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We prove the global existence of solutions of the Cauchy problem for certain 
systems of conservation laws with artificial viscosity terms added. The system is 
assumed to admit a quadratic entropy which is consistent with the viscosity matrix, 
and the initial data is assumed to be close to a constant in Lz n L”‘. In particular, 
our result applies to the equations of compressible fluid flow in two and three space 
variables. 0 1987 Academic Press. Inc. 

1. INTRODUCTION 

In this paper we prove the global existence of solutions of the Cauchy 
problem for certain systems of the form 

g+ i ~fi(U)==DLIU, u = 24(x, t), XE R”, t>o, (1.1) 
,=I I 

with initial data 
u(x, 0) = t&)(x). (1.2) 

Here u = (u’,..., urn), fi = (f ,! ,..., f y), and D is a constant, positive matrix. 
The fi are assumed to be defined and smooth in a neighborhood of a point 
ii, and the initial data uO is assumed to be sufficiently close to ii in L2 n L”. 
We shall show that our results apply to the equations of compressible fluid 
flow (conservation of mass, momentum, and energy) in which artificial 
viscosity terms have been added. 

The results of this paper are an extension of our previous work [23 in 
which corresponding results were obtained for similar problems in one 
space available. (References to related existence theorems may also be 
found in [a].) 
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First, the existence of local solutions in several space variables is proved 
in much the same way as in the one-dimensional case. We therefore give 
only a sketch of this local existence in Section 2. These local solutions can 
then be extended to all of t >O if the system (1.1) admits a quadratic 
entropy consistent with D. This notion is defined precisely in Definition 2.3, 
and the global existence result is formulated in Theorem 2.6. The main 
point of interest in this article is the application of this global existence 
result to the equations of compressible fluid flow. This is achieved in Sec- 
tion 3, where we explicitly construct the required entropy. (A similar con- 
struction is carried out by Harten in [ 51 for the case of a polytropic gas. 
We thank the referee for bringing this reference to our attention.) 

We shall denote Lq norms in the usual way: 

and 

Ibll*.Q = ess sup lu’(x)l. 
1, -y 

The Q will be suppressed when there is no ambiguity. In addition, the HP- 
norm, 

II4l!f~(R~) = ,.gp llDdaJP 

will arise for the integer p defined by 

(1.3) 

which will be fixed throughout. 

2. GLOBAL EXISTENCE OF SOLUTIONS 

In this section we sketch the proof of local existence of solutions, and we 
show how these local solutions can be extended to all of t > 0 when the 
system (1.1) admits an appropriate entropy. 

Suppose first that D is a constant, positive, diagonal matrix, 

D = diag(d, ,..., d,,,), dj > 0. 

Let x’(x, r) be the fundamental solution for the heat operator (@?t) - djd, 

.K’(x, 6) = (4ndj tfen’* exp( - /xj2/4djt). 
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The solution of (l.l), (1.2) then formally satisfies the representation 

d(t)=K’(t) * u/i- i J’Ki,(t-s) *f<(u(s)) ds, j = l,..., m, (2.1) 
i=l 0 

where * denotes convolution in the spatial variable x, K<, = (8/&c,) K’, and 
the x-dependence has been supressed. 

We assume that each vector function fi = (ff ,...,fT) is Cp in a closed ball 
B,(U) of radius r about a point ti, and, without loss of generality, that 
fi(ii)=O. (p was defined in (1.3).) We define the set 

G,={u: [0, T]+L”(R”): Ilu(.,t)--ll,~r,O~t~T} 

and the operator L on G, by 

L(uy’(t)=K’(t)*tio- i j’K:,(t-s)*h(u(s))ds, j = l,..., m. 
i=l 0 

The following elementary properties of L can then be derived just as in 
[2, Lemma 2.11. 

LEMMA 2.1. Let fi, G,, and L be as above. Given s < r there is a T > 0 
such that, tf (u,-ti)EL2nL” with ]Juo - U]loo <s, then L maps G, into 
itself and is a contraction in the L” norm. Moreover, given times 
0 = t, < t, < . . . < t, < T, there is a constant C= C(s, t, ,..., t,), such that, if 
u E G, satisfies the inequalities 

(a) Ilu(~,~)--17ll~~~II~~-UII~,O~td~, 
(b) Ilu,(~,t)ll,~C/~,l~i~n,O<t~T, 
(c) Il~“,~(~,~)l12~~II~o-~I12/~, lal=q, q=l,...,p,t,<tdT, 

then L(u) also satisfies (a), (b), and (c). 

Applying the above result, we can then prove the local existence of 
solutions as follows. 

LEMMA 2.2. Assume that f E Cp(B,(ii)) and that D is a constant, positive, 
diagonal matrix. Then given s < r there is a T> 0 and a constant CI such 
that, if (u,-~)EL~~L” with IIuo - till o. < s < r, then the problem (1.1 ), 
(1.2) has a solution defined on R” x [0, T]. Moreover, u satisfies the fOlh+ 
ing five properties: 

(a) Il~(~,t)-~ll~~r,O~t~T; 
(b) u, and Au are locally Holder continuous in R” x (0, T); 
(c) u( ., t) - u. + 0 in L’(W) as t + 0; 
(d) u(., t)-tiEHP(R”),O<t<T, 

(e) IM., T) - 41 HP(R”)~CL ll~o--ll*. 
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Sketch of Proof: u is obtained as the L” limit of the sequence {u’} 
defined by u” = u. and u’+ ’ = L(u’). Observe that, by Lemma 2.1, the 
norms 

IlW’(., t) - 4lz 9 lalQp,0<66t6T, 

are bounded independently of I for any fixed 6 > 0. Since p > (n/2) + 1, it 
follows that the functions ~2, are uniformly Holder continuous in x on com- 
pact subsets of R” x (0, T). A simple argument [2, p. 2191 then shows that 
the ufr, are also uniformly locally Holder continuous in t. Standard results 
[4, Theorem 511 applied to the equation 

u;+‘-DAu’+‘= -cfi(~‘)~, 

then imply that u: and Au’ are also uniformly locally Holder continuous. 
(b) then follows from the Ascoli-Arzela theorem, and the estimate (e) 
follows from Lemma 2.1 by taking any particular choice of t, ,..., t,. i 

These local solutions will be extended to all of t >O when the system 
(1.1) admits an appropriate entropy-entropy flux pair. These are defined as 
follows: 

DEFINITION 2.3. The functions a: B,(U) -+ R and /I = (/I, ,..., fi,,): B,(U) -+ 
R” form an entropyentropy flux pair for the system (1.1) if, for each 
i= l,..., n and u E B,(U), 

va(u)‘fi(u) = vg,(u)r. (2.2) 

The entropy o! will always be assumed to satisfy 

6 ~u-u~2Qa(U)~d-’ lu-zq*, u E &(U), (2.3) 

for some positive constant 6. Finally, c1 is said to be consistent with the 
diagonal matrix D if 

w’Dtl”( u) w > 0 (2.4) 

holds for all u E B,(U) and w E R”. 

The existence of such a pair (LX, /?) enables us to derive the following a 
priori energy estimate. 

LEMMA 2.4. Assume that there is an entropy-entropy flux pair (a, /?) for 
the system (1.1) satisfying (2.2b(2.4), and that D is a constant, positive, 
diagonal matrix. Then there is a constant C2 2 1 depending only on the 
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properties of a andfin B,(6) such that, ifu is any solution of(l.l), (1.2) on 
R” x [0, t] satisfying (a)-(d) of Lemma 2.2, then 

IIN’, t)--ullz~cz ll~o-f4l2, O<t<i 

ProojI Without loss of generality, we may take pi(U) = 0, i= l,..., n. 
Multiply (1.1) on the left by Va’ to obtain 

a(u), + 1 j?(u), = Va’DAu 

= f (Va’DuJXi- f (DE”uJu,,. 

Integrating over Iw” x [to, i], we then have, using (2.4) and (d) of 
Lemma 2.2, that 

s a(u(x, .)) I :,, dx < 0. 

Thus from (2.3), 

llu(., t)-ull,<b-2 IIu(*, to,-41;. 

The result then follows by letting t, -+ 0 and using (c) of Lemma 2.2. 1 

We can now state our global existence theorem for the case that the dif- 
fusion matrix D is diagonal. The proof will require the Sobolev inequality 

II4 cqW”~C3 II4lHP-~(R”)~c3 Il4l,(,~)~ (2.5) 

see [3, p. 1441. (Recall that p was defined in (1.3).) 

LEMMA 2.5. Assume thatfis in Cp(B,(ii)) (p is defined in (1.3)), that D 
is a constant, positive, diagonal matrix, and that the system (1.1) admits an 
entropy-entropy flux pair (LX, /?) satisfying (2.2~(2.4). Let C,, Cz, and C3 be 
us in Lemma 2.2, Lemma 2.4, and (2.5), respectively. Then if 

UgEL2,L”, lIuO--l(II,<s~r, and CIC2C3 II%--ll,<~, 

then the Cuuchy problem (l.l), (1.2) has a unique global solution. 

Proof. We take U = 0 in the proof. Let T be as in Lemma 2.1 and take 
Tk = kT, k = 1,2,.... We shall show by induction on k that a sobtion exists 
for 0 d t < Tk and satisfies 

and 
(ak) IM., t)ll m G 6 O<t<T, 

(b/J IIu(., Tdll HP(W)~CICZ Il%ll2. 
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(al) and (b,) hold by Lemma 2.2(a) and (e), since Cz > 1. Assuming that 
(a,J and (bk) hold, we then have from (2.5) that 

by (bk) and our hypothesis. Since u( ., Tk) E L2, Lemma 2.2 then applies at 
the new initial time Tk to show that the solution can be extended up to 
time T~+I. (++I ) is then satisfied by Lemma 2.2(a), and, by Lemma 2.2(e) 
and Lemma 2.3, 

as required. 1 

Finally, we can dispense with the requirement that D be a diagonal 
matrix by making a simple change of variable. 

THEOREM 2.6. Assume that f E V(B,(U)) (p is defined in (1.3)) and that 
the system (1.1) admits an entropy-entropy flux pair (a, p) satisfying (2.2) 
and (2.3). Let D be a diagonalizable matrix with positive eigenvalues, say 

P-‘DP = n = diag(d, ,..., d,) > 0, 

and assume that 

AP’a”(u) P 2 0, 24 E E,( ii). 

Then the Cauchy problem (1.1 ), (1.2) has a global solution provided that 

II%-41, < ,lpll l;p~,lI 

and that (Jug - iill 2 is sujjkiently small. 

ProoJ Let v = P- ‘u. Then v satisfies 

$ + .f -&g,(v) = Ado, 
r=, I 

where gi(u) = P-‘fi(Pu). Observe that gi is Cp in the set 

{ 
0: Iv-P-liilcj+j 

I 
) 

(2.6) 

and that )IvO - P-’ till co < r/llPII. Also, the functions A(v) = a(Pu) and 

%X/68/2-6 
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B(U) G j?(Po) are easily seen to satisfy the requirements (2.2) and (2.3) for 
the system (2.6). Finally, 

AA"(u)=AP'a"(Pu)PbO 

by hypothesis. The result then follows by applying Lemma 2.5 to the 
system (2.6). m 

3. APPLICATION TO COMPRESSIBLE FLOW IN 
SEVERAL SPACE VARIABLES 

In this section we show how our main result, Theorem 2.6, can be 
applied to the two systems 

p, + div(pu) = 0 

(PU,), + div(puiu + Pe,) ~0, i = l,..., n (3.1) 
(pS,) + div(pSu) = 0 

and 
p, + div(pu) = 0 

(PU,), + div(puiu + Pei) = 0, 

(pE), + div(pEu + Pu) = 0 

i = l,..., n (3.2) 

when appropriate (artificial) viscosity terms are added to the right-hand 
sides. (ei denotes the ith standard basic vector.) These systems describe the 
flow of a compressible fluid in which p, u = (ur,..., a,), P, S, and E are, 
respectively, the density, velocity, pressure, entropy, and energy. In (3.1), P 
is a smooth function of p and S and is to satisfy 

P,>O for p >O. (3.3) 

In (3.2), P = P(p, e), where E = e + Ju1'/2. System (3.2) can be derived for- 
mally from (3.1) and a fundamental thermodynamic relation involving e, S, 
and p; see [l, pp. 15-161. 

We first display an entropy-entropy flux pair for (3.1) when n = 3. The 
existence of the required entropy-entropy flux pair for (3.2) will then follow 
by a simple change of variables. The n = 2 case is similar; we omit the 
details. The final application of Corollary 2.5 will then be stated at the end 
of this section. 

Observe that all nonlinear functions appearing in (3.1) and (3.2) are 
defined and smooth in the region p > 0. We therefore fix a point (p, ii, S) 
with b > 0, and, without loss of generality, we take ii = 0, S = 0. 
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Define functions u and Bi, i = 1,2, 3, by 

do + CpS2 (3.4) 

+ Ui(P-P) + CpUiS2, (3.5) 

where P= P(p, s) and C is a positive constant to be chosen later. We have 
to show first that 

Vcdf; =vg:, (3.6) 

where from (3.1), 

fi = 

/PI 
P4 + 
PUI u2 

PUlU3 

,PG 

(3.7) 

The derivatives in (3.6) are understood to be with respect to the conserved 
quantities (p, pu, pS). To facilitate the computation, we let 

and 
w=(p-P, u, S) 

z = (P -A PU, pa. 

(3.6) is equivalent to 

(t$Y&EJ 

We verify (3.8) by direct computation: 

! 

!$+j-p$!,+!$+,~ P 
da 

PUl 

dw= 
PU2 

PU3 

(3.8) 

(3.9) 
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1 0 0 0 0 
dw --u,lP l/p 0 0 0 

z= -hlP 0 l/p 0 0 (3.10) 

-Q/P 0 0 l/P 0 
-SIP 0 0 0 VP 

Therefore 

[(sip]= 

b12 s PP-P -- 
2+ 

Tdda+ 
P 0 

Y-S j;$dU-C&S 

Next, from (3.7), 

Ml P 0 0 0 

4, p,+u: 2pu, 0 0 0 
dw= UlU2 PM2 pu, 0 . 

UIU3 PU3 0 PUI 0 

Ul PS 0 0 

0 i 

PUl 

Combining this with (3.1 l), we therefore obtain 

[(ep?i]’ 

= 

l”12u’+u 

2 1 
s 

pp-Pdu+u p--p+u p +cu cJ2 

P CT* l P 1 P 1 

~+pu:+pj~~d~+(P-B)+CpS2 
P 

PUl u2 

PUI u3 

PUI 
5 

p ps 2 da + ZCpu, S 
P‘cJ 

J- 
(3.11) 

7 
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which is precisely (&I,/dw )‘. The computations for /I1 and flz are similar. 
This proves that (2.2) holds. 

Next, in order to establish the hypothesis (2.3) and (2.4), we compute 
the Hessian matrix &a/dz* at (p, 0,O): 

k$[$(!ff)]~ 

=rdidcr’dwvdw 
Ldw \dw dzjJ dz ’ 

From (3.11) 

0 
d da ‘dw 

dw dw z (P,O,O) = 0 I 
0 

0 

so that, from (3.10) and (3.12), 

d*a 
z- = (P. 0.0) 

0) P,(PY 0 
P 
0 l/P 

0 0 

0 0 

P,(i% 0) o 

-2 

P 

0 

1 
0 
0 

0 

0 

0 

l/D 
0 

0 

0 

0 

1 
0 

0 

0 

0 
0 

PSG 0) O- 
P 

0 0 
0 0 
1 0 

0 2c 

Ps(L=h 01 
-z 

P 
0 

0 

l/P 0 

0 
2c 

-7 

(3.12) 

J 

Since p and P,(p, 0) are positive (see (3.3)), we conclude that, if C is suf- 
ficiently large, d*a/dz* is positive definite at z=O and therefore in a 
neighborhood of 0. But a and da/dz vanish at z = 0 (see (3.3) and (3.11). It 
therefore follows that 

for some 6 > 0 and for z in a neighborhood of 0. Thus (2.3) holds. Finally, 
since &a/dz* is positive definite, the hypothesis (2.4) will be satisfied if D is 
diagonalizable and is sufliciently close to a multiple of the identity matrix. 

We have thus shown that the entropyentropy flux pair (a, /I) given by 
(3.4), (3.5) satisfies the required conditions (2.2k(2.4) for the system (3.1). 
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The corresponding result for the energy formulation of the compressible 
flow equations, (3.2), then follows easily. Note first that system (3.2) can be 
derived formally from (3.1) by making the change of variable 

(P, Ph PW = h(P, P% Pa 

(see [ 1, pp. 15-161). It then follows easily that the functions A = ~10 h and 
B = /I 0 h form an entropyentropy flux pair for (3.2), satisfying (2.2) and 
(2.3) in a neighborhood of (p, 0,O) in (p, pu, PE) space, and that A” is 
positive definite there. (For a proof, see [2, Proposition 3.11.) Thus A and 
B satisfy (2.2)-(2.4) for system (3.2) when D is diagonalizable and close to 
a positive multiple of the identity. 

We can now give a formal statement of the application of Theorem 2.6 
to the compressible flow systems (3.1) and (3.2). In this statement we let 
the dependent variables be (p, z), where now 

and 

in systems (3.1) and (3.2), respectively. 

THEOREM 3.1. - - Let (p, z) be a given constant state with p > 0. Then there 
is a number r>O such that, if the initial data (pO, z,,) satisfies - - 
IIbo,zo)-(p,z)ll,~r and II(po,z,)-(p,z)l12~r, and if D is a 
diagonalizable matrix with l[D - dill < r for some d > 0, then the systems 
(3.1) and (3.2), modified by the addition of terms DA[;] to the right-hand 
sides, have unique solutions defined in all of t > 0. 
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