\(\phi \)-Summing Operators in Banach Spaces

R. Khalil*

University of Michigan, Department of Mathematics, Ann Arbor, Michigan

AND

W. Deeb

Kuwait University, Department of Mathematics, Kuwait, Kuwait

Submitted by V. Lakshmikantham

Received November 20, 1985

Let \(\phi: [0, \infty) \rightarrow [0, \infty) \) be a continuous subadditive strictly increasing function and \(\phi(0) = 0 \). Let \(E \) and \(F \) be Banach spaces. A bounded linear operator \(A: E \rightarrow F \) will be called \(\phi \)-summing operator if there exists \(\lambda > 0 \) such that

\[
\sum_{i=1}^{n} \|Ax_i\| \leq \lambda \sup_{\|x^*\| = 1} \sum_{i=1}^{n} \phi(|\langle x_i, x^* \rangle|),
\]

for all sequences \(\{x_1, ..., x_n\} \subseteq E \).

We study the basic properties of the space \(\Pi^\phi(E, F) \). In particular, we prove that \(\Pi^\phi(H, H) = \Pi^\phi(H, H) \) for \(0 < p < 1 \), where \(H \) is a Banach space with the metric approximation property.

0. INTRODUCTION

Let \(\phi: [0, \infty) \rightarrow [0, \infty) \) be a continuous function. The function \(\phi \) is called a modulus function if

(i) \(\phi(x + y) \leq \phi(x) + \phi(y) \)

(ii) \(\phi(0) = 0 \)

(iii) \(\phi \) is strictly increasing.

The functions \(\phi(x) = x^p \), \(0 < p \leq 1 \) and \(\phi(x) = \ln(1 + x) \) are examples of modulus functions.

For Banach spaces \(E \) and \(F \), a bounded linear operator \(A: E \rightarrow F \) is called \(p \)-summing, \(0 < p < \infty \), if there exists \(\lambda > 0 \) such that

\[
\sum_{i=1}^{n} \|Ax_i\|^p \leq \lambda \sup_{\|x^*\| = 1} \sum_{i=1}^{n} |\langle x_i, x^* \rangle|^p,
\]

for all sequences \(\{x_1, ..., x_n\} \subseteq E \). For \(p = 1 \), this definition is due to

* Current address: Kuwait University, Department of Mathematics, Kuwait.

577
Grothendieck [3], and for \(p \neq 1 \), the definition was given by Pietsch [6]. If \(\prod^p(E, F) \) is the space of all \(p \)-summing operators from \(E \) to \(F \), then it is well known [3, p. 293] that \(\prod^p(E, F) = \prod^q(E, F) \) for \(0 < p, q \leq 1 \). If \(E \) and \(F \) are Hilbert spaces then \(\prod^p(E, F) = \prod^q(E, F) \) for \(0 < p < q < \infty \) [6, p. 302].

The object is to introduce \(\phi \)-summing operators for modulus functions \(\phi \). The basic properties of these operators are studied. We, further, prove that \(\phi \)-summing operators are \(p \)-summing for \(0 < p \leq 1 \), for Banach spaces having the metric approximation property.

Throughout this paper, \(L(E, F) \) denotes the space of all bounded linear operators from \(E \) to \(F \). The dual of \(E \) is \(E^* \). The compact elements in \(L(E, F) \) will be denoted by \(K(E, F) \). The unit sphere of a Banach space \(E \) is denoted by \(S(E) \). The set of complex numbers is denoted by \(\mathbb{C} \).

1. \(\prod^p(E, F) \)

Let \(E \) and \(F \) be two Banach spaces and \(\phi \) be a modulus function on \([0, \infty)\). Consider the following two spaces:

(i) \(l^\phi(E) = \{(x_n) : \sup_{\|x\| \leq 1} \sum_n \phi |\langle x_n, x^*\rangle| < \infty, x_n \in E\} \).

(ii) \(\ell^\phi(F) = \{(x_n) : \sum_n \phi \|x_n\| < \infty, x_n \in E\} \).

For \(x = (x_n) \in l^\phi(E) \), we define

\[
\|x\|_\varepsilon = \sup_{\|x^*\| \leq 1} \sum_n \phi |\langle x_n, x^*\rangle|,
\]

and for \(y = (y_n) \in \ell^\phi(F) \) we define

\[
\|y\|_\pi = \sum_n \phi \|y_n\|.
\]

It is a routine matter to verify the following result:

Theorem 1.1. The spaces \((l^\phi(E), \|\cdot\|_\varepsilon) \) and \((\ell^\phi(F), \|\cdot\|_\pi) \) are complete metric linear spaces.

Remark 1.2. The spaces \(l^\phi(E) \) and \(\ell^\phi(E) \) are generalizations of the spaces \(l^p(E) \) and \(l^p(F) \) for \(0 < p < 1 \). We refer to [6, Chap. 16; 1] for a discussion of such spaces.

A linear operator \(T: l^\phi(E) \to \ell^\phi(F) \) will be called *metrically bounded* if there is a \(\lambda > 0 \) such that

\[
\|Tx\|_\pi \leq \lambda \|x\|_\varepsilon.
\]
for all \(x = (x_n) \in l^p \langle E \rangle \). Clearly every metrically bounded operator is continuous. We let \(L^\phi(E, F) \) denote the space of all metrically bounded operator from \(l^p \langle E \rangle \) into \(l^p \langle F \rangle \). For \(T \in L^\phi(E, F) \), we set \(\| T \|_\phi = \inf \{ \lambda : \| Tx \|_\phi \leq \lambda \| x \|_\phi, x \in l^p \langle E \rangle \} \). The proof of the following result is similar to the proof in case of Banach spaces, [7, p. 185], and it will be omitted.

Theorem 1.3. The space \((L^\phi(E, F), \| \cdot \|_\phi) \) is a complete metric linear space.

Definition 1.4. Let \(E \) and \(F \) be two Banach spaces. Then, a bounded linear operator \(T : E \to F \) is called \(\phi \)-summing if there is \(\lambda > 0 \) such that

\[
\sum_1^N \phi \| Tx_n \| \leq \lambda \sup_{\| x^* \|_1 < 1} \sum_1^N \phi | \langle x_n, x^* \rangle | \tag{\ast}
\]

for all sequences \(\{ x_1, \ldots, x_n \} \subseteq E \).

The definition is a generalization of the definition of \(p \)-summing operators for \(0 \leq p \leq 1 \). We refer to [6] for a full study of \(p \)-summing operators \(0 < p < \infty \).

Let \(\prod^\phi(E, F) \) be the set of all \(\phi \)-summing operators from \(E \) to \(F \). Every \(T \in \prod^\phi(E, F) \) defines an element \(\hat{T} \in L^\phi(E) \) via:

\[
\hat{T} : l^p \langle E \rangle \to l^p \langle E \rangle \\
\hat{T}((x_n)) = ((Tx_n)).
\]

For \(T \in \prod^\phi(E, F) \) we define the \(\phi \)-summing metric of \(T \) as: \(\| T \|_\phi = \| \hat{T} \|_\phi \). Hence \(\| T \|_\phi = \inf \{ \lambda : * \text{ holds} \} \). The definition of \(\phi \)-summing operators together with Theorem 1.2 implies:

Theorem 1.5. \((\prod^\phi(E, F), \| \cdot \|_\phi) \) is a complete metric linear space.

Theorem 1.6. Let \(A \in \prod^\phi(G, E) \), \(B \in L(G, E) \), and \(D \in L(F, H) \). Then \(AB \in \prod^\phi(G, E) \) and \(DA \in \prod^\phi(E, H) \). Further, \(\| AB \|_\phi \leq (\| B \| + 1) \| A \|_\phi \) and \(\| DA \|_\phi \leq (\| D \| + 1) \| A \|_\phi \).

Proof. The proof follows from the fact that for all \(a > 0 \), \(\phi(at) \leq (a + 1) \phi(t) \) which is a consequence of the monotonicity and subadditivity of \(\phi \). Q.E.D.

Let \(B_1(E^*) \) be the unit ball of \(E^* \) equipped with the \(w^* \)-topology, and \(M \) be the space of all regular Borel measures on \(B_1(E^*) \). The unit sphere of \(M \) is denoted by \(S(M) \).
Theorem 1.6. Let $A \in L(E, F)$. The followings are equivalent:

(i) $A \in \prod^\phi(E, F)$.

(ii) There exists $\lambda > 0$ and $\nu \in S(M)$ such that

$$\phi \|Ax\| \leq \lambda \int_{B(E^*)} \phi |\langle x, x^* \rangle| \, dv(x^*).$$

Proof. (ii) \rightarrow (i) This is evident.

(i) \rightarrow (ii) Let $A \in \prod^\phi(E, F)$ and $\lambda = \|A\|_{\phi}$. For every finite sequence \(\{x_1, \ldots, x_N\} \subseteq E\), define the map:

$$Q: S(M) \rightarrow \mathbb{C}$$

$$Q(\mu) = \sum_{n=1}^{N} \phi \|Ax_n\| - \lambda \sum_{n=1}^{N} \int_{B(E^*)} \phi |\langle x_n, x^* \rangle| \, d\mu \cdots \quad (**)$$

Clearly, the function Q is convex. Further, there is a point $\mu_0 \in S(M)$ such that $Q(\mu_0) < 0$. Indeed choose μ_0 = the dirac measure at x_0^*, where

$$\sum_{n=1}^{N} \phi |\langle x_n, x_0^* \rangle| = \sup_{\|x^*\| \leq 1} \sum_{n=1}^{N} \phi |\langle x_n, x^* \rangle|.$$

Further, if \(\{Q_1, \ldots, Q_r\}\) is a collection of such functions defined by (**) then for any $a_1, \ldots, a_r, \sum a_k = 1$, there is Q defined in a similar way, such that $\sum a_k Q_k(\mu) \leq Q(\mu)$ for all $\mu \in S(M)$. Hence the collection of functions on $S(M)$ defined by (**) satisfies Fan's lemma [6, p. 401]. Consequently there is a measure ν in $S(M)$ such that $Q(\nu) \leq 0$ for all Q defined by (**) . In particular if Q is defined by (**) with associated sequence \(\{x\}, x \in E\), we get

$$\phi \|Ax\| \leq \lambda \int_{B(E^*)} \phi |\langle x, x^* \rangle| \, dv. \quad \text{Q.E.D.}$$

Remark 1.7. The proof of Theorem 1.6 is similar to the proof of Theorem 17.3.2. in [6], where $\phi(t) = t^p$, $0 < p \leq 1$. We included the detailed proof here for completeness and to include modulus functions.

2. $\prod^\phi(H, H) = \prod^\phi(H, H)$, $0 \leq p \leq 1$

Let m be the Lebesgue measure on $I = [0, 1]$. For the modulus function ϕ, set L^ϕ to denote the space of all measurable functions f on $[0, 1]$ for which $\int_0^1 |f(t)|^p \, dm(t) < \infty$. For $f \in L^\phi$ we define $\|f\|_{\phi} = \phi^{-1} \int_0^1 |f(t)| \, dm(t)$. The function $\|\|_{\phi}$ is not a metric on L^ϕ. However, we can define a topology via: $f_n \rightarrow f$ in L^ϕ if
\(\phi^{-1} \int \phi |f_n - f| \, dm(t) \to 0\). It is not difficult to prove that such a topology makes \(L^\phi\) a topological vector space. In case \(\phi(t) = t^p, 0 < p \leq 1\), \(L^\phi\) is a quasi-normed space [4, p. 159]. If \(\phi(t) = t/(1 + t)\), we write \(L^0\) for \(L^\phi\).

The concept of \(\phi\)-summing operators is still valid for operators \(T: E \to L^\phi\), where \(E\) is a Banach space.

Definition 2.1. Let \(E\) be a Banach space. A linear map \(T: E \to L^\phi\) is called \(\phi\)-decomposable if there is a function \(\psi: [0, 1] \to F^*\) such that

(i) The function \(\langle x, \psi(t) \rangle\) is \(m\)-measurable and

\[
(Tx)(t) = \langle x, \psi(t) \rangle \text{ a.e.m. for all } x \in E.
\]

(ii) There exists \(f \in L^1\) such that \(\|\psi(t)\| \leq f(t)\) a.e.m.

This definition is due to Kwapien [5] for \(\phi(t) = t^p\). In [5], the function \(f\) in (ii) is assumed to belong to \(L^p\). Since \(L^\phi \subseteq L^0\) for all modulus functions \(\phi\), the following lemma is immediate:

Lemma 2.2. Every \(\phi\)-decomposable map \(T: E \to L^\phi\) is \(0\)-decomposable.

Theorem 2.3. Let \(E\) be any Banach space. If a linear map \(T: E \to L^\phi\) is \(\phi\)-decomposable, then \(T\) is \(\phi\)-summing.

Proof. Let \(\psi: [0, 1] \to E^*\) be as in Definition 2.1 and \(\{x_1, ..., x_N\} \subseteq E\). Then

\[
\sum_{i=1}^{N} \phi \|Tx_n\|_{\phi} = \sum_{i=1}^{N} \phi \left[\phi^{-1} \int_{0}^{1} \phi |\langle x_n, \psi(t) \rangle| \, dm(t) \right]
\]

\[
\leq \sum_{i=1}^{N} \int_{0}^{1} (\|\psi(t)\| + 1) \phi \left| \langle x_n, \frac{\psi(t)}{\|\psi(t)\|} \rangle \right| \, dm(t)
\]

\[
\leq (\|f\|_1 + 1) \sup_{\|x\| \leq 1} \sum_{i=1}^{N} \phi |x_n, x^*|.
\]

Q.E.D.

Before we state the next theorem, we should remark that the topology on \(L^\phi\) generated by the gauge \(\|f\|_{\phi} = \phi^{-1} \int \phi |f| \, dm\), is equivalent to the topology generated by the metric \(\|f\|_{\phi} = \int \phi |f| \, dm\). Consequently, the bounded sets in both topologies coincide.

Theorem 2.4. Let \(T \in L(E, F)\) such that \(T^* \in \prod^\phi(F^*, E^*)\). If \(F\) has the metric approximation property, then for any continuous linear map \(\gamma: F \to L^\phi\), the map \(\gamma T\) is \(\phi\)-decomposable.

Proof. First, we claim that there exists an \(M > 0\) such that for all
\(x_1, x_2, \ldots, x_n \in E, \|x_i\| \leq 1 \) and for all measurable disjoint sets \(A_1, \ldots, A_n \) in \([0,1]\) we have

\[
\sum_{i=1}^{n} \int_{A_i} \phi |\gamma T(x_i)(t)| \, dt \leq M. \tag{*}
\]

By the remark preceding the theorem and the assumption that \(F \) has the metric approximation property, it is enough to prove (*) for operators \(\gamma = \sum_{i=1}^{k} y'_i \otimes 1_{B_i}, y'_i \in F^* \) and \(B_i \) measurable in \([0,1]\). One can take \(B_i \) to be disjoint of equal length and \(\bigcup_{i=1}^{k} B_i = [0,1] \).

Let \(\gamma - \sum_{i=1}^{k} y'_i \otimes 1_{B_i}, B_i \) disjoint in \([0,1]\) and \(m(B_i) = 1/k, y'_i \in F^* \), for \(i = 1, \ldots, k \). If \(x_1, \ldots, x_n \in E \), with \(\|x_i\| \leq 1 \) and if \(A_1, \ldots, A_n \) are disjoint measurable subsets in \([0,1]\), then

\[
\sum_{i=1}^{n} \int_{A_i} \phi |\gamma T(x_i)(t)| \, dm(t)
\]

\[
= \sum_{i=1}^{n} \int_{A_i} \phi \left| \sum_{j=1}^{k} \langle Tx_i, y_j \rangle 1_{B_j}(t) \right| \, dm(t)
\]

\[
\leq \sum_{i=1}^{n} \sum_{j=1}^{k} \phi |\langle Tx_i, y'_j \rangle| m(B_j \cap A_i) \tag{since \(\phi \) is subadditive}
\]

\[
\leq \sum_{j=1}^{k} \frac{1}{k} \phi \|T^* y'_j\| \cdot \sum_{i} m(B_j \cap A_i) \tag{since \(A_i \)'s are disjoint}
\]

\[\leq \lambda \sup_{\|x^*\| \leq 1, \|x\| \leq 1} \sum_{j=1}^{k} \phi |\langle y'_j, x^* \rangle| m(B_j) \tag{since \(T^* \in \prod^\Phi(F^*, E^*) \)}
\]

\[= \lambda \sup_{\|x^*\| \leq 1} \int \phi |\gamma x^*(t)| \, dm(t).
\]

Since \(\gamma \) is continuous, by the remark preceding the theorem we get \(\sup_{\|x^*\| \leq 1} \int \phi |\gamma x^*(t)| \, dm(t) \leq M \) for some \(M > 0 \), and (*) is proved.

It follows from (*) that the image of the unit ball of \(E \) under \(\gamma T \) is bounded in the lattice \(L^\Phi \). If \(g \in L^\Phi \) such that \(\gamma T(x) \leq g \) for all \(x \in E, \|x\| \leq 1 \), then the function \(\theta(t) = \gamma T x(t)/g(t) \) if \(g(t) \neq 0 \) and \(\theta(0) = 0 \), is an element of \(L^\infty \). Consequently, the linear map

\[
S: E \rightarrow L^\infty,
\]

\[
S(x) = \gamma T x \big| g
\]
is continuous and \(\| S \| \leq 1 \). Hence, by the lifting theorem, there exists \(Q: [0, 1] \to (L^\infty)^* \) such that the function \(\langle Q(t), f \rangle \) is \(m \)-measurable a.e., for all \(f \in L^\infty \), and \(f(t) = \langle Q(t), f \rangle \) a.e. Further \(\| Q(t) \| = 1 \) for all \(t \in [0, 1] \).

Now, consider the function \(\psi: [0, 1] \to E^* \) defined by \(\psi(t) = g(t) \cdot S^*(Q(t)) \). It is not difficult to see that \(\psi \) is the function needed for \(\gamma T \) to be \(\phi \)-decomposable, noting that \(g \in L^\infty \subseteq L^\phi \).

Before we prove the next result, we need the following two lemmas:

Lemma 2.5. Let \(T: L^\phi \to L^2 \) be a continuous linear operator. Then \(\| Tf \| \leq \lambda \int \phi(t) dm(t) \) for all \(f \in L^\phi \) for which \(\int \phi(t) dm(t) = \| f \|_\phi \leq 1 \).

Proof: First we prove it for \(f \in L^\phi \), \(\| f \|_\phi = 1 \). If the inequality \(\| Tf \| \leq \lambda \| f \|_\phi \) is not true, then we can find a sequence \((f_n) \) such that \(\| f_n \|_\phi = 1 \) but \(\| Tf_n \| > \lambda \| f_n \|_\phi \). Then the sequence \(f_n/n \to 0 \) in \(L^\phi \), but \(\| T(f_n/n) \| > 1 \), which contradicts the continuity of \(T \).

Now, let \(f \in L^\phi \), \(\| f \|_\phi < 1 \). Then one can find an \(\alpha > 1 \) such that \(\| \alpha f \|_\phi = 1 \). Hence

\[
\| Tf \| = \frac{1}{\alpha} \| T\alpha f \| \\
\leq \frac{\lambda}{\alpha} \| \alpha f \|_\phi \\
\leq \lambda \frac{\alpha + 1}{\alpha} \| f \|_\phi \\
\leq 2\lambda \| f \|_\phi.
\]

Q.E.D.

It should be remarked that for every \(r > 0 \) there exists \(\lambda > 0 \) such that \(\| Tf \| \leq \lambda \| f \|_\phi \) for all \(f \in L^\phi \), \(\| f \|_\phi \leq r \).

Lemma 2.6. Let \(T: L^2 \to L^\phi \) be \(p \)-summing operator. Then \(ST: L^2 \to L^2 \) is \(p \)-summing for continuous operators \(S: L^\phi \to L^2 \).

Proof: Using Lemma 2.5 and the argument in the proof of Theorem 1.6, the result follows. Q.E.D.

Now we prove:

Theorem 2.7. Let \(\phi \) be any modulus function. Then \(\Pi^\phi(L^2, L^2) \subseteq \Pi^2(L^2, L^2) \).

Proof: Let \(T: L^2 \to L^2 \) be \(\phi \)-summing operator. By Theorem 2.4, \(\gamma T^*: L^2 \to L^2 \to L^\phi \) is \(\phi \)-decomposable for all continuous linear operators \(\gamma: L^2 \to L^\phi \). In particular, we can choose \(\gamma(f) = \int f(t) \, dx \), [2, 5], where \((x_i) \)
is a symmetric stable process on \([0, 1], m\) with exponent 2. This makes \(\gamma\) an isomorphic embedding of \(L^2\) into \(L^\phi\) and also into \(L^0\). Hence \(\gamma T^*: L^2 \rightarrow L^0\) is zero decomposable. Using Theorem 3 in [5], we get \(T^*: L^2 \rightarrow L^2\) is zero summing. By Lemma 2.6, \(\gamma T^*: L^2 \rightarrow L^0\) is zero decomposable. Another application of Theorem 3 in [5]: we get \(T: L^2 \rightarrow L^2\) is zero-summing. However, every zero-summing map is 2-summing, [5]. Hence \(T \in \Pi^2(L^2, L^2)\).

Theorem 2.8. For any modulus function \(\phi\), \(\Pi^2(L^2, L^3) \subseteq \Pi^\phi(L^2, L^2)\).

Proof. Let \(T: L^2 \rightarrow L^2\) be 2-summing operator. If \(\gamma\) is the isomorphic embedding of \(L^2\) into \(L^\phi\) as in Theorem 2.7, then using Theorem 3 in [5], we get

\[\gamma T: L^2 \rightarrow L^2 \rightarrow L^\phi\]

is \(\phi\)-decomposable. By Theorem 2.3, \(\gamma T\) is \(\phi\)-summing. Using Lemma 2.5, we get \(T: L^2 \rightarrow L^2\) is \(\phi\)-summing. Q.E.D.

Acknowledgment

The first author thanks Professor J. Jacod for helpful discussions.

References