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Late Pleistocene Paleoclimatology of the Central Equatorial Pacific:

A Quantitative Record of Eolian and Carbonate Deposition
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Detailed records of 3%0, 3'3C, percentage and mass accumulation rate of CaCOj;, and eolian
percentage, mass accumulation rate, and grainsize generated for core RC11-210 from the equato-
rial Pacific reveal the timing of paleoclimatic events over the past 950,000 yr. The CaCO; per-
centage record shows the standard Pacific correlation of high CaCO, content with glacial periods,
but displays a marked change of character about 490,000 yr ago with older stages showing much
less variability. The carbonate mass flux record, however, does not show such a noticeable
change. Sedimentation rates vary from about 0.5 to 3.0 cm/1000 yr and, during the past 490,000 yr,
sections with enhanced sedimentation rates correspond to periods of high CaCO, percentage. Eo-
lian mass accumulation rates, an indication of the aridity of the source region, are usually higher
during glacial times. Eolian grainsize, an indication of the intensity of atmospheric circulation,
generally fluctuates at a higher frequency than the 100,000-yr glacial cycle. The mid-Brunhes cli-
matic event centered at 300,000 yr ago appears as a 50,000-yr intervai of low intensity and reduced
variability of atmospheric circulation. Furthermore, the nature of this entire record changes then,
with the younger portion indicating less variation in wind intensity than the older part of the
record. The late Matuyama increase in amplitude of paleoclimatic signals begins 875,000 yr ago in
the eolian record, 25,000 yr before the 380 and CaCO, percentage amplitude increases about

850,000 yr ago. © 1987 University of Washington.

INTRODUCTION

Marine sediments contain a variety of
records which may be used to help deter-
mine past climatic fluctuations. Pleistocene
sediments have been of particular interest
because of the dramatic changes in climate
caused by the glacial/interglacial transi-
tions. The equatorial Pacific has been the
locus of many studies because of its accu-
mulation of biogenic sediments.

The ratio of '®0 to 190 in the carbonate
tests of marine organisms has been used as
a paleoclimatic indicator since the 1950’s
(Emiliani, 1955). Studies have shown that
although the temperature of formation does
affect the 8!80 values of foraminifera tests,
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the primary cause of the Pleistocene 380
fluctuations is the changing oxygen isotope
composition of the oceans due to ice-sheet
growth and decay (Shackleton, 1967).
Modern glacier ice has a 8'80 of about — 30
per mil, and the buildup of isotopically light
ice caps causes an oceanic enrichment of
3180, with each 10-m drop in sea level
causing an oceanic 8!80 increase of about
0.1 per mil (Shackleton, 1977a). The mixing
time of the oceans is about 1000 yr, so 8180
fluctuations in samples from marine sedi-
ment cores from different locations are
nearly simultaneous on a geological time
scale (Shackleton and Opdyke, 1976). The
3180 record is therefore very useful for
both stratigraphic and paleoclimatic pur-
poses.

Ratios of 13C to 12C in carbonate tests
have been recognized more recently for
their usefulness as paleo-environmental in-
dicators. It has been observed that 33C
values of benthic foraminifera tests gener-
ally fluctuate in correspondence with gla-
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cial/interglacial ages, with glacial times dis-
playing lighter 313C values by an average of
0.4 per mil (Shackleton and Pisias, 1985).
These fluctuations in the ocean 83C may
be partially the result of the Pleistocene de-
struction and regrowth of organic biomass
on the continents which have average 813C
values of —25 per mil (Shackleton, 1977b).
A more important factor which may influ-
ence the oceanic 813C record is the cyclic
submersion and exposure of the conti-
nental shelves during Pleistocene sea-level
fluctuations. During interglacial high sea
levels, isotopically light marine organic
carbon is deposited on the shelves; during
glacial low sea levels, these sediments are
subjected to subaerial erosion and the iso-
topically light carbon is returned to the sea
(Berger et al., 1981; Broecker and Peng,
1982; Arthur et al., 1985).

Pleistocene calcium carbonate records of
the equatorial Pacific have been used as
paleoceanographic indicators since the
work of Arrhenius (1952). Pacific sedi-
ments commonly show large-scale fluctua-
tions in carbonate percentage, with a gen-
eral pattern of high CaCO; percentages
corresponding to glacial times, and lower
CaCO, percentages corresponding to inter-
glacial times. Arrhenius attributed these
cycles to fluctuating productivity levels,
with the oceans being more productive
during glacial times due to increased turbu-
lence. Adelseck and Anderson (1978) sug-
gested that in areas where sediments are
deposited above the lysocline, CaCO; per-
centage fluctuations may indeed be pri-
marily due to productivity changes, but, in
general, Pacific CaCO, percentage appears
to be controlled by the corrosiveness of
deep water to carbonate, and is therefore
an indicator of bottom-water chemistry
(Hays et al., 1969; Thompson and Saito,
1974).

Isolation and analysis of the eolian por-
tion of marine sediments also yields paleo-
climatic information. Studies have sug-
gested that the mineral portion of deep-sea
sediments far from terrestrial sources is
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dominated by wind-blown material
(Windom, 1975; Leinen and Heath, 1981;
Rea et al., 1985). The mass flux of this eo-
lian material is an indication of the aridity
of the source region, because humid cli-
mates promote vegetation which reduces
the availability of dust for wind transport
(Prospero and Nees, 1977; Prospero et al.,
1981), and also because precipitation scav-
enges eolian dust, decreasing the flux of
wind-blown material downwind (Windom,
1975; Parkin and Padgham, 1975). Approxi-
mately 2000 km from the eolian source re-
gion, grains reach a size distribution in
equilibrium with the transporting winds.
Beyond that point the eolian grainsize
record should be a reflection of changes in
the intensity of atmospheric circulation
(Janecek and Rea, 1985). Several studies of
eolian flux and eolian grainsize have been
performed on Pacific sediments, and these
have shown that eolian mass flux may ei-
ther increase or decrease during glacial
times depending on the local to regional
source area aridity patterns, while the
grainsize record generally fluctuates at a
higher frequency than the 100,000-yr gla-
cial pattern (Janecek and Rea, 1985; Rea et
al., 1986).

Each of these data sets records a dif-
ferent aspect of climatic variation. The
temporal relationships among these various
atmospheric, oceanic, and continental sur-
face proxy indicators could be determined
if the records were each determined in sep-
arate cores with very accurate stratigraphy,
or if all of these data sets were generated
from the same set of samples. This study
utilizes the second strategy and compares
data determined from samples of a single
core.

SEDIMENTS AND ANALYSES

Core RC11-210 was retrieved from
1°49’N, 140°03'W in the central Pacific
from a water depth of 4420 m (Fig. 1). This
site is far from land and thus away from
sites of hemipelagic deposition or signifi-
cant bottom transport of terrigenous sedi-
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Fi1G. 1. Map of the Pacific Ocean showing locations of cores discussed in text.

ments, so the eolian signal is not confused
by any of these processes. Core RC11-210
has a complete Brunhes record and a mod-
erate average linear sedimentation rate of
1.5 ¢cm/1000 yr. This allows close temporal
sample spacing, and, therefore, reasonably
detailed records of the various paleocli-
matic indicators.

For this study 175 samples were taken at
8-cm intervals, giving an average temporal
sample interval of about 5000 yr. Samples
were freeze-dried, mechanically disaggre-
gated, homogenized, and split into
quarters. One quarter of each sample was
analyzed for CaCOj; percentage using a
carbonate bomb, with a resulting precision
of =£1%. The second quarter was disaggre-
gated, wet-sieved at 63 wm, and picked for
samples of Globoratalia tumida, which
were analyzed for 8%0 and 8C. G. tu-
mida, a deep-dwelling planktic foraminif-
era, was used because it was the only
species consistently abundant enough for
analysis throughout the core. This species
has previously been analyzed for isotopic
composition by Adelseck and Anderson
(1978) and by Rea et al. (1986) with accept-
able results. The analyses of 880 and 813C
were performed on the mass spectrometer

in the Stable Isotope Laboratory at the
University of Michigan under the direction
of K. C. Lohmann. The precision of the re-
sulting data is =0.08% for the §!80 data,
and =0.04% for the 313C values.

The third quarter of each sample was
subjected to a series of chemical extrac-
tions to isolate the eolian component. A
25% acetic acid solution was used to re-
move calcium carbonate; a buffered so-
dium citrate and sodium dithionite solution
was used to remove oxides, hydroxides,
and zeolites; and warm sodium carbonate
baths were used to remove opal. A more
detailed description of this procedure is
given by Rea and Janecek (1981). The eo-
lian material thus extracted was weighed,
and the weight percentage of this compo-
nent was calculated. The resulting preci-
sion of this procedure is approximately
+4%. Grainsize distributions were then
determined for the eolian component using
a 16-channel Coulter Counter Model TA 11
particle size analyzer. The data are re-
ported as median grainsize (s, of Folk,
1974) and have a precision of +£0.03 ¢. The
data from all of these analyses are pre-
sented in Table 1.

In this paper we present the basic data
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sets, the chronostratigraphy based upon
the 8180 record, the calculations of the
mass accumulation rates of calcium car-
bonate and eolian dust, and the eolian
grainsize determinations, and we then dis-
cuss the paleoclimatic implications of these
data. More complete time series analysis of
the atmospheric and oceanic records from
RC11-210 are given by Pisias and Rea
(1987).

THE MARINE CLIMATE RECORD

The oxygen isotopic analyses provide a
relatively clear 950,000-yr 880 record (Fig.
2). The data range in value from —0.23 to
+2.09 per mil, relative to PDB, and the
record is generally similar to the
SPECMAP 380 record of Imbrie et al.
(1984), as shown in Figure 3. Noticeable
differences include a more highly depleted
and double-peaked stage 5 and a more
enriched stage 10. Several of the stages are
difficult to distinguish, including stages 13
through 15 and 17 through 19. The record
prior to stage 22 displays smaller amplitude
and higher frequency fluctuations, as do
other 3180 records of this age (Shackleton
and Opdyke, 1976; Pisias and Moore, 1981;
Prell, 1982; Ruddiman et al., 1986).

The 3'80 record was used to develop a
time scale for RC11-210 by mathematically
mapping it into the SPECMAP oxygen iso-
tope record of Imbrie et al. (1984) by the
inverse correlation technique of Martinson
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et al. (1982). This technique has previously
been used successfully in the correlation of
3180 (Pisias et al., 1984) and CaCO;,
records (Pisias et al., 1985) of different
cores. The SPECMAP record only goes
back to 782,000 yr (and loses some reli-
ability below the Brunhes/Matuyama
boundary at 730,000 yr), so the time scale
for the oldest portion of our record was de-
termined by correlation to the 330 record
of core V28-239. This procedure resulted in
an age determination for each sample, al-
lowing us to plot our data against time,
rather than depth in core. Since an age/
depth relationship was obtained for each
data point, this process also yielded an ex-
tremely detailed linear sedimentation rate
record for all but the lowermost portion of
the core (Fig. 3). Sedimentation rates range
from 0.5 to 3.0 cm/1000 yr and consist of a
series of broad highs and lows, with an
average amplitude of about 1.5 cm/1000 yr.

The 313C data show the glacial/intergla-
cial cycles much less clearly than the 530
record, but there is a general correspon-
dence of enriched 83C values with de-
pleted 830 values (Fig. 2). The 33C data
range from +0.98 to +2.11 per mill rela-
tive to PDB, and there is an overall shift in
the 813C record at 620,000 yr, with the older
material having an average 313C value of
0.3 per mil lower than the younger mate-
rial. Another apparent shift of average 3!13C
may occur at almost 870,000 yr, with mate-
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F1G. 3. Linear sedimentation rate (LSR), SPECMAP stacked and averaged 380 profile and

RC11-210 880 record.

rial older than this being 0.1 per mil
enriched in !3C relative to the younger ma-
terial.

Mass accumulation rates in g/cm?/1000 yr
were calculated as the product of linear
sedimentation rates in cm/1000 yr and dry
bulk density in g/cm3. Ideally, dry bulk
density data are based on porosity, which is
determined by water loss from fresh
samples. Samples used in this study were
desiccated before arriving at our labora-
tory, so we generated dry bulk density data
using an empirical relationship between dry
bulk density and CaCO, percentage deter-
mined for fresh samples from nearby core
W8402A-14GC (Murray, 1987).

The percentage of calcium carbonate
data from RC11-210 (Fig. 4) clearly records
glacial carbonate events B2 through M2
(nomenclature of Hays ef al., 1969) similar
to but more detailed than the RC11-210
carbonate record published by Thompson
and Saito (1974). Values range from 50 to
97% CaCO; (Fig. 4). Stages B2 and B4 are
broad, multipeaked stages which are sepa-
rated by B3, a long and highly variable
stage of moderately severe carbonate dis-
solution. Stages BS through Bl1 are a

series of high-amplitude fluctuations, with
an average stage-to-stage carbonate fluctu-
ation of 37%. The section of this record
older than 488,000 yr (B11/B12) displays
about half as much variation in CaCO; con-
tent. Another change in the character of
this record occurs at 848,000 yr, with the
older portion of the record fluctuating at a
higher frequency and lower amplitude,
much like the 880 record prior to isotope
stage 22.

CaCO; mass accumulation rate data
were then calculated by multiplying the
CaCO; percentage values of each sample
by its total mass accumulation rate. The
flux of CaCO; for RC11-210 ranges from
0.2 to 2.4 g/cm?/1000 yr and fluctuations in
this record generally correspond with fluc-
tuations in the CaCO, percentage record
(Fig. 4). Unlike the CaCO; percentage
record, the carbonate mass accumulation
rates do not show a significant change of
character at 488,000 yr. They do display a
sudden decrease in amplitude at about
780,000 yr, a direct result of the change in
the linear sedimentation rate record then.

The concentration of eolian dust in these
sediments fluctuates by nearly two orders
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of magnitude (Fig. 5). The conspicuously
high peaks younger than 50,000 yr are de-
fined by eight samples, and since our
samples are processed in batches of eight
and these samples were the first to be ex-
tracted, these peaks are thought to be
anomalous data. There is also a high peak
at about 75,000 yr, which correlates to a
greenish ash layer at this horizon. The rest
of the eolian percentage record varies from
0.3 to 10.7%. These fluctuations in eolian
percentage result from variations in car-
bonate, because carbonate is the dominant
component in these sediments, so any fluc-
tuations in carbonate input will create large
inverse fluctuations in the relative impor-
tance of the lesser components. To deter-
mine how eolian sedimentation rates
change, it is necessary to calculate the
record of eolian mass accumulation rate
(Fig. 5). Values of eolian mass accumula-
tion rate range from 4 to 90 mg/cm?/1000 yr.
In general, the flux of eolian material to site
RC11-210 was higher during glacial times
than during interglaciations. This is most
evident in the lower part of the record for
glacial stages 10 through 20, which display
an average glacial/interglacial variation of

35 mg/cm?1000 yr. Like the CaCO; mass
accumulation rate record, the eolian mass
accumulation rate record decreases in vari-
ability at 780,000 yr due to the change in
the linear sedimentation rate record then.

Eolian grainsize (Fig. 5) ranges from 9.30
¢ (1.58 pwm) to 7.18 ¢ (6.90 pm), which is
significantly more variation than that re-
ported by an eolian grainsize study of a Pa-
cific core from beneath the prevailing
westerlies (Core KK7502; Janecek and
Rea, 1985). Although the most conspicuous
peaks in grainsize occur just prior to termi-
nations of glacial events (specifically stages
8, 10, and 12), this record generally fluc-
tuates at a higher frequency than the
100,000-yr cycles displayed by the car-
bonate and oxygen isotope records (Pisias
and Rea, 1987). A sudden shift in the char-
acter of the eolian grainsize record occurs
at 277,000 to 326,000 yr. Samples younger
than this display less size variability than
do those older than this 300,000-yr-old
event. There is another change in the char-
acter of this record at 875,000 yr, with the
portion of the record older than this dis-
playing about 0.5 ¢ smaller grainsize and
much less variation.
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PALEOCLIMATIC IMPLICATIONS

The 880 data of RC11-210 represent a
fairly clear record of global ice volume fluc-
tuation. When this record is compared to
the SPECMAP 380 record (Fig. 3), several
differences are apparent. A possible expla-
nation for some of these discrepancies may
be found in the detailed linear sedimenta-
tion rate record we generated for
RC11-210. For example, unlike the
SPECMAP record, stage 10 in RC11-210 is
the most isotopically enriched stage in
Brunhes time, while stage 14 is virtually
nonexistent. Upon examination of the
linear sedimentation rate record, it is seen
that the highest value is reached during
stage 10, while stage 14 sedimentation rate
values are the lowest for any glacial (even-
numbered) stage in Brunhes time. As-
suming constant rates of sediment mixing
due to bioturbation, sediments deposited at
fow rates will be more homogenized, and

will therefore show lower amplitude ex-
tremes of paleoclimatic indicators such as
3180 (Shackleton and Opdyke, 1976).

The linear sedimentation rate record was
generated by a method which was indepen-
dent of carbonate content, so the common
assumption that high CaCO; percentage
corresponds with high sedimentation rates
can be tested by comparing the sedimenta-
tion rate and CaCO, percentage records.
The two records correlate well. Further-
more, the sedimentation rate variations
also correlate well with planktonic fora-
miniferal dissolution cycles for RC11-210
(Thompson and Saito, 1974) which show
intense dissolution at horizons where linear
sedimentation rates and carbonate amounts
are low. Therefore, in pelagic carbonate
oozes of the central equatorial Pacific,
linear sedimentation rate varies with
CaCO, percentage. This effect has long
been suspected, but not previously demon-
strated from independent data.
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When the CaCO; percentage record and
3180 record are compared, the correlation
between high ice volume and good car-
bonate preservation is apparent (Fig. 4).
No consistent pattern of temporal leads or
lags occur when these two records of gla-
cial fluctuation are compared.

Core RC11-210 is located beneath the
southeast tradewinds, so the source region
for the eolian material deposited here might
be expected to be northern South America.
The accumulation of eolian material is in-
terpreted to indicate aridity of the eolian
source region, and the RC11-210 eolian
mass accumulation rate record shows no
apparent correlation to glacial stages in
sediments younger than 330,000 yr. In
older materials, dust accumulation is en-
hanced during glacial times. In compar-
ison, pollen studies in the northern Andes
(Hooghiemstra, 1984; van der Hammen,
1985) and a study of eolian sedimentation
at Deep Sea Drilling Project core 503B, ap-
proximately 4900 km east of RC11-210 in
the equatorial Pacific (Fig. 1; Rea et al.,
1986) indicate relatively humid glacial in-
tervals in the Andes. The 503B study
shows a correlation between eolian flux
peaks and interglacial times, and the eolian
mass accumulation rate values generated
for that core range from 24 to 169 mg/cm?
1000 yr, higher than the eolian mass accu-
mulation rate in RC11-210.

RC11-210 may be receiving eolian mate-
rial from a source other than South
America. Arid regions of China are now
supplying eolian material to the Marshall
Islands (Duce et al., 1980), and quartz 330
studies suggest that Hawaiian Island dust
has a similar source (Clayton et al., 1972).
These island chains are within the north-
easterly tradewinds, yet they receive eolian
material from a source region to the north-
west. Duce et al. (1980) show that this eo-
lian material is carried southeastward by
the strong westerlies which exist about
3000 m above the northwest Pacific. These
winds bring Asian dust into the tradewinds,
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which then carry it westward. If similar
wind patterns exist in the southern hemi-
sphere, then Australia is a possible source
region for the eolian material found at
RC11-210, and this record indicates a gla-
cial increase in the aridity of Australia, at
least between 300,000 and 800,000 yr ago.
Alternatively, dust from China may cross
the intertropical convergence zone.

The eolian grainsize record suggests
some correlation between glacial stages
and increased wind intensities. Such a rela-
tionship would agree with predicted in-
creased glacial thermal gradients
(CLIMAP, 1976, 1981) and with other ma-
rine sediment studies both in the Atlantic
(Parkin and Shackleton, 1973) and in the
Pacific (Janecek and Rea, 1985). The domi-
nant character of the eolian grainsize
record, however, is one that fluctuates at a
higher frequency than the 100,000-yr gla-
cial/interglacial cycles (Pisias and Rea,
1987).

By applying a mathematical relationship
between particle radius and wind velocity,
the eolian grainsize data shown in Figure 4
can be used to determine relative changes
in the wind intensity. Janecek and Rea
(1985) supply an appropriate equation,

R, = Dh%DI?,
where

Dh = the larger of two grain diameters
to be compared (in micrometers),
representing higher wind inten-
sity;

D1 = the smaller of two grain diameters
to be compared, representing
lower wind intensity; and

R,, = the ratio of higher to lower wind

intensities.

Using this equation, the peaks and
troughs of the grainsize record are com-
pared to determine the amount of wind in-
tensity fluctuation. The average ratio of
high- to low-wind intensity prior to the
event at 300,000 yr is 6.25, whereas the
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average ratio indicated by the younger sed-
iments is 2.61. This suggests a marked de-
crease in wind intensity fluctuations begin-
ning about 300,000 yr ago, a change that
has also been observed previously in two
Pacific cores, KK7502 from the northern
hemisphere westerlies and DSDP 503B in
the northern hemisphere tradewinds (Jane-
cek and Rea, 1985).

Recently, Jansen et al. (1986) compiled
much of the data suggesting a change in cli-
matic regime during the mid-Brunhes, an
event previously reported from the north
Pacific by several authors (Pisias, 1976;
Sancetta and Silvestri, 1984; Pisias and
Leinen, 1984; Janecek and Rea, 1985;
Schramm, 1985). Events assumed to be
coeval by Jansen et al. (1986) do not all
occur at the same time. In core RC11-210
the change in Pacific CaCO, preservation
cited by Jansen et al. occurs about 488,000
yr ago and the change in eolian size param-
eters, also cited, occurs about 300,000 yr
ago. The younger event is probably corre-
lative with the change in oceanic proxy cir-
culation indicators based on siliceous
plankton, as reported by Sancetta and Sil-
vestri (1984), Pisias and Leinen (1984), and
Schramm (1985), and we believe, marks the
true mid-Brunhes event in the Pacific. This
observation of the mid-Brunhes event in
records of atmospheric and sea-surface cir-
culation, but not in deep water (CaCO,)
records, implies that the thermocline may
be a boundary between the climate sub-
systems equal in importance to the air—sea
interface.

The eolian grainsize record also indicates
that prior to 875,000 yr, both the intensity
and variability of atmospheric circulation
were much lower. These changes in the eo-
lian record precede changes in the records
of CaCO, percentage at 855,000 yr and 8180
at 848,000 yr, which indicate a rather
sudden inception of large amplitude cli-
matic fluctuations during this 27,000-yr
time span. This boundary between ‘‘early
Pleistocene’” and ‘‘late Pleistocene’’ has

CHUEY, REA, AND PISIAS

been well established in CaCO; and 830
records (Shackleton and Opdyke, 1976;
Pisias and Moore, 1981; Prell, 1982; Rud-
diman et al., 1986), but RC11-210 supplies
the first paleowind-related evidence of this
event and shows that at this location the
transition to larger amplitude fluctuations
in atmospheric phenomena leads oceanic
(CaCO,) and ice volume (3'80) changes by
20,000 to 27,000 yr (3 or 4 sample in-
tervals).

SUMMARY

Core RCI11-210 from the equatorial Pa-
cific provides continuous 950,000-yr
records of global ice volume, oceanic
carbon isotopic content, bottom-water
chemistry, continental aridity, and wind in-
tensity. The RC11-210 380 record was
compared to the SPECMAP 580 record of
Imbrie et al. (1984), yielding a detailed
linear sedimentation rate record for the
past 780,000 yr. The fluctuations in this
linear sedimentation rate record coincide
with fluctuations in independently gener-
ated CaCO? percentage and foraminifera
dissolution index records, demonstrating
that sedimentation rate varies directly with
CaCOy percentage in these pelagic sedi-
ments.

The 380 and CaCO; percentage records
are related in the normal Pacific pattern of
enhanced carbonate preservation during
glacial times. Little lag between §'®0 and
CaCO, abundance patterns was observed.
The CaCO; percentage record shows a
change of character at 488,000 yr, with in-
terglacial stages prior to that time dis-
playing much less dramatic dissolution
than the younger interglaciations. In con-
trast, the CaCO; mass accumulation rate
record does not display a significant change
then.

The amount of eolian material available
for deposition in the oceans far from land
masses is thought to be controlled by the
aridity of the region supplying this dust.
The eolian flux record shows increased eo-
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lian input during glacial times from 800,000
to 300,000 yr ago, but the relationship is
less obvious in younger sediments. Since
RC11-210 lies within the southeasterly
tradewinds, the expected source region
would be northwestern South America.
This record would therefore imply gener-
ally increased South American aridity
during glacial times, in conflict with other,
more direct evidence suggesting humid gla-
cial conditions there. However, the pres-
ence of Gobi desert dust in the Marshall
and Hawaiian Islands suggests that if
northern and southern hemisphere wind
patterns are similar, the eolian source re-
gion could be Australia. This record would
then imply increased glacial aridity there.

The grainsize record of this material is
interpreted as an indication of the intensity
of atmospheric circulation. There is a gen-
eral correlation between glacial maxima
and increased wind velocities, but atmo-
spheric circulation intensity commonly
fluctuates at a higher frequency than the
glacial cycles. A brief atmospheric ‘‘quiet
time”’ occurs from 326,000 to 277,000 yr,
during which there was decreased wind in-
tensity and decreased variation in wind in-
tensity. This event separates younger mate-
rials displaying reduced variability of eo-
lian grainsize from older sediments with
enhanced size variability and represents
the atmospheric expression of the mid-
Brunhes climatic event.

As in other cores, the CaCO; and 380
records show a lack of large-scale fluctua-
tions prior to about 850,000 yr. This sudden
change in climate variability is also shown
in the eolian grainsize record of RC11-210,
which shows a dramatic increase in varia-
tion and intensity of atmospheric circula-
tion appearing at 875,000 yr, approximately
25,000 yr earlier than the oxygen isotope
and calcium carbonate proxy indicators.
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