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Recent interest in superlattice based semiconductor devices has led to the need for the 
ability to make accurate superlattice bandstructure calculations. The tight binding model 
formalism has already been applied to this problem. In this paper, a technique is 
presented for the inclusion of spin-orbit coupling into the tight binding formalism. The 
most attractive feature of the technique presented is that it does not increase the size of 
the basis which may already be very large for superlattices. This allows a more accurate 
calculation of the superlattice bandstructure at no additional cost. 

Recent advances in epitaxial growth techniques such 
as molecular beam epitaxy (MBE) and metal organic 
chemical vapor deposition (MOCVD) have made fabrication 
of thin period semiconductor superlattices possible. A 
number of  electronic and optical devices have been 
proposed using the superlattice concept. Critical to the 
understanding of these devices is the bandstructure of the 
superlattices. 

The tight binding method has been widely used to 
model superlattice bandstructure. 1-3 However, the results 
reported in literature do not incorporate spin-orbit coupling 
into the bandstructure calculations. Although, since the 
tight binding model is a fitting scheme, one can fit the band 
gaps and high symmetry points to obtain general trends due 
to superlattice effects, several important features are lost. 
The most important among these is that the hole states are 
incorrectly represented. The hole masses, (light and heavy) 
and the degeneracy of the states at the Brillouin zone center 
can not be modeled correctly without the inclusion of 
spin-orbit coupling into the bandstructure calculation. 
These effects become important when calculating optical 
transitions into the hole bands. 

In this paper, we discuss the inclusion of spin-orbit 
coupling in the tight binding bandstructure formalism. An 
advantage of the technique presented is that it allows the 
spin-orbit effect to be included without increasing the size of 
the basis. This is particularly significant in superlattice 
calculations where the basis is quite large to begin with. 

The tight binding method for calculating energy band 
structure, as it was originally formalised by Slater and 
Koster in 1954, expands the energy bands into a linear 
combination of atomic orbitals 4. The tight binding method, 
in its usual formulation, does not include spin-orbit 
interactions. For group IV or III-V semiconductors, the 
basis for the Eigen solution to the energy band equations is 
normally made up of the s state and the three p states for 
each atom in the unit cell. These four states are said to be of 
the same spin. Thus, all interactions are theorized to be 
between states of the same spin. 

For lattice structures where there are two or more 
atoms per unit cell the basis will be bigger then the basis for 
crystals with one atom per unit cell as each atom contains s 
and p orbitals. Spin-orbit energies are generally not 
considered to couple orbitals of different atoms. Because of 
this, we need only look at how the spin-orbit interaction 
couples the orbitals of one atom. We can then apply this 
technique to each atom within the minimal cell. 

When adding spin-orbit interactions to this band 
structure model, one must increase the basis to include spin 
up and spin down states. That is from an original basis of: 

(S,Px,Py,P z) 

for each atom in the unit cell, we go to a basis of." 

(s1",PxT,pyT,pz1",s,l,,Pxi,pyJ,,pz $) 

The tight binding Hamiltonian should only yield non-zero 
interactions between states of the same spin. For these, it 
will yield the same expressions as used in the original 
calculation. Thus in our matrix representation of the 
Hamiltonian, we will have two blocks of terms each of 
which is a copy of the matrix used in the smaller basis. 
These two blocks will go along the matrix diagonal. 

To the tight binding Hamiltonian we add the 
spin-orbit interaction energy. Thus our total Hamiltonian 
becomes: 

H = Htb + Hso 

The matrix elements arising from the spin-orbit component 
of the Hamiltonian have the potential to be between states of 
different spin. To calculate these terms, we write the spin 
orbit interaction as5: 

HSO = kL-S 
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We can write the addition of the spin and orbital angular 
momentum as: 

j2 = ( L + S )  2 = L 2 + S  2 +2L-S 

thus 

1 2 L 2 S 2 < L . S >  = ~ < J  - - > 

T12 
= -~-  { j ( j + l )  - I(1+1) - s ( s + l )  } 

We therefore have a way of evaluating the spin-orbit 
interaction energy, but it is only applicable to pure angular 
momentum states. States like Px1` are mixed states, that is 
they are made up of a combination of pure states. To 
determine the spin-orbit interaction energy, we must first 
decompose our basis into states of pure angular momentum. 
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-,E¢ 1" O l - 1  = ~ I-1 Or ~3 ¢i0 '~ 
2'2 

These six equations must be inverted to find the states like 

¢10 Ì  in terms of the total angular momentum states. Once 

this is done, we can substitute back into the definitions for 
the states like Px1` to get them in terms of the total angular 

momentum states. This procedure results in the following 
six equations: 

The first step in such a decomposition is to define 
what we mean by states like px $. The original three p 

states, Px, Py and Pz, are well known simple linear 
combinations of the three fundamental p states. That is: 

1 
P X = ~ [ ¢ I I +  ¢1-1] 

-i [ ¢11 -- ¢I-1 ] 
Pz = ¢10 

By using a natural extension of these equations, we make 
similar definitions for the spin up and spin down p states as 
exemplified in the following: 

px 1, : ~ 1  [¢1, +(I)11- ] 1" 

This formulation, however, is still in terms of mixed states. 
To decompose these mixed states into states of pure angular 
momentum, we must perform the addition of the spin and 
the orbital angular momentum to obtain the total angular 
momentum states. Applying standard Clebsch Gordan 
technique for the addition of angular momentum to the p 
electron states yields the following six equations6: 

(I)33 = (~11T wtm 
22 

1 1` 
(I)--3 L = ~ ¢11"1" + ~3 10 

2"2 

,/T2¢ ,I, l 
(I~3____-1 = ~3 l0 "Jr ~ ¢ 1 _ 1 T  

p 
2 2 

Cl)&-.3 = ¢i-i "I" 
2'2 

-1 '/72¢ Z CI~l__l = "~3-3 ¢101` + ~3 11 
22 

{ } = ~ • - ~  + 
PY1  ̀ ~ .3_.3 ~3" 3_--1 ~3 1-1 

22 2 2  T'T 

. -  _ } 
2'2 

pz T = - ~  (I)3_.,± - 1..2_ (~ 
,/3" ±± 

2 2 2'2 

pz J. ~ ( I )  + = ~  :_-_L ~O±__j.. 
2 2  2 2  

With these decompositions, the evaluation of terms 
like: 

< Px 1" I Hso I Px,I, > 

becomes straight forward. Because the pure states are 
orthogonal, many of the terms will be zero. Evaluation of 
all possible terms gives non-zero results only in the 
following cases: 

<px $ I H~ pyT> = - i L  

<px $ I Hso pz,L> = 

< pyTI Hso 

< px$1 Hso 

< Px,l, ] Hso 

pz,L > = - i  Z 

py$> = i7. 

pz T > = X 

< py,l. IHso pz $ >  = i7. 



Vol. 62, No. 6 CALCULATIONS FOR BULK AND SUPERLATTICE SE~IICONDUCTORS 

The matrix terms which are reflections about the diagonal of 
these terms, are also, of course, non zero since our 
Hamiltonian is Hermitian. The numerical values for the 
constant lambda are taken f~om measured atomic spin-orbit 
splitting. These values are corrected for the fact that the 
splitting will be slightly different in a crystal then in an 
isolated atom. Values for various elements are given by 
Chadi 7. 

One final observation must be made before the band 
structure can be calculated. This observation concerns the 
original basis. The tight binding Hamiltonian must 
conserve angular momentum. This fact tells us that there 
must be something wrong with our notion of what our 
original basis was. We had originally postulated that our 
basis contained all states of the same spin. However, 
straight forward inspection of the makeup of our states will 
show us that terms like: 

< p~?[ Htb I Pz 1" > 

must be zero. That is, all of the states which make up px ? 

are orthogonal to all of the states in pz 1". In the original 
formulation of the tight binding Hamiltonian, however, we 
need to have an interaction between the Px and the Pz states 
to preserve symmetry. This leads to the conclusion that 
although we were not aware of it, our original basis was 
actual/y: 

(S,Px$,Py$,Pz$) 
If we relabel the matrix rows and columns to reflect this and 
then put the spin-orbit terms in their correct places, we will 
notice that there are no terms outside of the two diagonal 
blocks which were defined by the tight binding interactions. 
The further observation that all of the entries in the lower 
block are complex conjugate to the terms in the upper block 
ensures that all Eigen values will be doubly degenerate. 
That is, we need only calculate the Eigen energies for one 
of the two blocks, or on a basis the size of our original one, 
in order to see the complete spin-orbit energy band 
structure. 
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Thus, we have a revised tight binding method which 
yields band structures including spin-orbit interactions. The 
most attractive feature of this method is that it does not 
increase the size of the basis over the standard tight binding 
formalism. The application of the technique to both bulk 
and superlattice tight binding bandstructure calculations is 
identical. The only change from a standard tight binding 
matrix will be an additional six terms per atom in the unit 
cell. 

Figure 1 depicts the top of the valence band for a 
typical diamond structure or zincblende bulk semiconductor 
as calculated by the tight binding model with and without 
spin-orbit interactions included. When spin-orbit 
interactions are ignored, the top of the valence band is a 
tripely degenerate state at the center of the Brillouin zone. 
Moving away from the zone center, the top two valence 
bands retain their degeneracy. Inclusion of the spin-orbit 
coupling removes much of this degeneracy. The lowest of 
these three bands is split off, and the upper two separate 
everywhere but at the gamma point. Figure lindicates the 
makeup of the bands very close to the band center. Moving 
away from the gamma point, these states are quickly 
contaminated. 

When performing tight binding calculations of 
superlattice bandstructure, the number of atoms in the 
minimal cell can be large. The order of the basis vector will 
be four times the number of atoms in the unit cell. For 
superlattices composed of many mono-layers of each type 
of material, this could necessitate performing an Eigen value 
solution on matrices with up to one hundred rows and 
bigger. Because of this, it is very important that any attempt 
to include spin-orbit interactions does not increase the size 
of the basis. The technique presented in this paper is ideal 
for this purpose. 

Figure two shows the calculated bandstructure, with 
and without spin-orbit interactions, for a (GaAs) 1 (AlAs) 1 
superlattice. Note that the effects of spin-orbit interaction 
on the top of the valence band are similar in superlattices to 
the effects in bulk semiconductors. In a superlattice, the 
upper two valence bands will not be degenerate even when 
spin-orbit terms are neglected, that is, although their masses 
are similar, there already is a light and heavy hole band. 
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Figure 1: Typical hole bandstructures for bulk III-V semiconductors as calculated by the tight 
binding method with and without spin-orbit interactions. The wavefunction makeup of each of the 
bands is shown. 
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Figure 2: Energy band structure for a (GaAs)I(A1As)I superlattice calculated by the tight binding 
model with and without spin-orbit interactions. "M" is the Brillouin zone edge in the (110) 
direction. "X" is the edge in the (100) direction. Note the loss of degeneracy at the top of the 
valence band. 

However, as can be seen in the figures, inclusion of 
spin-orbit coupling increases the difference between the 
effective masses of the top two hole bands. Coupling also 
splits off the third hole band in a superlattice as it does in 
bulk semiconductor material. Since the tight binding model 
is a fitting scheme, the band gaps and effective masses can 
be fit to measured values with or without spin-orbit 
interactions included in the model. But only with the 

inclusion of the spin-orbit terms can the wave functions and 
the degeneracies of the states at the top of the valence band 
be correctly modeled. 
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