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ABSTRACT 

Derivations of the Reed-Frost model are analyzed in terms of the assumptions about 

the probabilistic process used and in terms of internal consistency. Internally consistent 

derivations can be exhibited but require assumptions about the basic probabilistic process 

that are clearly unreasonable. A properly posed, more general model is derivable through 

the use of En’ko’s model and the generating function for the number of contacts per person 

[61. 

I. INTRODUCTION 

During and subsequent to 1928, L. J. Reed and W. H. Frost developed 
some chain-binomial models of epidemic spread for use in teaching biostatis- 
tics and epidemiology at the Johns Hopkins School of Hygiene and Public 
Health. Though they did not publish their work, a number of others have 
reported on it [l-4]. Greenwood [S] presented a somewhat different chain- 
binomial model, and recently Dietz and Schenzle [6] have pointed out that a 
development of this type was published in the Russian literature in 1889 by 
En’ko [7]. The Reed-Frost model has been used widely [6] and has served as 
a basic model that stimulated the development of more detailed simulation 
studies [8]. 

The present work was initiated by my attempting a dimensional analysis 
on the Reed-Frost equation and was further stimulated by my reading the 
comments of Dietz and Schenzle [6] on the contribution of En’ko. It is 
concerned with the proper formulation of a chain-binomial model. In terms 
of reasonableness of the assumptions used in the model and its internal 
consistency, is the Reed-Frost model a good model? 
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II. CHAIN-BINOMIAL MODELS 

For historical reasons I start with Soper’s deterministic model; it played 
an important role in the development of epidemic theory and is related to 
the chain-binomial models. All of the models are for uniform mixing in a 
population. The chain binomial models as a group assume that the genera- 
tions of infectives are separated by a significant latent period and time of 
infectiousness. Thus, they are applicable to diseases in which cases or groups 
of cases are separated in time well enough to allow identification of 
successive generations of infection. 

1. SOPER 

In 1929, Soper [9] proposed a finite difference model for measles in 
intervals of the incubation period. The population was treated as though it 
moved stepwise through generations of the incubation period; i.e., as though, 
after contact, the new infectives in i + 1 appeared all at once at the end of 
the i th period. The distinction between latent period and incubation period 
was not used; more accurately, the generation time is the latent period plus 
some period of infectiousness. If z,_i is the number of cases and x,-i is the 
number of susceptibles in i - 1, Soper writes Equation (1) for z,: 

Z X. 
’ = r-1 

Z r-l m (1) 

The parameter m is the number of susceptibles required such that one case 
in i - 1 gives rise to one case in i; it has the same dimensions as x,_ i. One 
could generalize this by letting m vary from period to period and writing the 
denominator on the right as m,_,. Note that both z, /zi_ i and x,_ l/m are 

dimensionless. 

2. REED- FROST 

The model generally used is that presented by Abbey [4] and Maia [3]. Let 
C, be the number of infectives and S, the number of susceptibles in the i th 
period for a population of size N, C,, + S,, = N. The infectives in the i th 
period are removed from the process in the i + 1 period, C, + i + S, + 1 = S, . 

The Reed-Frost model tries to take into account that multiple contacts 
between a susceptible and infectives can produce only one new case. The 
argument presented by Maia [3] and Abbey [4] runs as follows. Let p be the 
probability of an adequate contact between any two individuals; an ade- 
quate contact between a susceptible and an infective in i converts the 
susceptible into a case in i + 1. Then 4 = 1 - p is the probability that two 
given individuals do not have adequate contact. The probability that a 
susceptible does not have adequate contact with any of the C, cases in i is 
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then taken to be (2). 
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Q,+,=& (2) 

That is the same as the probability of not developing the disease in i + 1. 
Therefore the probability that a susceptible has at least one adequate contact 
is shown in Equation (3); the expected number of cases in i + 1 is given by 
Equation (4). 

P ,+1=1-qc (3) 

aC,+,Ic?~,l =a- 43 (4 

Equation (4) is the expected number of cases in picking a binomial variable 
from a population of S, susceptibles, with probability P, + 1. The conditional 
probability of obtaining C,, 1 = x cases given C, and S, must then be 
equation (5). 

The parameter P, changes with i, thereby giving a chain-binomial process. 
Note that the probabilities Q,, 1 and P, + 1 and the expected value [see 
Equation (4)] are conditional on C, and S,. 

I believe there is a problem with the way this is posed and that the 
difficulty pertains to the definition of p and the probabilistic process used in 
obtaining Equation (2). In Equations (2-4), qc, must be dimensionless or 
the equations are meaningless. Because probabilities are dimensionless, C, in 

&’ must be dimensionless. Therefore C, in qcI cannot be the number of 
infectives which has the dimensions of people or persons. Rather it must be a 
count of trials in a probabilistic process which happens to equal C, . But why 
should the exponent equal C,? 

Let us see if we can clarify the definition of p and the probabilistic 
process used in the development of the Reed-Frost chain binomial. First, 
how is p defined in the standard derivations [3,4]? According to Abbey [4 p. 
2021, “If p is the probability of contact between any two specified individu- 
als in the population in a given interval of time (the period of infectiousness), 
then q =l- p is the probability of their not having contact. Contact, or 
adequate contact, as used by Reed and Frost, is contact such that, if it 
occurs between an infectious case and a susceptible, it will produce a new 
case.” According to Maia [3 p. 1681, “If K is the average number of 
adequate contacts per individual per time t, and the population size is N, 
then the probability of adequate contact between any two given individuals 
during time t will be p = K/( N - 1). . . ” Maia’s definition can be dismissed 
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immediately, for it presents problems with regard to dimensions. As it reads, 
K has dimensions defined by persons contacted per individual in t, and 
since N - 1 has dimensions of persons, p = K/( N - 1) is not dimensionless. 
Furthermore K could be greater than N - 1 [lo]. 

To return to Abbey’s definition, if p were the probability of one adequate 
contact between two individuals, then 4 could not equal 1 - p because there 
might be nonzero probabilities of two or more contacts between the same 
two individuals. To make sense, Abbey must mean either that there can be 
only one contact between any two individuals or that p must be the 
probability of one or more contacts between two individuals. Let us use the 
latter, more general assumption. In fact, since we need only concern our- 
selves with contacts between susceptibles and infectives, p must be the 
probability of one or more contacts of one susceptible with one infective; 
then q =1- p is the probability of no contact with that infective. This 
definition of p includes the probabilities of multiple contacts between the 
same two individuals. Hence, to obtain Equation (2), one must think of the 
number of possible contacts of a susceptible with different infectives as C, 
independent Bernoulli trials. It follows that the probability of zero adequate 
contacts of one susceptible with the different infectives would be 4’~. 
Viewed this way the derivation of the Reed-Frost model is clear and 
understandable. It separates the probability of multiple contacts between a 
susceptible and one infective from the probability of multiple contacts of a 
susceptible with different infectives. However, the step leading to Q,+i is 
suspect. Is it really reasonable to model the possible contacts of a susceptible 
with the different infectives as C, independent Bernoulli trials? I think not. 
Aside from the question of independence, it seems likely that the number of 
physically possible contacts of one susceptible is not necessarily equal to C,; 
for large C, it is certainly less. On the other hand if C, is small as in 
household epidemics, the number of physically possible contacts could be 
close to C, and the Reed-Frost model might then be close though not 
necessarily exact. 

K. Dietz has pointed out another way of deriving the Reed-Frost equa- 
tion [lo]. Assume that each of the C, infectives makes one contact with 
another member of the population and that these contacts are made one by 
one, independently and with replacement. The basic process can be thought 
of as follows. Number the susceptibles 1,. . , S, and the infectives 1,. . , C,. 
Take the C, infectives in order; the probability that C,, contacts a particular 
susceptible, S,,Y, is [S, /( N - l)](l/S,) = l/( N - 1). Let p be the probability 
of transmission. Then the probability that S,, is not infected is 4 = 1 - p/ 
(N - 1). Because there are C, such independent trials, the probability that 
S,, is not infected in C, trials is 4 ‘1. Therefore the probability that S,, is 
infected in the C, trials is (1- qcg). Because this is true independently for 
each susceptible, the expected number of transmissions for S, susceptibles 
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must be as given by Equation (6). 
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JqC,+,IC,,&l =s,[1+1 =+{1-P/(N-1)1=~] (6) 

The derivation is internally consistent and free of dimensional problems. 
However, the assumptions in the basic probabilistic process are unrealistic; 

it is just not believable that each infective makes exactly one contact in the 
population. 

For historical completeness it is worth noting that Wilson and Burke [l] 
gave an account of Frost’s 1928 Cutter lectures wherein they reported a 
derivation that differs from the standard one [3, 41, as follows. Wilson and 
Burke took the probability of a contact of an infective with a particular 
susceptible to be p = l/s,. This should be l/( N - 1). Nevertheless, if there 
are k, contacts between infectives and susceptibles, qka is the chance that a 
susceptible escapes all contacts with infectives; hence the chance of at least 
one contact must be 1 - qkl. The expected number contracting the disease in 
the next period would then be as given by Equation (7). 

(7) 

Note that Equation (7) is similar to Equation (4) but that k,, the number of 
contacts, is not equal to C,. Properly ki is a random variable. According to 
Wilson and Burke, Frost then assumed that the number of contacts is 
proportional to C,S,, i.e., k, = rC,S,. 

1 _ GREEN WOOD 

The model of Greenwood [5, 111 is similar to the Reed-Frost model. The 
chain binomial [Equation (8)] is given by equation (5), but with Pi+, = P 
taken as a constant not dependent on C,, which holds for C, > 0. 

P[c,+, = XlC, ,s,] =( f) PxQsJ-x (8) 

The model of Greenwood is obtained if, instead of transfer by close contact, 
the transfer of infection occurs by contact of susceptibles with infectious 
material that is relatively widely spread, so that P, is constant. 

4. EN’KO 

I follow the presentation of Dietz and Schenzle [6]. Given a contact of a 
susceptible in period i, the probability that it is with an infective is 
p, = C, /( N - 1). The probability that the contact is not with an infective is 
q, = [l - C, /( N - l)], and if an individual makes k contacts the probability 
that none are with an infective is [l - C,/( N - l)lk. The probability that at 
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least one of the contacts is with an infective must be 1 -[l- C,/(N - l)]“. 
Therefore the expected number of infectives in the i + 1 interval is given by 

[91. 

EIC,+~(C,,S,]=S,[l-[l-C,/(N-l)]k] =si[1-41k] (9) 

Equation (9) appears to be similar to Equation (4), but here qi depends on i 
and the number of contacts k is constant. The basic probability p, is more 
clearly defined in En’ko’s model; note that En’ko’s model does not dis- 
tinguish between multiple contacts with the same individual and with 
different individuals. Actually the number of contacts is not constant and 
should be treated as a chance variable. 

III. A RESOLUTION 

Dietz and Schenzle [6] point the way to a more general solution by way of 
the generating function of the number of contacts an individual makes. In 

what follows I elaborate on Dietz and Schenzle’s presentation. 
Starting with En’ko’s results for k contacts, let pk be the probability an 

individual has k contacts. Note that pk may be a function of N but not of 
C, or S,. Let f(x) be the probability generating function of the number of 
contacts an individual makes: 

f(x) = E PkXk 
k ='O 

(10) 

Recall that, given a contact, the probability that it is not with an infective is 
1 - C, /( N - 1) for the i th period. Then pk [l - C, /( N - l)lk is the probabil- 
ity of k contacts, none with infectives. Thus the probability of no effective 
contact with infectives, Q,, must be as follows: 

Q,=p,+pi[l-C,/(N-l)] + ... +pk[I-C,/(N-l)]k+ ... 

=f(l-C,/(N-I)) (II) 

It follows that, 

E[C,+,IC,Al =&[I-f(l-CAN-l))] (12) 

Now one can set up the chain binomial and Q, can be calculated at each 
stage if po, pl,... are known. For cases in which only the first few pi are 
expected to be nonzero, Qi could be calculated easily. Dietz and Schenzle 
extended this approach to explicitly separate multiple contacts with the same 
person and those with different persons [lo]. 
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Soper’s model [9] is a limit case of Equation (12). To verify this note that, 
as C, /( N - 1) approaches zero, f(1 - C, /( N - 1)) goes to f(1) and f(1) = 1. 
If it is given that f(x) is analytic in x, expanding around x =l for small 
values of C, /(N - 1) and retaining only first order terms yields 

f(l-C,/(N-1)) =1-f’(1) C,/(N-1) (13) 

Substituting this into Equation (12) gives Soper’s model for m = (N - 

1)/f ‘(1): 

E[C,+,I 
C* = (N-&f’(l) (14 

Thus if C, /( N - 1) is small, Equation (12) reduces to Soper’s equation. 
Now it is possible to catalog the forms of Equation (12) for different 

distributions of the number of contacts. Dietz and Schenzle [6] give the 
result for Poisson and geometric distributions. 

1. POISSON 

If the number of contacts has a Poisson distribution with mean number of 
contacts X, the expected value for C, + 1 is given by 

E[C,+,lC,,S,] =~,[l-exp[-~C,/(N-1)11 (15) 

Here both C, /( N - 1) and h are dimensionless, for they are, respectively, 
the probability that a contact was with an infective and the mean number of 
persons contacted per individual (i.e., mean count in a Poisson process). 

Dietz and Schenzle [6] relate this to the standard Reed-Frost model by 
pointing out that if one sets q = exp( - X/(N - 1)) then Equation (15) 
becomes the Reed-Frost model with p = 1 - exp( - A/( N - 1)). At first, one 
might rationalize that the standard Reed-Frost model is a special case of the 
general model with a Poisson distribution for the number of contacts and 
with p = 1 - exp( - X/( N - 1)). However, this requires that both A/( N - 1) 
and C, X/( N - 1) must be dimensionless. To interpret h/( N - 1) as a 
dimensionless number means that it must be read as A(l/( N - l)), in which 
l/( N - 1) is a probability of picking a particular person out of (N - 1). The 
term C, /( N - 1) is dimensionless because C, /( N - 1) is the probability of 
picking an infective from the population. But then converting the exponen- 
tial term in Equation (15) to qcd requires that C, suddenly change roles, 
from dimensioned number of infectives in Equations (12) and (15) to a 
dimensionless count of trials in a probabilistic process. As Dietz and 
Schenzle point out, this interpretation leads to the result, A = r( N - l), 
where r is dimensionless and the Reed-Frost probability p = 1 - exp( - r) 
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becomes independent of population size, which does not seem to be 
reasonable. 

Thus, while in a formal sense it is possible to derive the Reed-Frost 
equation by assuming that 4 = exp( - A/( N -l)], this assumption leads to 
dimensional inconsistencies. 

2. GEOMETRIC DISTRIBUTION 

If the number of contacts follows a geometric distribution with mean A, 
the expected value for C, + I is 

EIC,+,ICt,S,l = l+AC/(N_l) 
I 

(16) 

3. BINOMIAL. DISTRIBUTION 

Because both the Poisson and the geometric distributions are discrete 
distributions on the positive integers and zero, they allow for unbounded 
number of contacts. One could argue that the number of possible contacts in 
one period must be bounded, and therefore the admissable distributions 
should be restricted to discrete bounded distributions on zero and the first n 
positive integers, for some n. The following is an argument for using the 
binomial distribution. 

Suppose we divide the infectious period into n equal subintervals, each 
small enough so that a person cannot have more than one contact in a 
subintervaL Let p be the probability of a contact in one subinterval and 
assume independent Bernoulli trials. Then the distribution of number of 
contacts is the binomial distribution for n trials, and the generating function 
for the number of contacts is given by 

f(x)= 2 (~)pkq’“~i’x”=(px+q)” 
h=O 

(17) 

Therefore 

f(l-C,,‘(N-1)) =(I-pC,/(N-1))” (18) 

and the expected value of C, + , is then 

~[C,+,lC,J,l =s,[l-(l-PC,/(N-1))“1 

IV. DISCUSSION 

(19) 

Schenzle [12] compared the performance of a number of chain-binomial 
models in fitting one set of data on household epidemics of the common cold 
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[13, 141. The Reed-Frost model did better than the Greenwood model, and a 
number of more general models did slightly better than the Reed-Frost 
model. The best performance was from a Reed-Frost type of model in which 
q was assumed to decrease linearly for successive generations. The perfor- 
mance of some of the generating function models with this data set has not 
been published. However, comparisons of a number of theories on one data 
set are fraught with difficulties; a model could do particularly well on one 
set and poorly on others. A comparison using many or at least a number of 
data sets would be more instructive. 

From the analysis presented here it is clear that the Reed-Frost model 
lacks the generality of the generating function models and that it makes 
some rather special assumptions that are unreasonable. As a result it is not 
found to be a generally sound model though it might provide an approxima- 
tion for certain types of epidemics. 
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Note added in proof: LeLevre, C. and M.-P. Malice, Math. Modeling 
7:785-92, 1986, have used the generating function approach to handle 
random numbers of contacts for an S-I-S model. 
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