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A calculation of the two-loop S-function for o-models with torsion is presented, for the bosonic and the N=1 supersymmetric
cases (using component fields). In the bosonic case the result agrees with a recent calculation by Hull and Townsend, while in the
supersymmetric case, we obtain a vanishing two-loop S-function.

Recently the calculation of the two-loop S-func-
tion, 8@, in two-dimensional non-linear g-models
with torsion has been the subject of some contro-
versy in the literature [ 1-5]. The reason the calcu-
lation is not a straightforward exercise in dimen-
sional regularisation arises from the presence of the
antisymmetric tensor ¢“*. One may choose to deal
with this object by systematically employing the
relationship

e = — (N’ ) (1)

and then continuing to 4 dimensions. However, as is
well known, consideration of the quantity

e ¢, (2)
then leads to the relationship-
(d+1)(d-2)e”” =0. (3)

Employment of eq. (1) is therefore not in itself a
well-defined prescription for extracting the simple
pole in e=2—d from a two-loop graph. Clearly by
virtue of eq. (3), the simple pole from any graph
involving three or more € tensors will depend on the
order in which the contractions are performed, if the
graph has a double pole. These problems persist in
general even if regularisation by dimensional reduc-
tion is employed. ( The equivalent problem concern-
ing €7 and the associated y® is familiar in four
dimensions: for a discussion of two-loop calculations

' Permanent address.

in that case see ref. [6].) For this reason, the result
of ref. [1] for the bosonic case cannot be regarded
as the consequence of any particular scheme. It
should be noted, however, that in ref. [1] the anal-
ogous calculation is also performed for the N=1
supersymmetric case (using superfields) with the
result that 82’ vanishes. In fact, the power of super-
fields is such that the ambiguity described above
seems not to arise, and this result remains undis-
puted. It is clear, therefore, that insight into the
bosonic result may be gained by repeating the super-
symmetric calculation in component form, and the
purpose of this paper is to present such a calculation.

While this calculation was in its final stages I
received a copy of ref. [3] which treats the bosonic
case. For this case my conclusions are in complete
accordance with those of Hull and Townsend (HT).
In view of the importance of the result, however, it
seems to me legitimate to present an independent
computation, differing in some details. The treat-
ment of fermions in the torsion case presents addi-
tional subtleties, and the cancellation in the
supersymmetric case provides a powerful check on
the bosonic result.

The result of this investigation is that a prescrip-
tion for ¢ which avoids the ambiguities described
above is to set

N €7 €77 = —n" . (4)
This is, of course, the two-dimensional relation. In

ref. [3], HT consider a generalization of eq. (4) to
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M€ €77 = —(1+ce)n” (5)

and conclude that ¢=0 is the correct choice *'. As we
shall see, it also leads to the expected result in the
supersymmetric case. This is natural in that super-
field Feynman rules and manipulations automati-
cally perform tensor contractions in two dimensions,

in accordance with eq. (5). Other values of ¢ do not .

give the supersymmetric result, and would also result
in a lack of manifest covariance (with respect to the
connection with torsion).

The lagrangian for the bosonic case is

L(¢)=3[n"g,(9) +e”e,($)]10,0' 6,9, (6)

where n=(§ _9),e”=(_9 §) and g, and ¢; are

symmetric and antisymmetric, respectively.

Computation of the radiative corretions to L is
facilitated by means of a background field expansion
in terms of a quantum field & which is a vector on
the manifold M with coordinates ¢’ and metric g;;.
For terms quadratic in & we have [1,7-9]

L =1g,(9)V &V #¢

+ 4R (1 +€)9,0'0,08! (7
and for terms cubic in &
L) =445V 888 +4ew8, 0,890,808, (8)
where
V&=V, E+S 6,0 ¢/ &, 9)
Six=1%(0,ex+0,e;,+3re;) , (10)

lel/’ = Rl/\‘/j + SlmISm kj— Siijmk/
VS +V S, (11)

A% =30,0/[n" (R;cipn + Recanyy)
+€“”(R,[/,]k +Rk[/:]/)] . (12)

We have omitted from L§> a term proportional to
&3 which makes no contribution to two-loop diver-
gences. There are two-loop graphs involving &* ver-
tices, but the conclusion of ref. [ 1] that these do not
contribute to B* is correct so we refrain from
repeating this analysis.

#! Similar remarks are made in ref. [4].
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For the supersymmetric case we will also require
L, given by [7,8,10,11]

Le=}gy¥'v*V ¢/ + (y* terms) (13)

(where y is a Majorana function), and the terms lin-
ear in ¢ in its background field expansions, given by

ng) =%y;iy#v/j(ékBuijk_Sijkeuuﬁ Vék) ) (14)
where
B = %aVW[(”Iw - fuu)(Rk/fj +Rj[ik +Rlijk)

— (M + euu)(RijIk +Rkj1i +Rk:jl)] . (135)

Terms of the form w* and y*¢> do not contribute
to .

The relevant graphs for the calculation of the
divergent terms in the two-loop effective action for
¢ are shown in tables | and 2. Propagators are defined
in the usual way by referring the vectors v, £ to a
tangent frame. We follow the procedure of ref. [12]
in performing the subtractions at the level of the
integrals and discarding any integral or diagram
which (after subtraction) gives only double poles.
While this method gives rise to fewer cross-checks
that that of directly computing counter-term inser-
tions, it is simpler and more suited to higher-loop
calculations. We regulate infra-red divergences when

Table |
Contributions to the effective action for ¢ from graphs with ¢
propagators only. X, Y, Z are defined as follows:

X - X
z

Z,;

See eq. (24) for the definitions of X;;, ¥; Z;= R S* nn S

AG--=--3A Y3 (x-Y)
Se----5 Yz (2X+Y)
Se-----35 z
R
TOTAL Va(2x-y)+Z




Volume 192, number 3,4 PHYSICS LETTERS B 2 July 1987
Table 2
i i ) 2
As table 1 for graphs involving y propagators = E nzn‘“’ ' (21)
BB Ve (-2x+3Y) In fact, of course, direct evaluation of I** from eq.
(18) with r’—r2+u? reveals that I*V actually has no
s 5 S3g (2x+Y) double pole, so that the various discarded terms
actually cancel, and eq. (12) is obtained directly.
Substituting in eq. (16)
s.ee Vg (2x+Y)
__Zr_z__l_Bu Buk (22)
s Ns -z T (2m)*t2e
R or
TOTAL “Yal2x-v) -2 22
A (2n)4 (au¢ all¢l+€,¢wa#¢ a”¢ )
necessary by inserting masses on the propagators
[12,13]. X (—2X,;+3Y;), (23)
As an example, consider the first graph of table 2. h
This gives rise to the following contribution to the where
effective action: X,;=RynR¥", and Y;=RumR"™; . (24)

4= —(2r) " *iB, B, (16)
where
= [ LEEILL 501 g Trtrskra)
(17)
_2j dzllzzdzzqu (2k“q” —n*k-q)
X6 (k—gq+r) . (18)

The second term in eq. (18) gives double poles only
on subtraction. We drop this and thus obtain

d2kd?qd?r
J kg zqz k-gé®(k—q+r)
2
—_ ll"
nI n (19)
where

e (e

The subtracted result for /# is hence (discarding the
double pole)

There is a subtle point associated with the fermion
part of the calculation, as follows: We could, in egs.
(13)-(15), have removed ¢, by use of the relation

€Y =7, (25)
where
P =y, (26)

It is not then equivalent, however, to proceed with
a totally anticommuting 73, because we would then
have interactions whereby #y“ (1 £ y3)w coupled dif-
ferently to the background fields like a chiral
Schwinger model. As is well known, the result is
potential anomalies, and a totally anticommuting y>
in conjunction with dimensional regularization is
inadequate. We would introduce an °’t Hooft-
Veltman style [14] 7 or evaluate the fermion loop
using a Pauli-Villars (PV) regulator, but for ease of
comparison with the bosonic sector it is easier to stick
with €,,. The effect is that terms of the form X; and
Y, are produced, whereas use of an anticommuting

3 leads to terms like R, R, %", etc. [5].

The other graphs are calculated in similar fashion.
In order to rewrite the resulting expressions in the
same form as 4 above, the following relations are
useful:
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v /‘Sijkﬁﬂsijk = 36WB;U'jkV ,SU
=3(3,0'0“0’ +€,66'9"¢)) 2X, +¥,) . (27)

Of course the second graph in table 1, for example,
actually gives rise to a term of the form (3,S,,). We
have assumed (as did HT) that connection inser-
tions from L§¥, eq. (7), result in covariantisation
d,~V . While this presumably occurs, it would be
worthwhile to check this, particularly in view of the
remarks above concerning the lurking of propor-
tional anomalies in the fermion sector. Note also that
covariantisation would presumably be disturbed by
the use of an n-dependent prescription for ¢ [for
example c#0 in eq. (5)].

Note that the null result in the supersymmetric case
(evident from the totals in tables 1 and 2) is not a
result of graph by graph cancellation (except in the
case of the last graph). This makes it improbable that
there exists a simple alternative prescription for e*
which gives the same supersymmetric result. The final
result [3] for the two-loop contribution to the g-
function is

—1 ~ 5 ki ~ 5 Imik
ﬂl(jZ) = 167‘[2 (2R,k[mRA[ K _lelle l‘f
+45%,,,S"™" Ry . (28)

[This differs from the result in table 1 by a factor
of 4: one factor of 2 because of the (1) in eq. (6),
and 2 because of the relationship [15,16] between
B and the corresponding counterterm in e~'].

In the torsion-free case we obtain

B =—(87%) "' RuymR; " (29)

in accordance with previous calculations [15,16].
It would clearly be of considerable interest to con-
sider whether an effective action for the g, and ¢;
fields can be constructed whose equations of motion
are related to the B function of eq. (28), and the rela-
tionship between such an action and that of ref. [17].
While this paper was in preparation I received a
preliminary version of ref. [5]. The authors obtain
a B-function which is neither covariant with respect
to the connection with torsion nor zero in the super-
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symmetric case. I believe that these results are a con-
sequence of the ambiguities associated with the use
of a d-dependent prescription for e,,.
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ular Martin and Vibeke Einhorn for their efforts in
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Braden for getting me interested in g-models, and
for many helpful conversations. I also thank Ian Jack
and Douglas Ross for stimulating discussions, and
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