. 

Although in three of these cells there was no change in membrane potential, in no 

case did d-tubocurarine cause a depolarization, d-Tubocurarine bJ_d no effect on 

mambrane potential or resistance in the presence of cobalt (n=6). These results 

suggest that all three classes of ganglion cells receive a tonic, nicotinic, 

cholinergic input in darkness. Both depolarizing and hyperpolarizing light 

responses were usually increased in amplitude in the presence of d-tubocurarine. 

This could have been due to the increased input resistance and/or actions of d- 

tubocurarlne on presynaptic cells. The nicotinic antagonist mecamylamine (100 

,M) was also tested on 4 cells; its effects were similar to those obtained with 

d-tubocurarine. 

+ 1 0 .  

- 0.1 n A  , , , , ~ . /  . 

u + 0 . 0 4  

m V  

- 5 0  

Fig. 5. Current-voltage relations of an on-off ganglion cell in darkness in the 
absence (o) and presence (o) of i00 ,M d-tubocurarine. Potential changes are 
plotted relative to control membrane potential in darkness. 
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Atropine.  Responses to carbachol were not blocked by the  muscarinic an tagonis t  

atropine (n~ll, of which 9 were also in the presence of 4 mM cobalt). Figure 6 

shows the effect of 3 mM atropine on the spontaneous and light-evoked activity of 

an off-center ganglion cell. In this cell 3 mM atropine caused a depolarization 

of the dark potential and an increase in resistance. It also caused an increase 

in the amplitude of the light-evoked response. Similar results were obtained 

with 1-3 mM atropine in 18 ganglion cells (4 on-center, 7 off-center and 7 on-off 

cells); the average depolarization of the dark potential was 5.3 mV and the 

average increase in input resistance was 51 MG. In 9 other ganglion cells 

atropine was applied in the presence of cobalt and had no effect on membrane 

potential or resistance. These results suggest that atropine caused a decrease 

in tonic inhibitory input. However, as discussed below, it is unlikely that the 

site of action of atropine was at receptors on ganglion cells. 

The effects of both d-tubocurarine and atropine were reversed when they were 

removed fr~ the superfusate. 

A B C 

._~10 mV 
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Fig. 6. Effect of atropine on an off-canter ganglion cell. A, in normal Ringer; 
_B, in the presence of 3 mM atropine; _C, 5 rain after return to normal Ringer solu- 
tion. Light stimulus indicated by horizontal llne above each trace. Light in- 
tensity -4.8, duration 2 sec. Downward deflection following each light response 
is the voltage drop produced by a -0.04 nA current pulse. 

DISCUSSION 

The finding that all three classes of ganglion cells were depolarized by low 

concentrations of carbachol, even when transmitter release was blocked with 

cobalt, indicates that they have receptors for acetylcholine. ~ese receptors 

appear to be nicotinic since the action of carbachol was blocked by d- 

tubocurarine but not by atropine. However, this information alone does not es- 
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tablish that these receptors mediate any of the normal symaptic inputs to 

ganglion cells. 

It has recently been shown that all classes of mudpuPpT ganglion cells receive 

tonic excitatory and inhibitory synaptic inputs in darkness (14,16). The effects 

of physostigmine and d-tubocurarine on membrane potential and resistance in dark- 

ness suggest that at least part of the tonic excitatory input is via a choliner- 

gic pathway. It is assumed that these agents acted.at the nicotinic receptor 

sites on ganglion cells. However, it is possible that they acted at cholinergic 

sites elsewhere in the retina to alter non-cholinergic excitatory input to 

ganglion cells, in which case the acetylcholine receptors on the ganglion cells 

may have bean non-functional receptor sites. 

Although atropine caused a depolarization and increased resistance in darkness, 

it is unlikely that this was due to blocking an inhibitory chollnergic input to 

ganglion cells, since carbachol never caused a hyperpolarization of ganglion 

cells, even when its excitatory action was blocked by d-tubocurarine. An alter- 

native explanation is that the depolarization produced by atropine was due to a 

presynaptic action, such as blocklng excitatory input to a neuron which released 

a non-cholinergic inhibitory transmitter onto ganglion cells. At least some of 

the tonic inhibitory input to ganglion cells in darkness ,my be mediated by GABA, 

since receptors for this transmitter are present on all classes of ganglion cells 

(17,18) and bicucculine causes a depolarization in darkness in all classes of 

ganglion cells (unpublished observations). If atropine acted to reduce the ac- 

tivity of such an input, however, it might be expected that carbachol would also 

act at this site to increase the inhibitory input to ganglion cells. Therefore 

it is puzzling that no inhibitory action of carbachol was seen when its direct 

excitatory effect on ganglion cells was blocked with d-tubocurarine. 

The fact that the light-evoked responses of ganglion cells were neither blocked 

by cholinergic antagonists nor enhanced by physostigmine suggests that they are 

not mediated by acetylcholine, which implies that the tonic cholinergic input was 

not strongly driven by the light stimuli used in these experiments. Although not 

described above, responses to illumination of the receptive field surround were 

also not blocked by the cholinergic antagonists. In rabbit retina some ganglion 

cells appear to receive a cholinergic excitatory input that is not modulated by 

light (4,5) but this has been attributed to a light-independent component of 

acetylcholine release by neurons in which there is also a light-dependent release 

of acetylchollne (6). It has been suggested that acetylcholine is mainly in- 

volved in transient responses or responses to moving stimuli (5,6,19), but the 

transient responses of mudpuppy ganglion cells were not blocked by d- 

tubocurarine. The effects of acetylcholine antagonists on the responses of mud- 



$161 

puppy ganglion cells to moving stimuli have not been investigated. It would also 

be of interest to study their effects on the responses of directionally selective 

ganglion cells in mudpuppy. If a truly light-independent synaptic input exists, 

one might expect the presynaptic neuron to have little or no response to light 

flashes. The membrane potential of such a cell might be controlled by other fac- 

tors, such as the state of adaptation. 

In summary, there appears to be tonic cholinergic excitatory input to all types 

of ganglion cells in the mudpuppy retina, but the specific kinds of light stimuli 

which modulate this input are not known. 
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