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Abstract-A stochastic theory of normal grain growth is proposed. The model is based on the concept 
that the migration of kinks and ledges should cause a Brownian motion of the grain boundary. This 
motion results in a drift of the grain size distribution to larger sizes. The kinetics of grain growth is thus 
related to the kinetics of kinks and ledges; specifically, via the rates of nucleation, recombination and sink 
annihilation. A variety of growth exponents are obtained from a scaling analysis, but only one universal 
grain size distribution is applicable in all cases. The specific predictions of this model are in total agreement 
with the recent computer simulations of domain growth, and are consistent with experimental obser- 
vations of normal grain growth. 

RQumC-Nous proposons une thtrorie stochastique de la croissance normale du grain. Le modtle est bask 
sur l’idie que la migration des crans et des marches provoque un mouvement brownien du joint de grains, 
ce qui aurait pour consCquence un d&placement de la r&partition des tailles de grains vers des tailles plus 
grandes. La cin&ique de croissance du grain est ainsi reliee g la cinbtique des crans et des marches et plus 
pr&is&ment, $ travers leurs vitesses de germination, & la cinttique de recombinaison et d’annihilation par 
puits. Nous obtenons divers exposants de croissance $ partir d’une analyse d’&helle, mais une seule 
&partition universelle de tailles de grains est applicable B tous les cas. Les prkvisions prbcises de ce modele 
sont en complet accord avec les dernibres simulations sur ordinateur de la croissance de domaines, et 
concordent avec les observations exp&imentales de la croissance normale du grain. 

Zusammenfaamg-Es wird eine stochastische Theorie des normalen Komwachstums vorgeschlagen. Das 
Model1 basiert auf dem Konzept, daB die Bewegung von Kinken und Stufen eine Brownsche Bewegung 
der Korngrenze verursacht. Diese Bewegung fiihrt zu einer Drift der Verteilung der KomgriiBen zu 
hiiheren Werten. Die Kinetik des Komwachstums h5ngt dann mit der Kinetik der Kinken und Stufen 
zusammen, insbesondere iiber deren Bildungs-, Rekombinations- und Annihilationsraten. Aus einer 
Skalierungsanalyse folgt eine Vielfalt von Wachstumsexponenten, jedoch ist in allen Fgillen nur eine 
universelle Verteilung der KonrgrijBen anwendbar. Die spezifischen Aussagen dieses Modells stimmen 
vollstiindig mit den jiingsten Computersimulationen des Domlnenwachstums iiberein und sie sind 
vertrgglich mit den experimentellen Beobachtungen zum normalen Kornwachstum. 

1. INTRODUCTION 

There are two major theories of normal grain growth 
in the literature. The first, put forth by Hillert [l], is 
a thermodynamic approach which emphasizes the 
reduction of the boundary curvature as the main 
driving force for grain growth. The second, taken by 
Louat [2], is a kinetic approach which postulates the 
fluctuation of the grain size as the cause of the drift 
to larger sizes. In the case of constant mobilities, both 
theories predict a dependency of the grain size R on 
the time t, in a form of R - t*. Since few experiments 
on grain growth have yet reported such time de- 
pendence, it is commonly assumed that mobilities are 
grain-size dependent, presumably due to solute segre- 
gation, particle pinning, or changes of grain- 
boundary structures. From such assumptions, it is 
possible to obtain R - t”, with n smaller than i [3-61. 

Until now, the above two approaches have been 
thought to be distinct from each other, and construc- 
ted on different physical bases. We now demonstrate 
that this is not so, using a simple example of a 
sinusoidal grain boundary. On this new realization, 
we proceed to develop a theory of grain growth using 

a unified approach. The theory gives predictions on 
the growth law which are in entire agreement with the 
recent computer simulations [7-l 11. These predic- 
tions also appear to be consistent with experimental 
observations. 

Consider first a bicrystal with a grain boundary 
which is curved in a sinusoidal manner, as illustrated 
in Fig. l(a). Using an x-y coordinate system, the 
initial profile of the grain boundary is given by 
y(t = 0) =y,sin(2nx/1), at t = 0, where L is the 
wavelength and y, the amplitude. Let the boundary 
energy be JY Then, according to the theory of 
curvature-driven grain boundary migration, the 
boundary velocity, @/at, is proportional to the 
curvature a2y/a2, in a form 

ay&&!2 
at ax2 (1) 

where M is the mobility of the grain boundary. The 
above equation has a solution 

y = y,sinFexp( - $,,,>. (2) 
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Fig. 1. The initial state (t = 0) of a curved boundary is 
shown in (a) continuum representation and (b) discrete 
lattice representation. The density of kinks of(b) is plotted 
in (c). After smoothing (f >>O), the grain boundary is again 
shown in fd) continue ~p~sen~t~on and (e) discrete 
lattice representation. After further recombination of kinks, 

the smooth boundary (e) becomes (f). 

The shape of the boundary at a long time is shown 
in Fig. l(d). Thus the decay time z for grain- 
boundary smoothing scales with the wavelength in a 
form of z - AZ. We may regard the above kinetics as 
a variation of the 12 = i type. 

Now consider the same boundary in its discrete 
lattice realization, using a reference square lattice 
aligned with the x-y coordinate for the upper crystal. 
Let the lattice parameter be b, and let the grain 
boundary contain straight segments plus kinks of a 
unit height b at an appropriate spacing, as shown in 
Fig. l(b). The density c of such kinks, l/b .ay/ax, is 
shown in Fig. l(c). Here a positive sign refers to a 
kink with a step upward in the j direction, along any 
straight boundary segment in the x axis. Kinks are 
allowed to migrate randomly in either direction, in 
steps of a distance b at a frequency v, . Such random 
walk can smooth out the density profile c as shown 
in Fig, l(e). The governing equation for diffusional 
smoothing is 

ac a% - =&,$-- 
at ax2 

The equation has the solution 

c(l)=c(*)exp(- y). 
As the density of kinks is smoothed, so is the profile 
of the grain boundary, which follows 

y=yOsinyexp(-_) (4) 

by simple conversion between c and y. Hence the 
decay time also scales with a*. 

The above considerations illustrate that curvature 
driven boundary smoothing may actually proceed by 
the migration of kinks, which is a fluctuation process 
itself. Indeed, the resultant kinetic law A - 2; is 
identical from either analysis. Since kinked bound- 
aries are more realistic in view of the discrete nature 
of crystalline lattices, we may view kink motion as a 
more viable, mechanistic and microscopic description 

of the boundary motion, regardless of the nature of 
the driving force. 

We can generalize the above picture to poly- 
crystalline grain boundaries. The migration of a kink 
of positive step height, moving in the 2 direction by 
b, causes the upper crystal to grow by one atom, of 
an area b*, and the lower crystal to shrink by the 
same amount. If the migration of kinks is random, so 
must be the growth and shrinkage of grains, In this 
manner, grains undergo a Brownian motion at a step 
of b* in either direction. By this mechanism, grain size 
in a polycrystal can fluctuate. Following Louat [2], 
the fluctuations of the grain size leads to grain 
growth. 

For specific predictions on the kinetics of grain 
growth from the Brownian motion of grains, a 
detailed account of the generation and annihilation 
of kinks becomes necessary. The simple one-dimen- 
sional analysis of Fig. 1 is inadequate for grain 
aggregates because kinks travel in a ramified network 
for which the structural description is more involved. 
Only in the special case of coarsening of order- 
disorder domain structure will the one-dimensional 
analysis suffice. We envision two broad categories, 
one of a steady state with balanced generation and 
annihilation of kinks, and the other of a decaying 
state with the kink density rapidly exhausted due to 
the lack of nucleation in the presence of kink absorp- 
tion. These cases will be considered for two- and 
three-dimensional grain aggregates. We shall use 
essentially a scaling analysis, in which geometrical 
constants of the order of unity will be dropped for 
brevity. For such analysis, the simple geometrical 
notion of kinks and ledges suffices. After comparison 
with the computer simulations and experimental 
data, a more precise physical picture of kinks and 
ledges in terms of grain boundary dislocations and 
steps [12] will be presented. These latter consider- 
ations will serve to pinpoint the essential difference 
between grain growth and domain growth [7-111, 
and to identify the origin of various physical pro- 
cesses affecting kink nucleation and annihilation in 
the crystalline solids. 

2. STEADY STATE GRAIN GROWTH UNDER 
R~CO~INATION CONTROL 

2.1. 2-Dimension 

In 2-dimension, kinks have the following features: 
(1) they can be nucleated, in a double kink 
configuration, as shown in Fig. 2(a). The nucleation 
barrier is 2rb. Once nucleated, the two opposite 
signed kinks may move apart at no additional ex- 
pense of energy, or they may recombine with each 
other. Migration in either direction is equally likely 
from an energy viewpoint. A unit distance b is 
travelled in each step of migration. (2) They can pass 
a triple point where three grains meet, and pass each 
other, as shown in Fig. 2(b, c). (3) Successive annihi- 
lations of opposite kinks reduce the curvature of a 
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Fig. 2. Kink mechanisms on grain boundaries in a 20 
lattice: (a) pair generation, (b) passing a vertice, (c) passing 
each other, (d) pair annihilations. Each sequence proceeds 
from left to right. Prior boundaries are traced by dotted 

lines. 

grain boundary, as shown in Fig. 2d. Each step of 
kink migration adds one atomic area to one of the 
two bordering grains, while it subtracts the same 
from the other. If we let R2 be the area of the grain, 
then a fluctuation of R by 6 = b2/R is effected by each 

step of kink migration. (4) The grain size fluctuation 
causes a temporal evolution of the grain-size distribu- 
tion F(R, t). This can be described by a diffusion 
equation [2] 

where p is the effective diffusion coefficient, with 
/I = ffk v, a2. Here v, is the migration frequency of 
the kink and fk the number of kinks per boundary. 
This is the same diffusion equation postulated by 
Louat [2], but he did not identify the fluctuation 
mechanism. 

We envision kinks of either sign to be randomly 
distributed along grain boundaries in 2-dimension. 
As shown in Fig. 3, the topology of kink distribution 
looks different at different kink density. Let the 
average spacing between kinks be I; then the kink 
density C, is I-’ at low density but l/RI at high 

(a 1 Low Kmk Density (b) High Kink Density 

Fig. 3. Distribution of kinks, marked by circles, are shown 
at (a) low density and (b) high density. 

density. Now assume kinks are nucleated at a fre- 
quency vg per grain boundary site, and annihilated by 
mutual recombination and sink absorption. A rate 
equation is used to describe the evolution of kink 
density 

ac, - = vg fb - C&, - CJr,. 
at (6) 

In the above, the first term is the generation term, 
withy, being the density of grain boundary sites, and 
vg given by thermal fluctuation over a nucleation 
barrier. In 2-dimension, fb is l/Rb. The second term 
is the recombination term in which t, is the half-life 
of kinks between generation and recombination. 
Since kinks migrate by random walk in steps of b and 
the average spacing between them is I, a standard 
random walk analysis gives r, = (I/b)‘/v, as the aver- 
age time for the two kinks of opposite signs to meet 
and recombine. The last term is reserved for other 
sink absorption processes at certain particular lattice 
sites where kinks can be annihilated. We will explore 
these possibilities later. For the present, we only 
specify a certain half life 7, for sink absorption. 
Indeed, we shall let rs = cc first. 

At steady state, aC,/& = 0. Substitution of C,., fb, 
t, in terms of R, 1, and v, gives the following solution 

1 -=I (R/b)+v,/v,)~ I>>R 

b (vmiv,): I‘KR’ 
(7) 

The above solution suggests a transition at 

R* = I* = b(v,/v,){ (8) 

which is the size scale that the kink spacing becomes 
comparable to the grain size. The nature of this 
transition is made clear if we plot the steady state 
solution in the phase space of (R, I), as shown in Fig. 
4. Also indicated there is the line I = R which essen- 
tially divides the two regimes. To illustrate the possi- 
bility of a transition, the transient evolutions from 
initial states not lying on the steady state are indi- 
cated by arrows in this plot. The above evolutions 
will be later reflected in the transitions of growth 
kinetics. 

Steady State Growth (v, #O) 
A! 

I (C > RI /’ 

(R*,f’“, ,‘(e CR) 

Fig. 4. Phase diagram of grain growth, assuming vg # 0. 
The steady state is the heavy curve. The transient evolutions 

toward the steady state are shown by arrows. 
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The number of kinks per grain is next determined. 
For I << R, as in Fig. 3(b), fL = R/l. For I >> R, noting 
the grain density is l/R2 and the kink density is 1/12, 
we have fk = (R/1)2. 

It follows that the diffusion coefficient in equation 
(5) is /I -v,/RI at 1cR and /I -v,/12 at l>>R. 
Explicitly, after substituting equation (7) for 1, we 
fmd 

B = Av,(v,lv,~lRp (9) 

where (p, q) = (f, 1) for 1 <CR and (p, q) = (f, f) for 
1 >>R, and A is a numerical constant of the order of 
b’+‘. Thus the diffusion coefficient for grain size 
fluctuation generally decreases with increasing grain 
size, particularly so at high kink density. The above 
dependence is a result of the intrinsic evolutionary 
nature of kinks which are constantly generated and 
annihilated along the grain boundary. It does not 
presume other extrinsic causes such as particle pin- 
ning and solute segregation that affect /I in other 
ways, although it may be viewed as related to an 
evolution of the grain boundary structure. 

By change of variable, it can be readily shown that 
a time invariance of the type t - R2+q may be 
admitted into equation (5). If the boundary condition 
F(0, t ) = F(m, t) = 0 is imposed, then the solution to 
equation (3) necessarily has a characteristic grain size 
which scales with t”, with n = l/(2 + q). The above 
boundary condition is reasonable because (i) at very 
small R, the curvature and hence the kink density are 
high; rapid shrinkage of grains is expected, and (ii) 
very large R is physically unaccessible at any finite 
time. Incorporating the diffusion coefficient, we find 

a = B(v,t)“(*+r)(v8/v,)P’(2+g)b (10) 

where R is a characteristic grain size, while B is a 
constant of the order of unity. The time exponent, 
l/(2 + q), above is f for 1 <CR and ; for I>> R. 

The grain size distribution is next deduced. Note 
that in our analysis of the diffusion coefficient, no 
special account was taken for the size distribution. 
Hence, self-consistently, we may interpret R in equa- 
tion (9) as a characteristic grain size which follows 
equation (10). Upon such substitution, the solution 
of equation (5) can be obtained easily. The nor- 
malized distribution is found to be 

F(R) = fi exp( - R”*/2) (11) 

where R’ = R/i?, and i? is taken to be the grain size 
at the peak of the distribution. It is worth noting that 
the normalized distribution is independent of the 
exponents q and n, as long as the time invariance of 
the type of equation (7) is fully established. Indeed, 
equation (11) is identical to the distribution that 
Louat [2] found in the case of constant fl (n = f). 

The above distribution is plotted in Fig. 5, and 
compared with the distribution from curvature 
analysis of Hillerts [1] and the empirical log normal 
distribution of Feltham [13]. 

G 
5 
SC. 
p1 

t 

(a) Curvature Model 

(b) Log-normal 

Gram Radius 

Fig. 5. Grain size distributions according to the (a) 
curvature model; (b) empirical log-normal fit and (c) 
stochastic model. Model (a) gives different results in 2 and 

3 dimensions. 

2.2. 3-Dimension 

The picture of the kink mechanism in 2-dimension 
can be extended to 3-dimension if we envision ledges 
of a unit height b lying on the grain boundary. One 
new feature of ledges is that they will intersect each 
other to form a network. The mesh size of the 
network is now denoted as 1. Ledges can migrate at 
a unit step b, in either direction transverse to the ledge 
axis. If a ledge maintains its length during migration, 
there should be no resistance exerted by the nodes of 
the network. Opposite ledges can mutually annihi- 
late. We assume that double ledges, or ledge loops, of 
a length comparable to 1, can be nucleated thermally. 

We proceed with the same analysis as in Section 
2.1, starting with equation (6). The distinction be- 
tween the two cases of 1 <CR and 1~ R remains (see 
Fig. 6). For 1 KR, C, = 1/R12. For 1 BR, C, = l/l’. 
We again denote the nucleation frequency per grain 
boundary site as vg, and the density of grain bound- 
ary sites asfs, now being 1/Rb2. The half life from a 
random walk analysis is still r, = (r/b)2v,, where v, is 
the migration frequency of the ledge. We let rs = cc 
as before. At steady state, the corresponding solution 
of 1 is 

1 (R/b)+v,/v&f l>> R 
-= 
b (v,/v,)t l<<R 

(12) 

and a transition occurs at 

R * = l+ = b (v,/v,)i. (13) 

The discussion on the nature of the transition made 
before also applies here. Indeed, the phase diagram of 
3-dimension looks essentially identical to Fig. 4, 
except that the rising portion below I = l* is slightly 
more concave and further apart from the line of 
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(a 1 Low Ledge Density (bl Hugh Ledge Density 

Fig. 6. Distribution of ledges, their intersections marked by circles, are shown at (a) low density and (b) 
high density. 

I = R, to reflect the 1~ I& dependence of equation 
(12) as opposed to the I _ Ra dependence of equation 
(7) used previously. 

The number of ledges per grain is next determined. 
For t CC R, referring Fig. 6(b), fk = (R/l)*. For I>> R, 
as in Fig. 6(a), fk = (R/l)‘. (Coincidentally, fk here is 
inde~ndent of ledge density.) For 1 >>R, on each 
grain boundary traversed by a ledge, the segment of 
the ledge has a length R. This contrasts with the case 
of 1 cc R where the segment of a ledge has a length 1. 
Let R3 be the volume of each grain, then in a unit step 
of fluctuation, 6 = Ib2/R2 is effected by a ledge of 
IcR but 6 = b2/R by a ledge of IBR. 

Using the above results, the diffusion coefficient in 
equation (5) is found to be p = v,b4/R2 at ICC R and 

B N v, b4/1 2 at I >> R. Explicitly, after substituting 
equation (12) for I, we find the same equation (9) 
applies, only with the exponents modified as 
(p,q)=(O,2) for E<<R and (p,q)=($$) for f>>R. 
These results are parallel to those of 2-dimension. 

By a similar argument as before, we determine the 
growth exponent in 3-dimensional grain growth as f 
for E CC R and 2 for 1s R. However, the normalized 
grain size distribution given by equation (1 I), which 
is independent of the growth exponent, remains the 
same. 

Before closing, a note on equation (5) is warranted. 
This diffusion equation is strictly applicable only in 
l-dimension, hence, for self-consistency, all grain 
sizes should be interpreted as linear intercepts of 
grains in using equation (5). Alternatively, appropri- 
ate diffusion equations in 2 and 3-dimension may be 
used, which, in the radial coordinate, differ from 

equation (5) slightly. The resultant R(r) relations 
remain the same. The grain size distribution, when R 
is interpreted as grain radius in 2- and S-dimension, 
will differ from equation (11) only in the pre- 
exponential factor which must be modified to contain 
the appropriate power of R for correct normalization. 
In view of these similarities we have chosen to use the 
simpler equation (5) in the above analysis. 

3. STEADY STATE GRAIN GROWTH UNDER 
SINK CONTROL 

In Section 2, we assumed r, = 00, i.e. no sink 
absorption. We now examine the other limit of sink 
control. 

The relative importance of recombination and 
absorption is governed by the ratio of 7,/t,. Our 
previous treatment corresponds to the case of 
7,/r, -+ 0. When the opposite is true, sink absorption 
dominates, and retards the growth still further. We 
can use an alternative interpretation in terms of sink 
and kink spacings as follows. Since r, = (I/b)2/v,t 
while z, can be written as (Is/b)2/v, with 1, identified 
as the sink spacing, the assumption of t,/r, -+ 0 is 
equivalent to l/l, -+ 0, where the spacing of kinks and 
ledges I is precisely their recombination distance. 

For a given sink density, the ratio of l/l, at the 
steady state is governed by the kink/ledge generation 
rate. At high v~, which may happen at a high 
temperature when thermal nucleation of kinks and 
ledges is easy, equation (7) suggests that I will be 
small and that Zj!, -+ 0. Thus sink absorption is less 
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important at high vg or high temperature. The op- 
posite is true at low vg or low temperature. Only the 
latter case needs a new analysis. 

Assuming sink absorption to be the dominant 
annihilation mechanism, i.e. r, = co, at the steady 
state we can solve 1 as before. In 2-dimension, we find 

1 
-= 

(Rb/l$(v,/v$ l>>R 

b (bl&)%Jv,) IKR’ 
(14) 

In 3-dimension, we find 

1 _ = (Rb/l$(v,/v.$ l>>R 

b (b14)2(vm/v,)’ l<<R’ 
(15) 

The phase diagram of Fig. 4 applies for both cases, 
except that the rising branch is less concavei and 
closer, to the line of I = R, to reflect the I N R2 and 
1 N Rj dependence here. The transition at 1* = R * is 
obviously given by the values of I at I ctR. The 
similarity of these results and those of recombination 
control is obvious, since both r, and r, are propor- 
tional to v;‘. Lastly, re-examination of the growth 
law finds that the growth exponents remain the same 
as those for recombination control at I << R, but 
become f in 2-dimension and i in 3-dimension at 
l>>R. 

4. RETARDED GRAIN GROWTH 

Until now, we have assumed that kinks and ledges 
can be generated by thermal fluctuation. This may 
not be possible, especially in 3-dimension, due to the 
relatively large nucleation barrier. Nevertheless, an 
initial density of kinks and ledges may be present 
which then evolves according to equation (6) with 
vg = 0. We still assume r, = co here for the moment. 
This situation with continuously depleting kinks and 
ledges is expected to lead to very slow grain growth. 

Noting that Z, = (i/b)2/v, in both 2- and 
3-dimensions, we reduce, at vg = 0 and r, = co, equa- 
tion (6) to 

ac, vmb2 c 
_-- at- 12 k’ 

The above equation gives a scaling l/b - (v,t $ in all 
cases. Note further that in 2-dimension, p N v,b4/Rl 
at IctR and /? -v,b4/12 at IDR, while in 
3-dimension, jI N v, b4/R 2 at I<< R and j? N v, b4/1 2 at 
1~ R. After substituting (v,t )i for I, we find that the 
following diffusion equation holds at 1 >>R in both 
two and three dimensions 

aF 
at =A(b2,t)g (17) 

where A is again used as a constant, of the order of 
unity in this case. 

It can be easily shown that the time invariance of 
the solution of the above equation is logarithmic, 
R2 - ht. Very slow grain growth is thus expected in 
this limit. The kink density and ledge density vary as 
(l/b)2 - exp(R/b)2. 

Retarded Growth (v,=O) 

Fig. 7. Phase diagram of grain growth, assuming vg = 0. 
The steady state is the heavy curve. The transient evolutions 

toward the steady state are shown by arrows. 

At the other limit, 1 <CR, we find the time invari- 
ance in 2-dimension to be R N b(v, t )6, and in 
3-dimension R - b (v, t )a, following a similar reason- 
ing. Hence (Z/b) - (R/b)3 in 2-dimension and 
(Z/b) - (R/b)2 in 3-dimension in this limit. 

We plot these solutions in the phase space. In Fig. 
7, the branch of the exponential rise is at the 1~ R 
limit, and the branch near the origin is at the 1 <CR 
limit. Note that the shape of the curve of retarded 
grain growth of Fig. 7 is very different from that of 
steady state grain growth of Fig. 4. Topologically, the 
two are mirror images of each other with respect to 
1= R. 

If the initial density of kinks and ledges is high 
enough so that sink absorption is at first unim- 
portant, ;he above analysis applies too. However, as 
1 N (v,t)T, eventually 1 > I, and sink absorption 
dominates. From then on, the density of kinks and 
ledges will be depleted exponentially, and a complete 
arrest of grain growth must occur. This situation can 
be depicted using the same phase diagram of Fig. 7, 
except that the rapidly rising branch there now 
approaches a terminal R asymptotically. However, 
finite exponents can be obtained for sink control and 
2 <<R (see Table 1 below). 

In all of the above cases, the normalized grain size 
distribution of equation (11) is not altered. This can 
be shown for equation (15), for example, by a simple 
change of variable from t to lnt, upon which equation 
(15) reduces to the standard diffusion equation. 

Table I. Exponents of grain growth (n, WI) 

y* # 0” Y* = oc 

T.>>T. 7~x7. T.>>C. T.<<C 

I 2 

20 
I<< R 

:‘: 
+,0 I 1 

Loga6Cithmic 

f, I 

I>>R Tvi f, 0 Arrest 

l<tR a,1 a, 1 a, I 

3D I>>R A,: ;,f 

;, 1 

Logarithmic Arrest 

‘R -(v:v:-~~)“. 
*Phase diagram is concave downward in (R, I) coordinate. See 

Fig. 4. 
Thase diagram is concave upward in (R, I) coordinate. See Fig. 7. 
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The solution of grain growth kinetics is now com- 
plete. We write the growth law as R - (vEv:-“t)“, 
where n is the growth exponents and m may be. used 
to infer the activation energy through v, and vg. 
These exponents are tabulated in Table 1. In the 
special case of logarithmic growth or total arrest, 
n = 0 and no temperature dependence is manifested. 
In all cases, only one universal grain size distribution 
applies. 

In examining Table 1, note that there can be a cross 
over from the case of vg = 0 to vg # 0. For example, 
if the rates of recombination and sink annihilation 
are initially large in comparison with that of gener- 
ation, it may be assumed that vg = 0 at first. As the 
densities of kinks and ledges decrease, the rates of 
recombination and sink annihilation also decrease 
rapidly. Eventually, even a small amount of gener- 
ation becomes significant, hence vg # 0 at a later 
stage. More detailed considerations of such cases will 
be left for future investigations. 

5. COMPARISON WITH SIMULATION AND 
EXPERIMENTAL RESULTS 

5.1. Comparison with simulation results 

Recently, a series of Monte Carlo simulations of 
domain growth in highly degenerate Potts systems 
has been reported [7-l 11. When a triangular lattice is 
used, such that the grain vertices do not behave as 
sinks for kinks, these models are offered by their 
investigators as representative of steady state grain 
growth in 2-dimension. Specifically, they found that 
the growth exponents are 0.33 and 0.41 + 0.02, at the 
short time and the long time limit. These results are 
in excellent agreement with our prediction in Table 1 
(i and i). In 2-dimension, the investigators also found 
[lo] that their grain size distribution was nearly 
identical to that predicted by Louat [2], namely 
equation (11). 

In 3-dimension, the simulations found only one 
exponent, 0.37 + 0.02 [ll]. While the investigators 
also found Louat’s prediction of grain size distribu- 
tion [equation (1 I)] to be close to what they observed, 
a prominent secondary peak was initially reported at 
very small grain sizes [1 I]. The latter has since been 
found to be an artifact due to the way they originally 
performed their cluster analysis [ 141. Furthermore, it 
was found that vertices in the 3-dimensional lattice 
employed in their study absorb kinks [14]. We pre- 
dicted that sink absorption will eventually dominate 
unless vg is very high. The latter possibility was 
unlikely in these simulations, which were carried out 
at T = 0. Hence, we predict an exponent i for the 
present case, again in excellent agreement with their 
result. 

The nature of the transition in 2-dimension re- 
quires clarification. These simulations were conduc- 
ted using an initial state which was quenched from 
the melt state to T z 0. The very large undercooling 

resulted in a very small initial grain size, R N b. If we 
further assume R > 1 at the initial state, then the 
initial exponent in 2-dimension should indeed be f. 
According to the phase diagrams of Fig. 4, however, 
this initial state must evolve toward the steady state. 
In doing so, it crosses the boundary at I N R and, 
from then on, assumes the other exponent $. In these 
simulations, this transition occurred at R 2 66. Sub- 
sequently, it should follow the steady state on the 
rising branch of Fig. 4. Because v,>>vB in these 
simulations, the other transition at I* = R * probably 
was never reached when simulations were terminated 
at R N 30b [7-lo]. Hence the exponent remains as :. 
It appears plausible that the same situation could 
have been encountered in S-dimension simulations as 
well, although the complexity of initial transients 
involving recombination and sink absorption, or 
perhaps an insufficient numerical resolution, seemed 
to have obscured a similar transition in 3-dimension. 

Other than the triangular lattice, the same in- 
vestigators also examined a square lattice in 
2-dimension in which they found an arrest of grain 
growth at low temperatures [7-91. At higher tem- 
peratures, the results obtained from a square lattice 
have no arrest and the exponents are identical to that 
of the triangular lattice. The anomaly at low tem- 
peratures was attributed to the absorption of kinks at 
the grain vertices in a square lattice. This behavior 
can be easily understood using our analysis in Sec- 
tions 3 and 4. As shown in our analysis, sink absorp- 
tion will be controlling when the kink density is low 
and will be negligible when the opposite is true. At 
low temperatures, when kink generation is sluggish, 
we expect sink absorption to lower the density of 
kinks significantly further. Near absolute zero de- 
grees temperature, vg = 0; hence, sink absorption 
results in a complete arrest of the growth. This is 
indeed observed in simulations. At high temperature, 
on the other hand, kink generation is rapid enough 
to maintain a high density of kinks. Under such 
circumstances, sink absorption is secondary and may 
be ignored. The growth exponents are thus indepen- 
dent of lattice types at higher temperatures, as the 
simulations indicated. The topology of the cubic 
lattice used in their 3-dimensional simulations, 
though, appears to allow ledge absorption at vertices 
at least at modestly high temperatures [14]. 

As already mentioned, our model at vg # 0 predicts 
a long-time exponent of n = l/(d + I), where d is the 
dimensionality. While this prediction was not realized 
in simulations, presumably due to size and time 
limitations, it is in agreement with the theoretical 
expectation based on cluster thermodynamics. Using 
a droplet model, Furukawa [15] pointed out that the 
entropic term of the droplet free energy due to surface 
roughening, which is proportional to kT In R, should 
give rise to a long-term droplet growth exponent of 
n = l/(d + 1). In our model, in the same thermo- 
dynamic limit, we expect that I approaches a constant 
much smaller than the grain size, and that kinks of 
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such spacing cause roughening of grain boundaries. 
Thus physically the two pictures correspond to each 
other and should give the same prediction. 

We acknowledge here that much of the kink/ledge 
mechanisms described in this work were recognized 
by Sahni et al. [7-l 11. While they realized the central 
role of such mechanisms in domain growth in the 
simulations, they did not crystallize the idea to 
present a quantitative treatment. The present anal- 
ysis, by ignoring some of the topological details of the 
real polycrystals, is able to quantify the kink/ledge 
mechanism and to relate it to growth kinetics, It 
nevertheless shares the same physical basis as the 
simulations, and both may be characterized as an 
atomistic description of domain and grain growth. 

From the above comparison, we may conclude that 
the present theory accurately captures the essence of 
the highly degenerate Potts model. [The other 
limit, i.e. the Ising model in which no triple point 
exists, is adequately described by equation (3-4).] 
Indeed, these two probably are physically equivalent 
approaches. However, the Potts model, strictly 
speaking, is applicable only to domain growth and 
not to grain growth, while our model has no such 
restrictions, provided appropriate physical mech- 
anisms and numerical values are assigned to the 
generation, recombination, and absorption processes. 
We shall return to this subject in Section 6. 

5.2. Comparison with experimental results 

Several grain-growth studies on zone refined metals 
have been reported in the literature. However, no 
common grain growth exponent was found in these 
studies. For lead and tin, the growth exponent was 
found to be between 0.40 and 0.43 [16-181, although 
the exponent f was also reported for tin [18] in one 
study. In the latter study, it was noticed [18] that the 
scatter of experimental points was relatively large in 
zone refined metals, but was reduced when impurity 
was added. The cause of the scatter was not 
identified. It was often reported, for example, for lead 
[16] that an ultimate grain size is of the order of 
sample thickness. For both lead and tin, a transition 
to a smaller exponent was reported [17]. For alumi- 
num, a considerably lower exponent, around 0.25 
[19], was found. At slightly lower purity and at longer 
annealing time, the exponent was even smaller [19]. 
Lastly, for zone refined iron, the exponent was found 
to increase from approximately 0.25 to 0.5 as the 
temperature increased from 550 to 850°C [20]. Typi- 
cally, these experiments were conducted using poly- 
crystals with an initial grain size of the order of 
0.1 mm. An increase of one order of magnitude or 
less in the grain size was studied. 

The relative coarse initial grain sizes in these 
studies makes it apparent that, unlike Monte-Carlo 
simulations [7-l 11, these growth experiments did not 
begin with a quenched state. The first transient 
caused by the crossing of the ‘border of 1 = R from 
below in Fig. 4 was therefore not experienced. In 

general, the relatively narrow range of the grain size 
studied experimentally makes it difficult to capture 
the transition between the two regimes of 1 <CR and 
I>> R. Depending on the initial grain size, the values 
of l*=R*, and the relative importance of ledge 
nucleation and sink absorption, grain growth may 
evolve along the steady state with an exponent of 0, 
a, i or 6. In particular, the sometimes observed 
retardation in the long time can be caused by the 
onset of sink control, especially as the grain size 
approaches the sample thickness (see next section). It 
appears that the upper value of these exponents, A, 
was seen in lead, tin and iron, and the lower value of 
4 was seen in aluminum. 

Although the comparison of our model and the 
observed grain growth exponents is not definitive, the 
grain size distribution, which is well-fitted by equa- 
tion (1 I), was indeed observed in Ref. [20] for iron. 
Many other investigators of grain growth have fol- 
lowed the suggestion of Feltham [13] to fit their data 
on grain size distribution to a log normal form. The 
latter is graphically quite similar to equation (ll), 
both with a tail at the larger sizes (Fig. 5). By 
implication, it may be inferred that these data, which 
are not necessarily for high purity metals, are consis- 
tent with equation (11). In contrast, Hiller’s curvature 
driven growth model [1], like that of the 
Lifshitz-Slyozov-Wagner theory of precipitate 
coarsening [21,22], predicted a size distribution with 
a short tail at the larger sizes (Fig. 5). So the 
comparison on grain size distributions favors the 
stochastic model presented here. Specifically, the 
universality of the size distribution, irrespective of the 
growth exponent, is in agreement with our model. 

Associated with the multiplicity of the growth 
exponent, our model predicts a range of activation 
energy to be governed by (vi-“v:)” from Table 1. It 
will become clear in the next section that the activa- 
tion energy of v, should be that of grain boundary 
diffusion, but that of vg can vary widely. In the 
literature, there is no definitive experimental evidence 
that the activation energy of grain growth is precisely 
that of grain boundary diffusion, although most 
results suggest that the two activation energies are of 
similar magnitude. The above experimental obser- 
vations are not inconsistent with the prediction. 

6. DISCUSSIONS 

While the present model is a drastic departure from 
the conventional treatment of normal grain growth 
based on the curvature driven mechanism, it stands 
as a structural rationalization and generalization of 
the stochastic model of Louat’s [2]. The essence of the 
model is that kinks and ledges are the microstructural 
units which are responsible for grain boundary mi- 
gration. The realization of the picture is straight- 
forward in the Potts model for domain growth, in 
which atoms on both sides of a domain boundary 
assume the same lattice structure, their only 
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Fig. 8. Grain boundary dislocation at a step in symmetric 
tilt boundary in simple cubic structure (tilt angle = 36.9’). 
(a) Initial structure (b) after climb by annihilation of one 

vacancy. 

difference being their spins. In grain growth, how- 

ever, the lattices on the two sides of a grain boundary 
are rotated and translated with respect to each other. 

In this case, kinks and ledges should be identified as 
those grain boundary dislocations associated with the 
stepped structure, as shown in Fig. 8, for example. 
Such structures have been extensively studied in 
recent years [23,24], and a catalog of step heights 
and Burgers vectors is known for cubic metals and 
coincidence boundaries [12,25]. Since any random 
boundary may be regarded as an ordered array of 
various types of grain boundary dislocations [26], the 
existence of stepped structures should be a rather 
general feature. While this picture has so far been 
pursued mostly for macroscopically flat boundaries, 
its incorporation in curved boundaries is concep- 
tually straightforward and consistent with the simpli- 

fied representations used in the present paper. The 
spacing of the stepped structure should then be a 
function of the curvature as well as the misorientation 
of the boundary, and it is those extraneous grain 
boundary dislocations not belonging to the macro- 
scopically flat boundaries that correspond to kinks 
and ledges in our model. Of course, in a more detailed 
treatment, the multiplicity of different kinks and 
ledges possessing different step heights and different 
widths, and the manifestation of various conser- 
vation laws governing grain boundary dislocations, 
should also be considered. However, these details are 
not expected to alter the basic formulation of our rate 

theory based on equation (4) and our fluctuation 
theory based on equation (3). 

In real grain growth, migration of ledges, or equiv- 
alently, migration of grain boundary dislocations and 
steps, always requires diffusion of defects [12]. The 
current understanding of grain boundary diffusion 
supports the idea that vacancy is the dominant defect. 
Assuming detailed balance, it can be readily argued 
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that the rate of vacancy absorption is statistically 

equal to that of vacancy emission at grain boundary 

dislocations. Hence the climb of grain boundary 
dislocations should not be biased, a priori, in either 
direction. Thus, the assumption that v, can be used 
to describe random migration of ledges is justified. 
Indeed, v, should scale with D,,/b2 where D,, is the 
self-diffusivity along grain boundaries. The above 
conclusion may be altered if the climb of grain 
boundary dislocations is biased due to a gradient of 
defect concentrations or alloy compositions. 
(Diffusional creep is an example of the former [27]; 

diffusion induced grain boundary migration is an 
example of the latter [28]. A combination of both can 
be envisioned [29].) In normal grain growth of un- 
stressed metals and possibly of uniform alloys, such 
bias does not exist. 

The plausibility of thermal nucleation of ledges can 
now be discussed. Nucleation of ledges by defect 
condensation has been observed in irradiated, super- 
saturated metals [30]. However, the special condition 
under which the above observation was made under- 
lines the general difficulty of thermal nucleation of 
grain boundary dislocations in internal grain bound- 
aries in equilibrated crystals. (The extreme difficulty 
of thermal nucleation of lattice dislocations is well- 
known. Even though grain boundary dislocations 
have a smaller Burgers vector in all cases, their 
thermal nucleation is still quite difficult.) Thus, quite 

likely, most of the ledges which participate in grain 
growth are “quenched-in” ones as a result of prior 
thermal mechanical treatment. 

At higher temperatures, however, increasing disor- 
der of grain boundary in the form of increasing 
structural unit multiplicity and increasing vibrational 
amplitudes and anharmonicity may be expected. 
These effects may cause a spreading of the cores of 
grain boundary dislocations that lowers their nucle- 
ation barriers. Thus the analysis of steady state grain 
growth in Sections 2 and 3 becomes more applicable. 
Indeed, if the theoretical suggestion of more extended 
disordering (melting) transition of grain boundary 
[31-351 is to be verified at very high temperatures, the 
notion of kinks and ledges might be disposed of 
entirely. Grain boundaries may be curved on an 
atomic scale, with a largely disordered liquid-like 
structure. Only in this extreme can grain growth be 
rationalized by curvature driven growth, with grain 
boundary migrating as a whole by atomic transport 
across the entire liquid-like layer. The growth ex- 
ponent of 4 becomes applicable here. (A soap foam 
coarsens in precisely this manner, for which the 

classical exponent of i was experimentally confirmed 
[36].) On the other hand, the rarity of this exponent’s 
being observed in grain growth, in high purity crys- 
talline materials and at high temperatures, could 
implicate the rarity of grain boundary melting in real 
materials, e.g. nominally pure aluminum [37]. 

In view of the difficulty of thermal nucleation, it 
has sometimes been assumed [38] that a spiral mech- 
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anism [39,40] analogous to the screw dislocation 
mechanism [41] in condensation and solidification 
could operate on the grain boundary, providing a 
fresh supply of kinks and ledges. The source of the 
spirals is attributed to extrinsic lattice dislocations 
impinging a grain boundary with a normal Burgers 
vector. Such dislocations are obviously available 
from the thermal mechanical treatment prior to grain 
growth. However, spirals are known to maintain the 
maximal, critical curvature near the origin. In the 
case of grain growth, provided the driving force is 
that of grain boundary curvature, it can be readily 
shown from the standard relation between the critical 
spiral radius and the driving force [39] that the 
minimal radius of the spiral is of the order of grain 
size itself. Moreover, spiral sources will be rendered 
inoperative if their spacing is shorter than the critical 
radius [42]. In the latter case, they behave very much 
as an inoperative Frank-Read source [43], due to the 
lack of a sufficient driving force. Since dislocation 
density in a typical metal is at lest lO’2/m2 during 
grain growth, most spiral sources are spaced at 
distances smaller than the typical grain size, such that 
the spiral mechanism itself is not likely to operate 
efficiently to regenerate grain boundary dislocations. 
On the other hand, as grain boundaries fluctuate and 
eventually sweep by a substantial volume, they ab- 
sorb new lattice dislocations which, by dissociation 
[44], provide a fresh supply of grain boundary dis- 
locations. The kinetics of the above process are 
difficult to estimate, a priori, because of the evo- 
lutionary nature of the lattice dislocations which 
undergo recovery themselves. (In a typical grain 
growth experiment, grain size increases by more than 
tenfold, hence only one one-thousandth of the origi- 
nal grains survive. It is obvious that the grain interior 
has been swept by grain boundaries many times, 
making it unlikely to maintain a constant dislocation 
density.) Consequently, an accurate estimate of vg will 
not be attempted here. 

the nearest-neighbor bondings between rigid lattice 
sites are considered.) This provides an alternative 
interpretation of grain boundary pinning and the 
eventual arrest of grain growth by particles and voids 
[3-61. External surfaces can also become the domi- 
nant sinks themselves. This situation will be encoun- 
tered in thin polycrystals, when grains grow to the 
size of the sample. It is well known that when 
columnar grains spanning the entire thickness of thin 
plates or films have formed, the normal grain growth 
is arrested. Rather than adopting surface grooving 
(as in the curvature-driven grain-growth theory) as 
the cause [46], we offer sink absorption at external 
surfaces as an alternative physical mechanism. 

Until now, we have oversimplified one aspect of 
our analytical treatment of grain growth in the 
discussion. We now address this point before closing. 
We argued that there is an essential topological 
transition concerning the evolution of the kink spac- 
ing and the grain size, depending on their relative 
lengths. More rigorously, this transition can be 
defined as when a kink on a grain edge has equal 
probability during a random walk to encounter an- 
other kink (a) on the same grain edge and (b) on a 
different edge. Using a 2-D polycrystal of periodic 
hexagons as a reference, we can verify that the 
transition corresponds to the case when each edge has 
two kinks. At a uniform kink spacing, the above gives 
R = 2$1 at the transition if the grain size is taken 
as the distance between two nearest parallel edges. A 
relative grain size much larger than the above corre- 
sponds to the case of R >>I in the text, etc. A similar 
argument can be made for 3-D polycrystals which, 
presumably, will give analogous results. 
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