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A principal setback to automation of the machining process is the inability to completely 
monitor the condition of the cutting tool in real time. Whereas several of the techniques 
developed to date are useful in specific applications, no universally applicable sensor is 
yet available. 

Acoustic emission is one of the most promising techniques to be recently developed for 
on-line cutting tool monitoring. However, signal analysis is still an area that requires 
futher investigation to enhance the potential of acoustic emission. For this purpose, 
frequency-based pattern recognition concepts using linear discriminant functions have 
been used in analysing acoustic emission signals generated during machining to distinguish 
between different signal sources, specifically chip formation, tool fracture, and chip noise. 
Five features were used for classification in the frequency range of 100 kHz to 1 MHz, 
with each feature consisting of a 20 kHz bandwidth, and were selected using the class 
mean scatter criterion. The coefficients of the discriminant functions were obtained by 
training the system using signals generated by each of the sources of interest. An AISI 
1018 steel was machined using a titanium carbide-coated cutting tool. Cutting speeds 
ranged from 200 to 800 ft/min (1 to 4 m/set) with feed rates of 0*0005 to 0.0075 in/rev 
(0.0133 mm/rev to 0.191 mm/rev) and depth of cut 0.17 in (4.32 mm). The results show 
a successful classification rate of 90% for tool breakage, while those for chip formation 
and chip noise were 97 and 86% respectively. 

1. INTRODUCTION 

The machining process constitutes a significant component of manufacturing operations 
(systems) and, quite often, leads to a bottleneck on the factory floor. The importance of 
the process stems from the fact that most primary processes are incapable of producing 
parts in final form and with the desired surface finish and texture. Whereas most machining 
processes can be implemented at relatively high production rates, especially with the 
continued development of machines and cutting tools capable of ultra high cutting speeds, 
such high production speeds often result in increased downtime due to frequent failure 
of the cutting tool either by wear or breakage. The need for continuous monitoring of 
the state of a cutting tool cannot therefore be over-emphasized, especially in an automated 
factory. However, the solution to the problem of real-time tool condition monitoring has 
been an elusive one in a universal sense, even though a variety of techniques have been 
developed that are useful in specific applications. Excellent reviews of these techniques 
have been made by Cook et al. [l], Micheletti et al. [2], Tlusty and Andrews [3] and 
Birla [4]. 

Acoustic emission (AE) is becoming increasingly important as a tool for monitoring 
several aspects of manufacturing processes. Basic research pertaining to the use of AE 
in investigating fundamental aspects of the metal cutting process have been highly 
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successful with significant advances being made in the past few years [5-161. Acoustic 
emission refers to the elastic stress waves generated as a result of the rapid release of 
strain energy within a material due to a rearrangement of its internal structure [8]. 

Advantages of AE as a tool wear sensing technique include 
1. Its adaptability to computer ‘control; 
2. Its generation by processes in the cutting zone, including the chip-tool interface 

and the tool flank, which have a direct influence on tool wear; 
3. The ability to detect signals from the cutting process away from the process zone, 

thus reducing the risk of instrumentation damage from the cutting environment; 
4. The high frequency content of the emission signal, which is well beyond the frequency 

range of noise from machine tool dynamics and extraneous sources. 
Recent efforts have resulted in significant advances in our understanding of the 

phenomenon of AE generation during metal cutting. However, substantial research is 
still necessary for a successful application in industry. One problem area is the need to 
distinguish between signals from different sources during cutting. Some of the significant 
signal sources that have been identified include 

1. Those related to chip formation and tool wear (from the shear zone, tool-chip 
interface, and tool-work interface); 

2. Those due to tool chipping and breakage; 
3. Those resulting from the formed chip. 
Careful monitoring of the signals from each of these sources provides very useful 

information about the cutting process and tool condition. The difficulty arises under 
normal cutting when all the sources can be active. It is then necessary to identify or 
distinguish between the various signals before further information can be obtained on 
the state of each source. For this, the use of a linear discriminant function based pattern 
recognition analysis was suggested by Kannatey-Asibu [lo] and has also been imple- 
mented to detect chip breakage using event rate sensing by Dornfeld et al. [12,15]. This 
paper presents results obtained using frequency-based analysis of tool wear, breakage, 
and chip noise. 

2. BACKGROUND ANALYSIS 

Implementing a pattern recognition system requires three essential steps [17] 
1. Sampling or scanning the input signal to produce the pattern space. 
2. Extraction of the features, which often involves transformation of the signal from 

the pattern into the feature space, from which useful information can be obtained, 
and subsequent reduction of the data size. 

3. Classification of the feature space to permit identification of the individual signal 
sources (classes). 

The Bayesian decision rule forms the basis for the design of optimum classifiers. In 
the general case, it requires an estimate of the conditional density function of the data. 
However, for data with a Gaussian distribution and equal covariance matrices for the 
individual classes, the a posteriori probability reduces to a linear discriminant function, 
simplifying the process of classification. Unfortunately, most real-life data are not normally 
distributed, and for these cases, sub-optimal linear classifiers can be designed using the 
least-mean-square error approach, the analytical basis for which is briefly presented in 
the following paragraphs as background information. 

We consider sampled time series data (or pattern) represented as 
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which is transformed into a feature space, giving 
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Y=[Y,,Y,,...YNl- (lb) 
The purpose of the transformation is to restructure the original data into a form that 

will locate patterns belonging to specific classes into distinct groupings that are easy to 
distinguish from other classes. It can be shown that the optimum transform that produces 
uncorrelated features, with respect to the mean-square error criterion, is the Karhunen- 
Loeve transform. However, we base our analysis on the Fourier transform even though 
it may not yield the best features for classification (since it results in non-zero off-diagonal 
elements of the transform domain covariance matrix), and thus use the spectral com- 
ponents of the signal as features for two reasons 

1. To permit a more useful physical interpretation of the results. 
2. The Karhunen-Loeve transform is based on the covariance matrix of the data and, 

thus, cannot be implemented using a fast algorithm. This is an important consider- 
ation since the response speed of the sensor is a principal consideration in a machine 
tool monitoring system. 

The Fourier transform for an analog signal is defined for an infinite time period. The 
use of discrete data of finite size, N, for transformation involves, in effect, the multiplication 
of an infinite data series by a rectangular window. This is equivalent to a convolution of 
the Fourier transforms of the infinite data and the window. 

For a rectangular window defined as 

1 
h(t)= 

1 

for 14 < 7/2 
@a) 

0 elsewhere, 

the corresponding transform is the sine function 

H(f)= 
7 sin (7rf7) 

7T. (2b) 

which has spurious peaks or sidelobes that decay slowly, as shown in Fig. 1. The end 
result is a distortion of the transform of the original signal, and to minimise its effect, 
we use a large data set. Increasing the data size reduces the width of the main lobe of 
the rectangular transform and, consequently, the extent of distortion. However, a larger 
data size or dimensionality also increases the resolution of the spectrum, making sub- 
sequent computations more involved. A prime consideration in the development of any 

h(t) 

-r/2 T/2 I 

Figure 1. Fourier transform of a rectangular pulse. 
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tool condition sensor is the speed of response, since it determines how soon the cutting 
tool can be retracted before any damage is done and is especially critical in ultra high 
speed machining. To improve the computational efbciency, we reduce the data size or 
dimensionality by eliminating the spectra1 components that convey the least information 
about the system. This stage of analysis is referred to as data reduction, and we use the 
class mean scatter criterion for feature selection. First, we determine the feature mean 
for each class, Vi 

where A4, = the number of patterns in class C,. 
The overall system mean, Y, is then determined as 

where pi = the a priori probability of class C, and C = the number of classes. 
We then obtain the scatter within each class by calculating the frequency domain 

covariance matrix as 

Ri=+ : (Yit-Yi)(Yil,-jiJT 
,k I 

(44 

giving an overall system covariance matrix of 

R= f piRi. 
,=1 

(4b) 

The scatter between the individual classes is defined as 

R,= ~ pi(~i-y)(yi-y)T (4c) 
, : I 

From which the feature selection criterion is defined as 

Q=R(f+ 
WJ, J) 

(5) 

where R,( j, j) and R(j, j) are the j-th diagonal elements of the covariance matrices R, 
and R respectively. 

Since the objective is to minimise the scatter within the individual classes, while 
maximising the scatter between the classes, the desired number of features with maximum 
Q values are selected as features. The number of features used is very important, since 
in addition to reducing computation efficiency, a high dimensionality requires a large 
number of experimental data sets for training the system and developing the classifier. 
This is because the adequate number of training data sets has to be about four or more 
times the number of features [ 181. However, an excessive number of sets adds to the cost 
without necessarily improving the system performance. On the other hand, a small number 
of features provides an insufficient description of the system, since too small a training 
set will result in inadequate evaluation of the classifier weighting functions. For this work, 
it was found that five features provided the best performance. 

With the desired number of features known the data sets could be represented in a 
five-dimensional feature space to show their relationship to each other. For ease of 
graphical representation, however, two of these features obtained from the data, 
specifically the 110 and 990 kHz band frequencies, were selected and are plotted in a 
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two-dimensional feature space in Fig. 2; these features will be discussed in a subsequent 
section. Even though the plot in Fig. 2 is limited to two features, it is obvious that there 
is an overlap between the various classes. Thus with a basic linear decision-making 
process, there can be a substantial amount of misclassification, where signals belonging 
to one class are erroneously assigned to another. This misclassification can be minimised 
by further transformation of the patterns from the feature space to a decision space using 
a transform that relocates the patterns such that all patterns belonging to a specific class 
are positioned in a region distinct from other classes, resulting in a decision space that 
facilitates classification. 

For each class, C,, we define a point, Vi, in the decision space around which we cluster 
all patterns belonging to Ci. Since there is still the likelihood of some misclassification 
even after this step, the objective of the transformation will be to minimise the decision- 
making errors that will subsequently result. Let us denote the transformation matrix for 
C, by Ti. Then a pattern Yij in the feature space becomes 

Sij = TrYrr (6) 

in the decision space. 
Since Sij will not necessarily be located exactly at Vi, the error vector associated with 

that pattern after transformation is 

&rr = S, - Vi = T,Yrj - Vi e (74 

For class Ci, the total mean square error vector is 

Ei =+ z IEij12. 
IJ 1 

(7b) 

By substituting equation (7a) into (7b) and differentiating with respect to Tr to minimise 
the error, and summing over all three classes for this case, we get an overall transformation 
matrix: 
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Figure 2. Feature space of acoustic emission signals from machining. 0, Chip formation; 0, chip noise; +, 
tool breakage. 
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I[ I' 
. (8) 

To classify an incoming signal, Sij, we determine its distance from each of the predefined 
points, Vi, and assign it to the class to which it is closest. The distance, d,, is given by 

df = IISij-V#, i = 1,2,3. (9) 

By expanding the right-hand side of equation (9) we can show that the minimum distance 
vector, d, is obtained when the function 

g=VTY (10) 

is maximum. If we define the pre-selected points by unit vectors that result in a unit 
matrix for V. then we have 

g=TY (11) 

with each row being the linear discriminant function, g,, for a specific class, C,, viz. 

g,(Y) = w,,y, + w,g2+. . . + W,dYd - 0 i=l,2,3 (12) 

where wik = weighting coefficient of the k-th feature for class C,. For each sampled signal, 
the classifier will calculate the value of each discriminant function and assign the signal 
to the class with the maximum value. 

The determination of elements of the transformation matrix T or the weighting 
coefficients of the discriminant functions requires training of the system. For that, we 
generate data under carefully controlled conditions that produce signals belonging to a 
particular class without any interference from signals of other classes. 

3. EXPERIMENTAL 

Data for training and testing the classifier was generated using a 30 h.p. CNC lathe 
machine. The workpiece was a cold-drawn AISI 1018 seamless steel tube, and the cutting 
tool a Valenite grade VN-8 titanium carbide coated insert, type TNMA-432. Cutting was 
done in the semi-orthogonal mode, with cutting speeds ranging from 200 to 800ft/min 
(1 to 4 m/set), feed rates of 0*0005 to 0.0075 in/rev (0.0133 mm/rev to 0.191 mm/rev) 
and depth of cut of 0.17 in (4.32 mm). The specific conditions used are listed in Table 1. 

The acoustic emission transducer, a PAC WD-277, was mounted on the end of the 
cutting tool as shown in Fig. 3 and connected to a low-noise preamplifier with 40dB 
gain. The preamplifier was positioned close to the transducer to minimise the influence 
of extraneous noise signals, since the original AE signals as they come out of the transducer 
are normally of rather low amplitude, on the order of 1 to 50 mV and therefore highly 
susceptible to interference from extraneous signals. From the preamplifier, the signal goes 
to the signal processing unit, which has an adjustable gain amplifier that is set to a gain 
appropriate with the process under investigation. Since the present objective is the 
development of the signal processing technique, analysis of the signals is currently done 
off-line, first by recording the output of the signal processing unit on a 2 MHz bandwidth 
AE recorder and subsequently playing back for analysis. On playback, the signal was 
passed through a signal gating unit where a 16.7 msec length of the signal was clipped 
for sampling, with the recorder put in a pause mode at a desired location of the tape. To 
avoid saturation, the signal was then passed through an attenuator to reduce the amplitude 
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TABLE 1 

Experimental conditions 
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Cutting speed Feed rate Depth of cut 
ft/min (m/set) in/rev (mm/rev) in (mm) 

200 
(1.0) 

400 
(2.0) 

800 
(4.0) 

0.0005 
(0.0133) 
0.0075 

(0.1905) 
0.0005 0.170 

(0.0133) (4.320) 
0.0075 

(0.1905) 
0.0005 

(0.0133) 

Transducer 

Insert 

Tool holder 
(MTGNL- 16-40) 

Gate trigger output 

Sign01 
goting unit 

Oscilloscop 

Figure 3. (a) Acoustic emission monitoring system-transducer mount. (b) Acoustic emission monitoring 
system-data acquisition set-up. 

to a level compatible with the g-bit h;gh-speed waveform digitizer, which has a sampling 
rate capability of up to 4 MHz. The digitizer is controlled through a GPIB bus, and signal 
acquisition and storage is initiated when a post trigger signal is received by the digitizer 
from the computer. In using the GPIB bus, interface boards were required in both the 
computer and the digitizer unit along with a special purpose communications code. 

Before sampling, the signal was first band-pass filtered with a 100 kHz lower cutoff to 
eliminate low frequency noise signals and a 1 MHz upper cutoff frequency to avoid 
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aliasing at a sampling rate of 2 MHz. Due to computational limitations, only 4 K sampled 
data points were used for analysis, covering a time span of 2 x 10e3 set, with a resolution 
of 500 Hz in the spectral domain. 

The regular machining signal was obtained from a portion of the signal that was 
essentially continuous and was observed to have no intereference from chips, while chip 
breakage samples were obtained from the burst signals that had periodicity indicative of 
chip breakage. Tool breakage signals were obtained from AE generated during fracture 
of pre-notched tools. 

The original signal generated by the source undergoes some changes as it propagates 
through the structure and during transduction by the various instrumentation. Thus the 
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Figure 4. (a) Time domain signal of pencil lead breakage for calibration. (b) Frequency response of calibration 
signal. 
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characteristics of the detected signal differs from that originally generated from the source. 
However, the original signal form can be obtained by deconvolution if the transfer 
function of the propagating medium and instrumentation is known, and this is obtained 
by calibrating the set-up. In this work, the propagating medium consists essentially of 
the cutting tool and holder. Calibration involved breaking a pencil lead of diameter 
0.3 mm and length 3 mm at the tip of the cutting tool, with the equipment set up for 
experimental work. The spectrum of the recorded calibration signal was then deconvolved 
with the spectrum of the signal obtained during cutting to obtain the original signal 
characteristics. The time domain of the lead breakage and its corresponding spectrum 
are shown in Fig. 4. 

4. RESULTS AND DISCUSSION 

The analysis uses the spectral components of the acoustic emission signal as features 
for classification. The features were selected using the class mean scatter criterion discussed 
earlier, but the number used for the design was obtained by comparing the performance 
based on 3, 5, 10, and 20 features. All twenty features are shown ranked in Table 2, along 
with their computed values for the selection criterion. The results of classification for 
each set of features, shown in Table 3, indicate that five features produce the best 
performance. This is not necessarily a general rule, but results in this case, from the 
limited amount of training data available, which makes the larger feature sizes inappropri- 
ate for the classifier design. The specific features used for the classifier design, Table 2, 
are the 990, 1000, 970, 110, and 350 kHz spectral components, arranged in descending 
order of importance. The poorer performance of the three-feature set compared to the 
five-feature set is due to the lack of adequate information in the three features to describe 
the system. 

Before further discussing the results based on the analysis, we consider the visual 
differences between the signals from the various classes of interest. Figures 5 and 6 show 

TABLE 2 

Selected features 

Rank Feature Q 

8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

990 kHz 1.416 
1000 kHz 1.075 
970 kHz 1.009 
110 kHz 0.992 
350 kHz 0.935 
950 kHz 0.833 
930 kHz 0.778 
330 kHz 0.761 
910 kHz 0.747 
890 kHz 0.728 
870 kHz 0.724 
430 kHz 0.648 
850 kHz 0.626 
530 kHz 0.560 
410 kHz 0.536 
710 kHz 0.532 
450 kHz 0.522 
550 kHz 0.511 
670 kHz 0.468 
690 kHz 0.400 
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TABLE 3 

Classzjication results for various features 

Feature set 
dimension Testing method 

Classifier performance (% ) 
Chip Chip Tool 

formation noise breakage 

3 

5 

10 

20 

Resubstitution 83 9.5 38 
Leave one out 82 95 24 
Resubstitution 98 95 90 
Leave one out 97 86 90 
Resubstitution 98 90 90 
Leave one out 98 86 81 
Resubstitution 97 95 90 
Leave one out 95 71 76 

both the time and spectral domain plots of AE signals from normal machining and tool 
fracture, respectively. We only show two types for simplicity. The machining signal was 
obtained from a portion of a continuous signal that was observed to have no interference 
from chips and it is apparent that the regular machining signals are continuous, with any 
individual events being so close together as to overlap and thus be indistinguishable. On 
the other hand, the tool fracture signals consist of distinct burst signals, indicative of 
specific events. 

It can also be observed from the diagrams that the spectrum for the chip formation 
signal shows intense activity in the lower frequency ranges of about 100 to 700 kHz. On 
the other hand, that for tool breakage is spread over a wide frequency range, with 
significant signal magnitudes up to 1 MHz. This difference in behaviour can be explained 
by the fundamental mechanisms that form the basis for each process. The chip formation 
process results essentially from a shearing action associated with dislocation motion, 
from which the rate at which energy is released (i.e. the risetime of a waveform generated 
by dislocation motion) is slow, resulting in characteristic frequencies concentrated in the 
lower frequency range. On the other hand, the sudden activity associated with brittle 
fracture produces energy that is more representative of an impulse, with a resulting 
spectrum over a wide frequency range. These basic differences in characteristics indicate 
that with the appropriate analysis, it is possible to identify the various forms of signal 
sources. 

A more convenient perception of the differences between the classes can be obtained 
from the data in the feature space. As noted earlier, since there are five features, graphical 
representation of the entire feature space will not be feasible. Thus, we select two of the 
best features, viz., the 110 and 990 kHz spectral components for plotting a two-dimensional 
feature space, Fig. 2. Even though this is not representative of the overall feature space, 
it illustrates the distinct differences and clustering of signals belonging to individual 
classes. It is also apparent from the figure that whereas signals generated by tool breakage 
and tool wear (or chip formation) form closely knit clusters, chip noise tends to be more 
scattered. Thus tool breakage can be identified from other machining signals much more 
easily, and with greater reliability than signals generated by the chip, which are more 
likely to induce misclassification. The greater variance in the chip signals is due to the 
varied nature in which chips can generate AE signals. Since deformation in the shear 
zone results in work-hardening of the chip, its breakage is, in effect, similar to brittle 
fracture, and the extent of similarity depends on the initial hardness of the workpiece, 
as well as the deformation. Also, the unbroken chip tends to rub against either the 



LINEAR DISCRIMINANT FUNCTION ANALYSIS 343 

Time (,usec) 

-20 

-25 

-30 

z -35 
E 

d 
3 
: 

-40 

Er 
zz 

-45 

-50 

-55 

-60. 
00 01 02 03 o-4 0.5 0.6 0.7 0.8 0.9 IO 

Frequency (MHz) 

Figure 5. (a) Acoustic emission signal from chip formation. (b) Spectrum of chip formation signal. 

workpiece or cutting tool, and furthermore, even an efficiently broken tool might rub 
against the workpiece before falling off. The result of the latter effects is the generation 
of signals with a lower frequency content which, when combined with the breakage effect, 
produces signals that are widely scattered in the feature space. 

The process of classification is better visualised by representing the patterns in the 
decision space. The axes of the decision space constitute the individual classes. In this 
work, we consider the three signal sources, viz., chip formation, tool breakage, and ship 
noise, as the classes of interest. Even though for the three-class system, a three-dimensional 
decision space would be the most appropriate representation, again difficulties associated 
with visualisation make the two-dimensional plot preferable. Figure 7 shows the three 
combinations based on the three classes of interest. The distinct separation between the 
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Figure 6. (a) Acousticemission signal from tool breakage. (b) Spectrum of tool breakage signal. ‘. 

various classes is more evident in these plots, showing the ease with which the different 
signals can be classified. As discussed earlier, the patterns for each class are made to 
cluster around a point defined for that class in the decision space, and thus the closer 
the patterns are to the point, the easier it is to classify them. The boundary between the 
two classes under consideration in each plot is the diagonal line shown dotted. Each 
pattern that crosses the boundary line is essentially misclassified. 

For ease of reference, the results of classification are plotted in tabular form, the 
confusion matrix, which shows the performance of the system at a glance. We represent 
the true classes of interest as the columns of the matrix, with the rows being the classes 
to which they are assigned. The results based on five features and listed in Table 4 show 
that 58 out of the 60 chip formation signals were classified as correct, a performance rate 
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TABLE 4 

Confusion matrix for five features 

Input pattern 

output of 
classifier 

Chip 
formation 

Chip 
noise 

Tool 
breakage 

Chip formation 58 1 0 
Chip noise 1 18 2 
Tool breakage 1 2 19 

Performance (% ) 97 86 90 
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97%. The corresponding rate for tool breakage was 90%) with 19 out of the total of 21 
being classified as correct, while two were classified as resulting from chip noise. The 
chip noise signals had the worst performance, with a classification rate of 86%. Two out 
of the 21 signals were assigned to tool fracture, while another one was misclassified as 
resulting from chip formation. It is of interest to note that all the misclassified tool 
breakage signals were assigned to chip noise. This is probably due to similarities in the 
signals they generate, with both being burst type signals. 

It has to be noted that the results obtained are applicable to the cutting conditions 
used, and as conditions are changed during machining, it will affect the system perform- 
ance. Our objective until now has been to understand the system characteristics without 
the complex effects of the input variables. Incorporation of the cutting conditions in the 
design process is the subject of current research. 

5. CONCLUSIONS 

For monitoring the condition of the cutting tool in real time, acoustic emission signals 
generated during the cutting process have been analysed using pattern recognition tech- 
niques. The signals from the cutting process were considered as being generated by three 
different sources, viz., chip formation, tool fracture, and chip noise. A discriminant 
function was developed for each of these sources using the spectral components as features 
and formed the basis for classification. Five features were used in all, in the frequency 
range 100 kHz to 1 MHz, with each feature consisting of a 20 kHz bandwidth, and were 
selected using the class mean scatter criterion. The coefficients of the discriminant functions 
were obtained by training the system using signals generated by each of the sources of 
interest. An AISI 1018 steel was used for machining with a titanium carbide-coated cutting 
tool. Cutting speeds ranged from 200 to 800 ft/min (1 to 4 m/s) with feed rates of 0*0005 
to 0.0075 in/rev (0.0133 mm/rev to 0.191 mm/rev) and depth of cut 0.17 in (4.32 mm). 
The results show a classification rate of 90% for tool breakage, while those for chip 
formation and chip noise were 97 and 86% respectively. 
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APPENDIX: NOMENCLATURE 

number of classes 
label of ith class 
linear discriminant function for class C, 
height of rectangular window 
Fourier transform of rectangular window 
number of patterns in class Ci 
number of sampled data values 
a priori probability for class C, 
feature selection criterion 
frequency domain covariance matrix for C, 
decision space data vector for C, 
transformation matrix 
predetermined cluster point in decision space 
weighting coefficient of the k-th feature in class Ci 
time domain data vector 
spectral domain feature vector 

‘. mean square error vector for class C, 
threshold of discriminant function 


