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A calculation of the two-loop fl-function for a-models with torsion is presented, for the bosonic and the N= 1 supersymmetric 
cases ( using component fields). In the bosonic case the result agrees with a recent calculation by Hull and Townsend, while in the 
supersymmetric case, we obtain a vanishing two-loop fl-function. 

Recently the calculation of  the two-loop fl-func- 
tion, fl~2), in two-dimensional non-linear a-models 
with torsion has been the subject of  some contro- 
versy in the literature [ 1-5].  The reason the calcu- 
lation is not a straightforward exercise in dimen- 
sional regularisation arises from the presence of  the 
antisymmetric tensor ~".  One may choose to deal 
with this object by systematically employing the 
relationship 

eu" e p~ = - ( quv~l"~ -q~ '~  qP") , (1) 

and then continuing to d dimensions. However, as is 
well known, consideration o f  the quantity 

~u"~P~. (2) 

then leads to the relationship 

( d +  1 ) ( d - 2 ) e P "  = 0 .  (3) 

Employment  of  eq. (1) is therefore not in itself a 
well-defined prescription for extracting the simple 
pole in e = 2 - d  from a two-loop graph. Clearly by 
virtue of  eq. (3),  the simple pole from any graph 
involving three or more e tensors will depend on the 
order in which the contractions are performed, if the 
graph has a double pole. These problems persist in 
general even if regularisation by dimensional reduc- 
tion is employed. (The equivalent problem concern- 
ing ~u,po and the associated y5 is familiar in four 
dimensions: for a discussion of  two-loop calculations 

' Permanent address. 

in that case see ref. [6] . )  For this reason, the result 
o f  ref. [ 1] for the bosonic case cannot be regarded 
as the consequence o f  any particular scheme. It 
should be noted, however, that in ref. [ 1 ] the anal- 
ogous calculation is also performed for the N =  1 
supersymmetric case (using superfields) with the 
result that fl(2) vanishes. In fact, the power of  super- 
fields is such that the ambiguity described above 
seems not to arise, and this result remains undis- 
puted. It is clear, therefore, that insight into the 
bosonic result may be gained by repeating the super- 
symmetric calculation in component  form, and the 
purpose o f  this paper is to present such a calculation. 

While this calculation was in its final stages I 
received a copy of  ref. [3] which treats the bosonic 
case. For this case my conclusions are in complete 
accordance with those of  Hull and Townsend (HT) .  
In view of  the importance of  the result, however, it 
seems to me legitimate to present an independent 
computation, differing in some details. The treat- 
ment o f  fermions in the torsion case presents addi- 
tional subtleties, and the cancellation in the 
supersymmetric case provides a powerful check on 
the bosonic result. 

The result of  this investigation is that a prescrip- 
tion for E ~" which avoids the ambiguities described 
above is to set 

r l ~ i "  E p °  = - -  q " °  . (4) 

This is, of  course, the two-dimensional relation. In 
ref. [3],  HT consider a generalization o f  eq. (4) to 
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q~,,~u"~P" = - (1 +c'e)t /"~ (5) 

and conclude that c =  0 is the correct choice ~. As we 
shall see, it also leads to the expected result in the 
supersymmetric case. This is natural in that super- 
field Feynman rules and manipulations automati-  
cally perform tensor contractions in two dimensions, 
in accordance with eq. (5). Other values of  c do not 
give the supersymmetric result, and would also result 
in a lack o f  manifest covariance (with respect to the 
connection with torsion). 

The lagrangian for the bosonic case is 

L(O)=½[rlu"gu((b)+eU"eu(gb) lOugb i 0 , ~ ,  (6) 

where q~"= (~ o) ,~ , ,=  ( o ~) and gu and e 0 are 
symmetric and antisymmetric,  respectively. 

Computat ion of  the radiative corretions to L is 
facilitated by means o f  a background field expansion 
in terms of  a quantum field ~' which is a vector on 
the manifold M with coordinates q~s and metric g~j. 
For terms quadratic in ~ we have [ 1,7-9] 

+ ½1~ik/j(?~ t~" "t- ~ : l w ) O , u O i O t , , ~ k ~  I , (7) 

and for terms cubic in ~"~ 

L g 3 ) _ !  , ^ i j k . . . .  --  ] A u k V  u~ ~ ¢ Jr- ~ . ' u u S i j k V l , ¢ ' V ~ , ¢ J ¢ k  , ( 8 )  

where 

V,¢~ = V , ¢  ~ + S ' j , e , , O ' ~ ¢  * , (9) 

Sol, , = 1 ( Oiejk + Ojeki + G e u )  , ( l O )  

l?,ko = R,ka + S , , , ,S '"  kj - S,,,vS'"kl 

- V /S ,~  V + V i S , k / ,  (11) 

2 0 , ,  A{~k = ] ,0 / [q  (Rj(mk +kk(mj)  

+ e "  (/~jt/ilk +/~klh/j) ] - ( 12 ) 

We have omitted from L~ 3) a term proportional to 
~3 which makes no contribution to two-loop diver- 
gences. There are two-loop graphs involving ~4 ver- 
tices, but the conclusion of  ref. [ 1 ] that these do not 
contribute to fl~2) is correct so we refrain from 
repeating this analysis. 

"' Similar remarks are made in ref. [4]. 

For the supersymmetric case we will also require 
LF, given by [7,8,10,11 ] 

L v  = Ig i j ( l iT"uV  /, q/j + (~¢4 terms) (13) 

(where ~, is a Majorana function),  and the terms lin- 
ear in ~ in its background field expansions, given by 

= ' ~  7 ~ ( ~  B u o k - S i j k ~ - u ~ , V  , (14) 

where 

Buijk = 10uO/[( r/u. -- eUu)( l~kl U + l~jlik + l~lijk) 

- (rt~. + E~.)(k0~k + /~kj .  +/~k, j3]  • (15)  

Terms of  the form ~/4 and q/202 do not contribute 
to fl(2). 

The relevant graphs for the calculation of  the 
divergent terms in the two-loop effective action for 
0 are shown in tables 1 and 2. Propagators are defined 
in the usual way by referring the vectors ~u', ~ to a 
tangent frame. We follow the procedure of  ref. [ 12 ] 
in performing the subtractions at the level of  the 
integrals and discarding any integral or diagram 
which (after subtraction) gives only double poles. 
While this method gives rise to fewer cross-checks 
that that of  directly computing counter-term inser- 
tions, it is simpler and more suited to higher-loop 
calculations. We regulate infra-red divergences when 

Table 1 
Contributions to the effective action for ¢ from graphs with 
propagators only. X, Y, Z are defined as follows: 

= ( 5 ~ ) ~  
Zu 

Zo=RikoS  .... S . See eq. (24) for the definitions of X l j  , Y ' i ;  " k ~ .... 

A', ..... ~'A 

s,;- .... :~,s 

S'~ ...... -/'S 

TOTAL 

Y3(x-Y) 

1/12 ( 2X + Y ) 

Z 
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Table 2 
As table 1 for graphs involving q/propagators. 

s ~ s  
R 

1/8 (-2X+3Y) 

-% (2x+¥) 

1/4 (2X+Y) 

-Z 

TOTAL -1/4 (2×-Y) -Z 

necessary by inserting masses on the propagators 
[12,13]. 

As an example, consider the first graph of table 2. 
This gives rise to the following contribution to the 
effective action: 

d = _ ( 2 n ) - 4 1 o  oijkr~ (16) ~ J.~ l l i j  k Jt.~ v ,t , 

where 

iu~= f d2kd2q dzr 2~, 
~2-~Y 5 ( " t k - q + r )  Tr(7~;kT"q) 

(17) 

2 f  d2kd2qd2r 
= d -~2--~ (2kUq~-tFk 'q)  

x6{2 ) ( k -q+r )  . (18) 

The second term in eq. (18) gives double poles only 
on subtraction. We drop this and thus obtain 

4gU,~jd2kd2q dzr . o,2~,- 
I~  =~ n k - ~ r  ~ K.qo" " t K - q + r )  

2 
- -  - I 2 r l  uu  , (19) 

n 

where 

I = f  dak~f~ k2+lt = i n ( 2  y ) / z - , .  (20) 

The subtracted result for I u" is hence (discarding the 
double pole) 

i ,  u 2 = -  - n2~ u" . (21) 
6 

In fact, of course, direct evaluation of I u~ from eq. 
(18) with r 2 ~ r 2 ..~]./2 reveals that I "~ actually has no 
double pole, so that the various discarded terms 
actually cancel, and eq. (12) is obtained directly. 
Substituting in eq. (16) 

J =  (2n) ~ B~kB~ k (22) 

o r  

d =  m 
7~ 2 1 

(27~) 4 8~ ( O ' ~ ) ' O l ' O ' + ~ ' v O ~ O i O v O ' )  

× ( -2Xi j  + 3Yij), (23) 

where 

Xij=tl~iklmt~ klmJ a n d  v _ ~  ~/,,~ (24) I i j  - - ~ - i k l m  "~- j • 

There is a subtle point associated with the fermion 
part of the calculation, as follows: We could, in eqs. 
(13)-  (15), have removed e~ by use of  the relation 

~uv 7"u = y3 y,u , (25) 

where 

73 =y°y 1 . (26) 

It is not then equivalent, however, to proceed with 
a totally anticommuting y 3, because we would then 
have interactions whereby q/y u (1 + ~)3) ~//coupled dif- 
ferently to the background fields like a chiral 
Schwinger model. As is well known, the result is 
potential anomalies, and a totally anticommuting 73 
in conjunction with dimensional regularization is 
inadequate. We would introduce an 't Hoof t -  
Veltman style [ 14] y 3 or evaluate the fermion loop 
using a Pauli-Villars (PV) regulator, but for ease of 
comparison with the bosonic sector it is easier to stick 
with ~,,~. The effect is that terms of the form X 0 and 
Y,j are produced, whereas use of an anticommuting 
~)3 leads to terms like/~,~b,/~j abe, etc. [5]. 

The other graphs are calculated in similar fashion. 
In order to rewrite the resulting expressions in the 
same form as A above, the following relations are 
useful: 
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~71'SiJk~'~So k = 3eU" B~,ijff7 ~S °k 

= ~(Ouck'O~'~J+Eu~O~O~O"~)(2X,j + YO) • (27)  

Of  course the second graph in table 1, for example,  
actually gives rise to a term of  the form (OuS,jk)2. We 
have assumed (as d id  HT)  that  connect ion inser- 
t ions from L[~ 2~, eq. (7) ,  result in covar iant i sa t ion  
Ot,--,~'~,. While  this presumably  occurs, it would be 
worthwhile to check this, par t icular ly  in view of  the 
remarks  above concerning the lurking o f  propor-  
tional anomalies  in the fermion sector. Note also that 
covar iant i sa t ion  would presumably  be d is turbed  by 
the use of  an n-dependent  prescr ipt ion for ~'~ [for 
example c # 0  in eq. (5 ) ] .  

Note that the null result in the supersymmetr ic  case 
(evident  from the totals  in tables 1 and 2) is not  a 
result o f  graph by graph cancel la t ion (except  in the 
case of  the last graph).  This makes it improbable  that 
there exists a s imple a l ternat ive prescr ipt ion for ~'~ 
which gives the same supersymmetr ic  result. The final 
result [3] for the two-loop cont r ibut ion  to the fl- 
function is 

fl}ff)= 16zc2 ~ ~",ktm "" j - " , k t  . . . .  j 

+ 4Sl'mnslmn l~ikO) . (28)  

[This differs from the result in table 1 by a factor 
of  4: one factor of  2 because of  the (½) in eq. (6) ,  
and  2 because o f  the re la t ionship [ 15,16] between 
flo and the corresponding counter te rm in ~- ~ ]. 

In the torsion-free case we obta in  

]/~2~ =__(87r2) I RiklmRjklm (29)  

in accordance with previous  calculat ions [ 15,16 ]. 
It would clearly be of  considerable  interest  to con- 

sider whether  an effective act ion for the go and e o 
fields can be constructed whose equat ions  of  mot ion  
are related to thef t  funct ion ofeq .  (28) ,  and  the rela- 
t ionship between such an action and that o f re£  [ 17]. 

While  this paper  was in p repara t ion  I received a 
pre l iminary  version of  ref. [ 5 ]. The authors  obta in  
a B-function which is nei ther  covar iant  with respect 
to the connect ion with torsion nor  zero in the super- 

symmetr ic  case. I believe that  these results are a con- 
sequence o f  the ambigui t ies  associated with the use 
of  a d-dependent  prescr ipt ion for ~,,. 
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of  Michigan.  I thank the members  of  the Depar t -  
ment  of  Physics for their  hospi ta l i ty  and in part ic-  
ular Mar t in  and Vibeke Einhorn for their  efforts in 
ensuring our  stay was a pleasant  one. I thank Harry  
Braden for getting me interested in a-models ,  and 
for many helpful conversations.  I also thank Ian Jack 
and Douglas Ross for s t imulat ing discussions, and 
R. Akhoury  for conversations.  
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