
JOURNAL OF DIFFERENTIAL EQUATIONS 70, 69-92 (1987) 

Existence of Positive Radial Solutions for 
Semilinear Elliptic Equations in the Annulus 

XABIER GARAIZAR 

Department of Mathematics, The University of Michigan, 
Ann Arbor, Michigan 48109 

Received May 1, 1986; revised January 27, 1987 

0 

In this paper we study the existence of positive radial solutions for the 
Dirichlet problem 

Mx) +f(u(x)) = 0, XEQ (1) 

u(x) = 0, xEan, (2) 

where D is an annulus in R”; i.e., Q = {x E R” 1 0 <A < 1x1 < R}. 
The existence of solutions for this problem in general domains has been 

widely studied. Most of these results are based on variational methods, and 
one finds in these works the following two limitations: 

(a) it is often required that f(0) 20 and 

(b) the growth of f at infinity cannot exceed that of uk with 
k 6 (n + 2)/(n - 2). 

We find positive radial solutions of (l), (2) avoiding these restrictions 
whenever possible; namely, we require no conditions on f(0) and no upper 
bound for k. However, in the case of 0 an n-ball, requirement (b) is a 
necessary condition for existence of solutions, since from a well-known 
theorem of Pohozaev’s [3] we have that if f(u) = uk, then k has to satisfy 
k < (n + 2)/(n - 2) in order to have positive solutions of (l), (2). Smoller 
and Wasserman [4, 51 have proved the existence of radial positive 
solutions on a ball when f(0) = O(U~) as u + +co, 0 <k < n/(n - 2), with 
no conditions on f(0). 

Now, if Sz is an annulus, Pohozaev’s theorem does not apply anymore 
since the annulus is not a star shaped-domain. Therefore, there are no 
“natural” constraints for the growth of f: 
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In fact, if Q is an annulus, Q = (XE IF!” ) il< 1x1 CR}, n > 2, and f 
satisfies: 

f(u) = W) as u + +co with k> -1, 

we can prove the existence of positive radial solutions for a wide range of 
domains, as well as some non-existence results. For example, let 
fo=lim,,, f(s)/s. If f0 = 0 and k > 1 or f. = +cc and k < 1 (e.g., f(u) = uk, 
k # l), there is a radial positive solution in any annulus. 

Another example would be: assume f(0) < 0 and k < 1 or f(0) = 0 and 
k < 1; then there are constants C < C’ such that there is a radial positive 
solution of ( 1 ), (2) when R - 2 > C’ and no radial positive solutions when 
R-L<C. 

In Theorem A, we prove the existence of solutions on “some” domains, 
and in Theorem B, we discuss the range for the domains in which existence 
is found, as well as some non-existence results. The different cases in 
Theorem B come from the behavior off at infinity (k less, greater or equal 
to 1) and at 0. 

In Theorem 30 we give an existence result for the exterior problem 
(SZ=[Wn-Bj.= { XEWIkIXI}). 

These results extend those of our previous note [l]. 
The main theorems can be stated as follows: 

THEOREM A. Let 3L > 0. Given n 3 2 and f a continuous real function 
satisfying: 

(i) there is a A>O, such that F(u)<0 for u<A and f(u)>0 for 
u > A, where F(s) = J; f (t) dt; and 

(ii) f(u) = O(uk) when u + +co and k > -1. 

Then, there are R’s such that a solution to problem (1 ), (2) exists which is 
radial and positive. 

Let us define f0 = lim,,,fls)/s. 

THEOREM B. Let 1> 0. Given n > 2 and f(u) a function as in Theorem A, 
then the following hold: 

Assume A > 0. 

(i) If f(0) < 0 and k < 1 or f(0) = 0 and k < 1, there are constants 
C, < C, such that there is a radial solution to problem (l), (2) when 
R - 13 C, and no radial solutions when R - 1~ C, . 

(ii) If f(0) <O and k= 1, there are constants C, SC, < C, < C, 
such that there is a radial solution to problem (1 ), (2) when C3 > R - I > C, 
and no radial solutions when R - 1< C, or R - 1> C,. 
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(iii) Zf f(0) < 0 and k > 1, there are constants C, < C2 such that there 
is a radial solution to problem (l), (2) when R - 16 C, and no radial 
solutions when R - 1> C,. 

(iv) zf f (0) = 0 and k > 1, there is a radial solution to problem ( 1 ), 
(2) for any R > A. 

Assume A = 0. 

(v) Zf fO=O and k<l or fO< +GO and k< 1, then there is a 
constant C > 0 such that there is a radial solution to problem (1) (2) if 
R - ,I> C and no radial solution if R - 1< C. 

(vi) Zf 0 < f0 < + 00 and k = 1, there are constants 0 < C, 6 C, such 
that there is a radial solution to problem (1 ), (2) if C, < R - L < C, and no 
radial solution zf R - I< C, or R - A> C,. 

(vii) Zf O<f,< +oo and k>l or fO= +oo and k>l, there is a 
constant C > 0 such that there is a radial solution to problem (l), (2) if 
OCR-A<Candno radialsolution ifR-A>C. 

(viii) Zf f0 =0 and k> 1 or fO= +oo and k < 1, there is a radial 
solution to problem (1) (2) for any R > L. 

Note. To prove Theorem A we only need condition (ii). If condition (i) 
is not satisfied, let A = min{s, 1 f(s) > 0, s > so}. Then there is a D, 
0 < D < A, such that F(D) > 0 and f(D) = 0. The existence of solutions for 
large R’s and p = max{ u(r) 1 1. < r < R} near D easily follows. The existence 
results in cases (i)-(iv) of Theorem B still hold and, since we pick up more 
solutions (we prove the existence of these solutions in a future paper), we 
could extend these results case by case depending on the behavior off at 0. 

1 

Since we are interested in radial functions u = u(r), we write Eq. (1) in 
the following form, where r = 1x1. 

n+l 
u”(r)+- u’(r) +f(u(r)) = 0, J.<r<R, 

r 

with boundary conditions 

u(i) = u(R) = 0. (4) 

Smoller and Wasserman [4, 51 studied problem (l), (2) when Q is a 
n-ball, D;, and gave a description of existence of solutions as well as 
uniqueness and nondegeneracy. We adapt their methods to the case of the 
annulus. 
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Unlike in the case of the ball, since 52 is not simply connected, we cannot 
fully use the results of Gidas et al. [2] for positive solutions. All that we 
know is that the maximum of any positive solution occurs at a point 
lx01 < (A + R)/2 and that du/dr < 0 for r > (A + R)/2. 

Now for radial solutions of (3), (4), a simple “phase-plane” analysis 
shows that there is a unique R, such that u’(R,) = 0 and so u’(r) >O for 
J. < r < R, and u’(r) < 0 for R, < r < R. Instead of solving directly problem 
(3), (4) we will study the trajectories of (3) with initial data 

u’(l) = a > 0, u(l) = 0 (5) 

and find the minimal R(a) for which u( R(a)) = 0; see Fig. 1. Thus we will 
have a solution of (l), (2) in the annulus Q = {x E R” 1 ,J < 1x1 < R(a)}. 
Thus we introduce a new parameter, the initial velocity a. We will think of 
(3), (5) as a system 

24’ = v (6) 

v’= - n-l 
- v-f(u), r>A 

r 

with initial data 

u(n) = 0, v(l) = a. 

We define an “energy function” H(r) by 

(7) 

H(r)=q+F(u(r)), (8) 

where F(s) =ff,f(t) dt. Then, on a trajectory of (6), we see that H is 
decreasing; namely, 

H’(r)=v(r) v’(r)+v(r)f(u(r))= -q (v(r))* < 0. 

U 

P 

r 

x Ro RW 

FIGURE I 
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We have the strict inequality everywhere except when u(r) = 0. A first 
result. 

LEMMA 1. rf (u(r), u(r)) solues (3), (4), then u can be zero only once. 
(This means that for solutions of (3), (4) there is a unique local maximum.) 

Proof: If this is not the case, in the phase-plane we see that the trajec- 
tory of (6) will cross itself for u > 0 (Fig. 2a) or hit u = 0 tangentially 
(Fig. 2b). In the first case we would have r2 > rl > 1 with u(rl) = u(r2)= 
u,>O and u(rl)=u(rz)=u,,; i.e., H(r,) = H(r,). Therefore, u(r) = 0 for 
r,<r<r, and so u’(r)=0 and f(u(r))=f(u,)=O for r,<r<r,. This 
means that the trajectory (u, u) is trapped at a rest point and thus it cannot 
solve (6) (7). The second case leads to u’(r,) = 0 and a rest point again. 1 

We now make the following assumptions on f: 
f is a continuous real function on R+ which satisfies: 

there is an A > 0 such that F(u) 6 0 if 0 < u < A and f(u) > 0 if 
u>A, (9) 

there are b > 0, constants d, , d, > 0 and k > - 1 such that for 
u>b we have d,uk<f(u)<d2uk. (10) 

If u(r) is going to be a solution of (3), (4) we need p=max(u(r) 1 
2 < r < R} > A. This follows from the energy function H; namely at r = R, 
H(R) = u’(R)/2 2 0, thus H(r) > Z-Z(R) > 0 for r < R and in particular for r0 
such that u(r,,) = p we get H(r,) = F(p) > 0, and therefore p > A. 

In the next two sections we study the trajectories of (6), (7). First we will 
show that they reach the maximum (u(R,)) (Sect. 2), and then that they go 
from the maximum to R(a) (Sect. 3). 

We prove all the results assuming n > 2. For n = 2 the same proofs are 
valid with only a slight variation. 

a I b 1 

FIGURE 2 
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2 

In what follows C will stand for a generic constant. 

PROPOSITION 2. Let f satisfy (9). We define e = max( f(u) 1 u < A }. 
Then, if a > (2(n - 2) A/1) + ((3n - 7) Ie/n), there is a t, such that u(tl) = A 
and 

t, < A( 1 + 0( l/a)). (11) 

Also we have 

(12) 

(if n = 2 we would need a > (A/ii log 2) + (3Ae/2n log 2)). 

ProoJ If A = 0, then t, = A and v(t,) = a. 
Let A > 0. If for r, I < r < 2A, u(r) < A, from (6) we would have 

-(rnp’u)‘=rn-tf(u)<f-‘e. 

We integrate twice from A to r to get 

plv2 -e (rfl-Afl) I A”pla; 

n 

i.e., 

u(r)> -ey+ 
A+’ Ile 
7 ;+a n r ( ) 

u(r), -e (r2-12)+E.“p1 Ae 
’ - ;;ri(,+“)(&-$5) 

>(r-2); (r+1)+G(g+a>&], 

and for r = 21, we get the contradiction ~(21) > A. 
Therefore, there is a t, < 2il with u(t,) = A. 
From (14), since t, < 21, we can write 

A> -g+z(G+a)(-&l) 
ty- 

Solving the above inequality for t, , we obtain (11). 
Inequality (12) follows by combining (11) and (13). m 

(13) 

(14) 
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PROPOSITION 3. Let f satisfy (9), (10). Zf c1> (2(n - 2) A/1) + 
((3n - 7) Ae/n), there is a R, > t, such that u(R,) = 0. 

Proof For t, we have u( t i ) > 0. Then once we hit u = A we can go a bit 
further to t, = t , + E, E > 0, with u( t,) > 0 and u( t,) = A + E; i.e., f(u( t,) > 0. 
Also since H’(r) GO and k > -1, there is a U* such that F(u*) = H(t,) and 
u(r)du* for r>t,. 

We havef(u)>m,>O, for u*>u>A+~. So 

-(r”-lu)‘=r”-lf(~)>m,r”~l, 

and integrating from t, to r we obtain 

-r “-‘u(r)+tz-‘u(t,)>(r”--t;)m,/n. 

Then, 

u(r) 6 u, ($)“p’+~(-+-r), 

where the right-hand side goes to -co when r increases. 
Therefore u(r) becomes 0 for some r; i.e., there is a R, such that 

u(R,)=O. i 

It is clear that R, depends continuously on ~1, thus R, = R,(a). We 
denote p = u(R,) or p(u) = u(R,(cr)). 

In Section 3 we will need to consider large p’s The next proposition 
proves that we can make p as large as we need by choosing tl large enough. 

PROPOSITION 4. If there is an R,(M) such that for (u(r), u(r)) satisfying 
(6) we have u(R,(cc)) = 0 and u(R,(cr)) =p > A; then 

p(a)+ +a when c1-+ $00 

Prooj For r E [t,, R,], from (6) we have u’(r) < 0 since f(u(r)) > 0 and 
u(r) > 0. Therefore 0 d u(r) < u( t I ) and 

,<v(y)<~(tl) 
’ r 

.- 
t1 

Let M,=sup(f(s) 1 Ats<p}, then 

n-l 
u’(r)= -- 

n-l 
u(r)-f(u(r))> -u(tl) ~- 

r t1 MJJ, 
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Multiplying both sides by D(T) and integrating from t, to R,, we get 

( n-1 
-u’(tJ2B - u(r,) - t, +Mp (P-A). 

) 

Solving the above inequality for t,v(t,) we have 

tiu(tJ~(n-l)(p-A)+[(n-1)*(p-A)*+2Mp(p-A)t:]”? (15) 

This, together with (11) and (12), proves the proposition. 1 

Now, we will focus our attention at the bounds for R, when u is large, 
namely p(a) > b. We define t, by ~(1~) = b and u(t,) 3 0. f will satisfy (10). 
We have two cases; namely k 3 1 and k < 1. 

PROPOSITION 5. If k > - 1, then there is a constant C > 0 such that 

R, - tb < Cp” ~ k)J2. (16) 

Proof Since H’(u) < 0, we have H(r) > H(R,) for t, Q r < R, and so 

u*(r) 
2 + flu(r)) 3 F(P). 

Thus from (10) 

w 
u(r)>(2{F(p)-F(u(r))})1’2a (pk+f-Uk+l)l/* 

and 

u(r) 
’ Cpk+’ , al. _ Uk+ I 112 

Integrating from tb to R, gives 

R,-t,<C R0 
I 

u(r) 
fh [pk+l~Uk+1]1/2 fir. 

Let u(k + I)/* = p(k + 1 )Psin 0; i.e., 

24 =p(sin 0) *lck+ l), 

and 

du = p(sin 19)” Pk)‘(k + ‘) cos 0 -& de. 
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Let us define b, = arcsin( b/p)‘k + ‘)12. Then 

77 

R, - t, < Cp” ~ “1’ s n/2 
b. (sin8)‘1-k”‘k+‘)d0. 

Since (1 - k)/( 1 + k) > -1, the integral is convergent and this completes 
the proof. 1 

PROPOSITION 6. Assume f satisfy (IO), let M(b) = max(f(u) ( u < b). 
Then if cI > (2(n-2) b/J)+ ((3n- 7) M(b)/n), there is a t, such that 
u( fh) = b and 

t, < A( 1 + 0( l/a)). (17) 

Also we huve 

U(fJ 2 c1( 1 + O( l/a)). 

Proof The proof is similar to the .one in Proposition 2. 1 

COROLLARY 7. Zf k > 1, then for large a, R, - d < 0( l/cl). 

Proof: From Propositions 5 and 6 

From (15) and (12), for large c( and k > 1, we have 

Thus 

Therefore 

R,--1<O(l/cr). 1 

PROPOSITION 8. Zf k d 1, then for large tl R, - ,I < Cp(’ -‘)l’. 

Proof: From (16) and (17), 
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3 

In this section we will show that there are trajectories of (6) with initial 
data 

4&) =PY u(R,) = 0 (18) 

such that there is an R so that u(R) = 0; cf. Fig. 3. 
We begin with a comparison theorem which will be needed in what 

follows. Thus consider the systems of equations associated to (6), 

fj’ = fi, ii(T)=B 

n-1 (19) 
fi'= -- V-M, V(T)=q 

r 

z’= w, z(T)=B 

n-l (20) 
w’= -- 

T 
W-M, w(T)=q. 

THEOREM 9. Suppose that f(u) > A4 for 0 <u < B, u(T) = B>O and 
u(T)=q<OforsomeT>R,. Thenii(r)au(r)forr>TonO<u<Bandif 
U(r) < 0, Td r 6 T,, then z(r) 2 17(r) on this range. 

Proof. We only sketch the proof since it can be found in [4, 
Theorem 51. Let h(r) = U(r) - u(r), then h(T) = h’(T) = 0 and h”(r) = 
-(n-l)h’(r)/r-M+f(u). Thus h”(T)=0 and if h’(r,)=O for some 
r, > T, 0 6 u d B, then h”(r,) > 0. It follows that h’(r) > 0 for all r > T on 
0 d u 6 B and so U(r) > u(r) if r > T on 0 d u d B. 

Also if g(r) = z(r) - U(r), then g(T) = g’( T) = g”( T) = 0 and g”‘(r) = 
-(n-l)w’(r)/T+(n-l)F(r)/r-(n-l)C(r)/r*. Thus g”‘(T)>0 and SO 

g’(r)>0 and g(r)>0 for T<rdT,. 1 

FIGURE 3 
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LEMMA 10. Suppose that 0 <m(p) <f(u) < M(p), when B < u <p. Then 
fur any trajectory (u(.,p), u(., p)) of (6), (7), there is a T> R0 with 
u(T,p)=B. 

Proof For B < u <p we have 

r “-‘m(p)<r”-‘f(u)= -(r”-‘v)‘<r”-‘M(p). 

Thus integrating from R, to r, we have 

We divide by r” ’ and integrate a second time to get 

Since the first term goes to + co when r -+ +oo, we see that the lemma 
follows. 1 

We choose B such that F(B) 3 0 and B 2 6. Define q = o(T) where as 
before u(T)= B>A. 

LEMMA 11. (i) If k > 0, then -q/T is bounded away from zero indepen- 
dently of c( for large CL. 

(ii) If 0 > k > -1, then there is a constant C such that -q/T>, Cpk. 

Proof: (i) Let k 20. Then there is a m > 0 such that f(u) 2 m for 
IA >, B. 

We integrate - (UT” - ’ )’ = r’ ~ ‘f(u) 2 r” - ‘m from R0 to T to get 

-qT”-’ n >IIf (T-R;;) 

and 

(21) 

Also 

H(T)-H(RO)=$[F(p)-F(B)]= -(n-l)fi:dr, 
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and since (~(r))~ < 2[F(p) - F(u(r))] d 2[F(p) - F(B)] for R0 < r < T we 
have 

$ [F(p)-F(B), 
T-R, 

1-2(n- 1) 7 
0 

and 

4 = 
0 T 

2WWF(B)l 
%I 

(22) 

Now, whenever q/T-+ 0 from (21) we get R,/T+ 1 and then the right- 
hand side in (22) would behave like 2[F(p) -F(B)]/C when k 2 1 (by 
Corollary 7) or like Cpk + l/p’ -k when k < 1 (by Proposition 8). In either 
case we reach a contradiction. Therefore, there is a C> 0 such that 
WI 2 C. 

(ii) Let O>k> -1. In this case,f(u)>d,pkfor BQUQ~. As above, 
if R,/T+ 1 we would have Iq/Tl 2 Cpk. Thus from (21) we obtain 
-q/T> Cpk. I 

We now state the following theorem which can be found in [4]. It will 
give the existence of solutions when k > 0. A similar result for 0 > k > -1 
will be given in Theorem 18. 

THEOREM 12. Suppose that f(u) > m > 0 for u 2 B. Then 

(i) for any p > B, there is a T> R, such that u( T, p) = B; 

(ii) let q=u(T,p), if -qT + +oo as p -+ +a~, then the problem (3), 
(18) has a solution with R = R(p). 

ProoJ: Part (i) follows from Lemma 10. For (ii) consider the system 
(20). We shall show that if w(rl) =0 and -qT is sufficiently large, then 
z(r, ) < 0. Thus from Theorem 9 we conclude that u(R, p) = 0 for some 
R<r,. 

Suppose f(u)ap, PLO, and set 

B=(n- 1)/T, ~=(n-l)ql(T~)=Pq/~F( 

Equation (20) can be explicitly integrated as 

w(r)=qexp(-p(r-T))-Cl-exp(-D(r-T))l~LIB. 

Thus for rl such that w(r,)=O 

rl - T=ln(l +S)/p. 
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Furthermore, 

r, 
z(r,)- B= w(s) ds 

T  

= -(exp(-p(r,-T))-1)4/8-~L(r,-T)lB 

- (exP( -B(rl - T)) - 1) P/P’~ 

z(r,)=B+s l- 
L 

ln(l+6) 1 6 ’ 

If d(6)= 1 -ln(l +S)/S then &O)=O and d’(O)>0 for 6>0. Since 
6 = (n - I ) q//(Tp), it follows from part (i) of Lemma 11 that &(6) is boun- 
ded away from zero. Since qT + -cc asp-+ +cc we see that z(r,)<O for 
large p. This completes the proof. 1 

At this point we only need to prove that -qT-+ +m asp + +co. To do 
this we follow [S] and we choose B so that also B > A + 2~. 

Let us note that T depends on p and R,. Sometimes we will write 
T= T(p), but since R, = R,(a) and p =p(cc) we have obviously T= T(E). 

LEMMA 13. !f k b 1, there is a constant C > 0 such that 

T- R0 < CB” pk)J2, (23) 

If k < 1, there is a constant C > 0 such that 

T- R, < Cp(’ -k)‘2. 

Proof: From (10) we have f(u) 2 d, uk. 
We define C( p, k) = d, Bk ~ ’ if k > 1 and C(p, k) = d, pk - 1 if k < 1. Then 

f(u) 3 C(p, k) u for B < u 6 p. We make the following change of variables: 

s = ar, where a = (C(p, k))“2. 

Then u(r) = w(s), a&, = S,, aT= S, g(w) = u-~~(u) z w  and Eq. (3) is writ- 
ten as 

n-l 
w”(S) + - 

S 
w’(s) + g(w(s)) = 0. 
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We define 8 by tan 8 = w’jw. Then for S,, <s < S, -n/2 < ti < 0. We dif- 
ferentiate to get 

e = w"W - (w')2 -((n-l)/S)WW’--g(w)-(WI)2 
w*+ (w’)2 = wz + (w’)2 

n-l n-l 
< -- sin28-c0s2e-sin28= -l-- 

2s 2s 
sin 28. 

IfS>S,+(n+n-1), thenforn-l<s-S,<rc+n--1 wehave 

s S-S, 
---a- 
n-l n-l 

z 1 > -sin 28, 

and so 

n-l 
1 > - (sin 28) -. 

s ’ 
i.e., e< -f. 

Thus 

e((n+n- l)+S,)-e((n- l)+&)=j~~~~,‘-’ 8 ds< -:7r. 
0 

This contradicts 0 > e(s) > -rc/2. Therefore S-So < x +n - 1. So T-R, < 
up’(S-So) and (23) follows with constant C=(n+n-l)d;‘/2. i 

COROLLARY 14. Zf k < 1, then T < Cp(’ - k”2. 

ProoJ: This follows from Proposition 8 and Lemma 13. 1 

LEMMA 15. For p > 2B, u(R,) =p, we define $p) by u(z(p)) =p/2. Then 

T(P) > (Cp’ -k + R2)“*. / 0 (24) 

Proof: The existence of z(p) follows from Lemma 10 for B=p/2. As in 
Lemma 10 (now M(p)=d2pk if k>O and M(p)=d22-kpk if k<O) 

6 g (z(p)’ - R;), 

and (24) follows. 1 

LEMMA 16. Zf f satisfies (9) and (lo), then for large p’s (i.e., B<p/2) 

-qT’-‘>Cpk(z(p)“-RR;;), (25) 

where C is a constant. 
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Proof. We integrate - (F ‘u) = rn- tf(u(r)) from R, to T; this gives 

s 

r 
-qT”-‘= - R. (Flu) dr= ’ r”-If(u(r)) dr 

s RO 

3 I ~~” r”- ‘f(u(r)) dr 3 d, c:” ukrn- ’ dr 

2 CPk s T(P) 
r “-‘dr=Cpk(z(p)“-R;). 1 

Ro 

THEOREM 17. Suppose f satisfies (9) and (10) with k > 0. Then there are 
solutions of (3t(4) with R= R(a) (or R(p)). 

Proof. We write -qT= -qT’-m’/T”p2 and use (25) and (24), 

-qT>C& [(Cplpk + R2)“‘* 0 - R;;] pk. 

We claim that for k 3 1 (see below) 

(Cp’ ~ k + R2)“” 0 - R;f > const R;;- ‘p’ -k. 

It follows from this that 

-qT> Cp”p’-” $ 
( ) 

n-2 

= W, p). 

Since R < Cp” -- k)‘2, if k < 1 we have a better estimate 

(c~~--~+R~)“I*_R;I~(c~~-~)~~/*~c~(~-~~~/~~ 

Thus 

-qTk Cp k+(l-k)4T-(-*)= y(k p) 1 . 

(26) 

We shall show that ‘P(p) + +co when p -+ +CC (i.e., ct + +a). From 
(23), Corollary 7, Lemma 13, and Corollary 14, 

Y(P)’ CP. 

The existence of solutions follows from Theorem 11. 1 

Proof of the claim. If f(x, b) = (x + b),/’ - bn12 with x > 0 and b > 0, 
then 

f(a, b)=f(O, b)+af,(8, b)=a(B+b)(“-2)/2n/2>ab(“-2)‘2n/2. 

Now the claim is proved with a = Cpl-’ and b = Ri. 1 
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THEOREM 18. Suppose f satisfies (9) and (10) with 0 > k > - 1. Then 
there are solutions of (3), (4) with R = R(E) (or R(p)). 

Proof. Let B, q, T be as above and p < 0 such that p <f(u) for 
O<udB. Set s=(n-l)q/pT. 

From the proof of Theorem 12 we see that in order to have existence of 
solutions we need to prove that 

c/T -- 
n-l 

, JnU +d) ~ +co 
6 > as c(+ +co. 

From Lemma 11 we have 6 2 Cpk, and then 

ln(l+6)<ln(l +Cp”) 
6 CPk 

= 1 - cp” + 0( cp*k). 

Thus 

qT -- 
n-1 

As in Theorem 17, - qT3 Cp. Therefore, if k > - 1, 

qT -- 
n-l 

, -Ml +6) 

6 
xpl+k+ +a as a+ +CO. m 

With this result we have completed the proof of Theorem A. 

Remarks. (i) The above argument extends the existence results of 
Smoller and Wasserman [S] for the n-ball to - 1 <k < n/(n - 2). 

(ii) The cut-off k > - 1 seems to be optimal for the methods we use. 
For k < -1, F(s) = J;f(t) dt is a bounded function, and, since we give no 
condition at 0, if f(u) is negative and large for u near 0 we will have 
F(s) < 0 for all s > 0. Therefore there is no positive solution of (3), (4). 

In order to prove Theorem B we need to observe the behavior of R(a) 
both when CI is large and when CI is “small” (i.e., tl bounded). We will do 
this in the next series of lemmas. 

PROPOSITION 19. Let f satisfy (9), (10) with k 2 1. Given a* large 
enough, there is a constant C > 0 such that R(u) < C for c1> CI*. 

(In Lemma 27 we will give a better estimate when k > 1.) To prove this 
proposition we need 
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LEMMA 20. u(R(a))-+ +co when a-+ +CO. 

Proof Since H(r) d H(T) for r L T. We have 

u*(r) 6 q* + 2[F(B) - F(;(u(r))] < q2 + C 

where 

c= 2 onlyJF(B) - F(s)] = 2[F(B) -F(A)]. 
. . 

Therefore 

Iv(r)1 B (q2+ 2;)‘j2, 

if T(a) <r < R(a). Also, 

u2y) -g- F(B) 

= H(R(a)) - H(T) = - ]:“’ f-$ u*(r) dr 

n-l 
s 

R(z) 
>-- 

T  T  
u*(r) dr > q (q* + C??)“* I:‘^’ u(r) dr 

= -fqn - 1) (4 +;)I’*. 

Thus 

u2(R(a))aq2-2B(n-1) (q2+z)“2+2F(B). (27) 

and 

By Lemma 11 and Theorem 17 (proof) we see that the r.h.s. goes to + cc 
with tl. This proves the lemma. 1 

Proof of Proposition 19. Choose IX* so that R(M) exists for ~13 c1* and 
(from the last lemma) 

min {u’(R(a)), u2(R(a)) - 2F(B)} 3 u’(R(a)) - 2; > 0. 
a2xf 
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For T< r < R(a), we ha& 

i.e., Iv(r)/ < (q2 + 2[F(B) -F(u(r))])1’2 ,< (q2 + C)lj2 and 

v2(r) -j- + F(u(r)) 2 v2(R(cO). 
2 ’ 

i.e., 

Then 

Iv(r)1 2 (u'(R(a)) - 2F(u(r)))1’2 3 (v2(R(a)) - 2;)‘12 > 0. 

H(R) - H(T) = -1; q 
n-l 

v2(r) dr > -- T B(q2 + 2;p2 

and 

H(R)-H(T)= -jfq v2(r)dr< -G [v*(R(a)) - 2’](R- T). 

Thus 

B(q2 + c)‘j2 ~ R(a) - T 

T R(a) (v2(Na)) - Q 

and 

R(a) - T<_C (q2 + c)“* 

R(a) ’ T u’(R(a)) - 2;‘ 

From (27), for large a, v(R(a))2 - c> Cq2 and q + +a~; thus 

R(a) - T 

R(a) 
<CL c 

Tq2 m’ 

and therefore 

..T( lqlEJ when IqTI + +co. (28) 

(Recall that T is bounded follows from Corollary 14.) 1 



EXISTENCE OF POSITIVE RADIAL SOLUTIONS 87 

LEMMA 21. Let u* > 0 be given. If A > 0 and f (0) < 0 then there are con- 
stants C,, C2 such that if R(a) exists, we have C, < R(a) < C2 for a <a*. 

ProoJ: For a <a* if R(a) exists, we will have v(r) < (a* - 2F(A))“2 and 
p(a) > A. Thus R,(a)- ,I > A(a2 - 2F(A))p”‘2’> C, for all a < CC*. 

Also if there is a sequence {a,} c (0, a*) such that R(a,) converges to 
+ co, then since v(R(a,)) E ( -cI*, 0) we can find a subsequence (a,} which 
converges to CI d cc* and such that (u(r, a), v(r, a)) -+ (0, II*) when r -+ +m. 
This is impossible since the only rest point is (A, 0). 

Therefore R(a) is bounded from above when a 6 a*. 1 

LEMMA 22. Zf A > 0 and f(0) = 0, then given any M we can find an a 
such that R(a) exists and R(a) > M. 

Proof: We know that there is an CC* such that for any a> a*, 
R(a) < +cc exists. If there is a solution for any c1> 0 we can choose a so 
close to 0 as to have SUPj.<r~M lu(r, E) - u(r, O)j <A/2 by continuity of U. 
Then u(r, CX) < A/2 for 1~ r < M and therefore R(a) > M. 

If there are a’s such that R(a) does not exist, let us call ~1, = inf{a* 1 R(a) 
exists for all a > a*} > 0. 

Let us suppose that R(a) < M for all c1> CC, and that there is an E>O 
such that - v(R(a)) > E for all a > CI,. Then we can find a sequence {cl,} 
which converges to a1 and such that R(a)-+ R(a,)<M and v(R(a)) + 
v(R(a,)) < --E < 0. Therefore, by transversality, there is an uq < ai such that 
R(a) exists for CI > CI~. This contradicts the definition of a,. 

Thus v(R(a)) + 0 when u -+ a, and we have (u(r, cc,), u(r, a2)) ---f (0,O) as 
r + R(a,). This is impossible since (0,O) is a rest point and can only be 
reached at infinite time. 

Therefore for any M there is a a such that R(a) > M. 1 

Let us recall that f0 = lim, _ ,, f(s)/s. 

LEMMA 23. If A = 0, f(0) = 0 and f,, = 0, then given any M there is an a 
such that R(a) - ,I > M. 

Proof: First, since f(u) > 0 for u >O, we have that the domain of R(a) 
is (0, +a). 

Given M > 0, we can find U* such that f(u) -C u/M for 0 < u < u*. Then if 
cI* =(2qu*))"2 we will have p(a) < U* when a < a*. For this a we have, 
when R, < r < R(a), 

-(rnp'~)'5r"-'f(u)<lf_ rnpl 
M 

<$ rnel. 
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Integrating from R, to r gives 

so that 

and integrating again, we find 

p <sM (R(a)* - Ri). 

Thus 

LEMMA 24. If A = 0 and f. = +m, then given any E > 0 there is an a 
such that R(a) -k < E. 

Proof: Given E > 0 we can find a u* such that f(u) b 1.41~~ for u < u*. Let 
a* = (2F(u*)) I/*. Then for a < a*, we have u(r, a) < u* when A < r < R(a). 

For I<r<R, we have 

so 

v(r) > (P’- u*)l’* 
, 

E 

and 

v(r) 
-2 (p2 _ u2)1,2 3 l. 

Integrating the above from 2. to R, we get R, - 2 < ~7~12. 
Also when R, < r < R(a) an argument similar to that in Lemma 13 gives 

R(a)-R,<(n.+n-1)E. 1 

LEMMA 25. Zf A = 0, f(0) = 0, and 0 < fo(0) < + co, then given a* > 0, 
there are constants C,, C2 such that C, < R(a) - I. < C2 for any a =$ a*. 
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Proof Let U* be such that 2F(u*)= ~1~. Then u(r, U) < U* for 
l<r<R(a) when cc<cr*. 

We can find M>m>O such that m*udf(u)<Mu for O<u<u*. As in 
Lemma 24, 

and as in Lemma 23, 

R’(a) -L* 2;. 

Then 

’ I 

Now we consider large a’s. 

LEMMA 26. If k < 1, then there is a constant C> 0 such that 
R(cr)-E,>Cp”~k’2’ for large values of a. 

Proof: For R, < r < T(a), 

v*(r) ,-+F(u(r))<F(p)=Cp’+‘. 
L 

Then, since F(u( 7’)) > 0, we have -v(r) d Cpck+ ‘)j2; and so 

;;!:),,2 < 1. 
CP 

Integrating from R, to T(M) we have 

T(a)-R,>Cp- (k+1)/2(p_B)~Cp(l-k)/2, 

so that 

LEMMA 27. If k > 1, given any E > 0, there is an CI such that R(a) exists 
and R(E) -2 < E. 

Proof: Let thus set p* such that (n + n - 1) d;‘12(p*)(‘-k)i2 < c/4. Then, 
from Lemma 13, T-R, < e/4 for p >p*. From (28), R(a) - T(a) + 0 when 
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c( + + co. Thus, there is an 01* such that R(a) - T(a) < s/4 for LX> a*, and 
therefore there is a large LY such that 

R(a)-R,(a)=R(a)-T(a)+ T(a)-&(a)<:. 

Now by Theorem 2 in [2] we know that 

R”(U)< 
R(a) -t- A 

2 5 

so 

R(c+A<2{R(cr)-R,(a))<&. fl 

LEMMA 28. If k = 1, then given a* large, there are constants C,, Cz such 
that C, < R(a) - A< C2 for any a > c(*. 

ProoJ: From Lemma 26 we get the existence of C,. The existence of C2 
follows from Proposition 19. [ 

Proof of Theorem B. (iii) Let 9 = {cr>,O ) there is an R(a) < +a}. It 
is clear that Y is closed and as in Proposition 19, there is an tl* such that 
[a*,+co)GY. 

Moreover, the set {R(a) 1 ~12 E*} is bounded. Also, since for a = 0, 
H(I, ~1) = H(1,O) = 0; then H(r) < 0 for r > A. Thus 0 4 3, and so there is an 
cl, >O such that 3~ [GI,, +co). For C(E [ar, a*] n%, let us suppose that 
the set (R(a)), is not bounded; i.e., we have a sequence (a,} c 
[al, a*] n Y such that R(cr,) goes to + 00 with m. Since Iv(R(a,))l G a, we 
can find a subsequence {a,} c {elm} which converges to say E and v(R(aj)) 
converges to some 5. Thus the trajectory ((u(r, tl), u(r, 5)) goes to (0, V) 
when r goes to + co. This is impossible since there are no rest points on the 
line 2.4 = 0. 

Therefore R(a) is bounded when c( E 3 and this gives the existence of C2. 
Now let us call C1 = max{ R(a) - ;1( a 3 rx* ). From Lemma 27 we see that 
NCa*,+m))=(O, C,l. 

The rest of the theorem is proved similarly. Note that when A = 0, 
S=(O,+cx,). 1 

4. FURTHER RESULTS 

PROFWITION 29. Zf, in addition to (9) and (lo), f satisfies 

F(A)<O. 

Then, given an u* > 0, there is a constant 6 = S(f, a*) such that if 
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(u(., LX), u(., LX)) is u trajectory of (6), (7) with H( R,) 2 0 and tl < a*, then 
t, -166. (Note that this will always holdfor solutions of (3), (4).) 

ProoJ: Let LX* be given. We define Q > A such that F(Q) = 0. 
We consider an u < a* such that H(R,(c()) 20. Since H’(r) <O for 

l<r<R,, we see that 

H(r)<(6)2<(r*)2 
’ 2 ‘2 

for A<r<R,, 

and in particular 

u*(r) < rx* - 2F(u(r)) < C(cr*). 

Let US define T, by u( r,) = Q. Then for 2 < r < T, we have 

o*(r) + 2F(u(r)) > 2F( Q) + u*( T,,) B 0 

and 

u(r) 
(-2F(u(r)))‘/*’ ” 

Thus, integrating from t, to r, we obtain 

s 

Q 
To-t,< ds <c 

A (-2F(s))“2 ’ 

since -F(s)zf(Q)(Q-s), for s near Q, and f(Q)>O. 
Also 

H(t,)-H(T,))=(n-1)~‘“~dr>~~‘ou2dr 
II r 0 11 

n-l To 
a- s 

n- 1 

To 11 
(-2F(u))dr>- 

s 
To -2F(;(u) u(r) dr 

To 7-1 u(r) 

n-l Q 

’ T,C(cr*) s ,g 
(-2F(s)) ds=;. 

0 

And for /l<r<t,, 

u2(r)a2H(tl)-ZF(u(r))>$-2F(I((I))a$. 
0 0 

Hence 

Cu(r) TA’* > 1; 
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and integrating from I to t, , 

t, - A< ACThI d C(t, + C)1’2. 

Therefore for CI < CX*, t, remains bounded. 1 

THEOREM 30. Zf f(0) = 0 and F(A) < 0, then there is a radial positive 
solution for the exterior problem: 

Nx) +f(u(x)) = 0, xEQ= {XER” 1 1x1 >/bO) 

u(x) = 0, XEiX2 

and 
u(x) + 0 as IxI+ +oo. 

Proof From Theorem A we know the existence of positive solutions for 
(3), (4). 

By the last proposition, if there is a solution to (3), (4) then tr - 1 is 
bounded. 

Also by continuity of the flow if CI is very small, then t, is very large; i.e., 
for any a,>0 there is an E such that if CC <E, then 

Therefore, we conclude the existence of a value a such that if c1 d a 
then c( $ ‘S (as defined in proof of Theorem B). Let us define CI~ = 
inf{a 1 (a,+co)cC!?}. 

Obviously, c1r $ Y and the only possibility is (u(r, aI), u(r, aI)) + (0,O) as 
r -+ +co with u(r, a1) > 0 when I < r < +co; i.e., u(r, a1) is a solution to the 
exterior problem. 1 

Note. Actually, we can find at least as many solutions as the number of 
connected components of Q. 
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