BBA 42233 # Hydrogen peroxide as an alternate substrate for the oxygen-evolving complex # Wayne D. Frasch and Rui Mei Division of Biological Sciences, The University of Michigan, Ann Arbor, MI (U.S.A.) (Received 3 September 1986) Key words: Photosystem II; Oxygen evolution; Hydrogen peroxide; Oxygen-evolving complex Photosystem II reaction centers evolve O_2 in the dark when H_2O_2 is added as a substrate. Although some of this activity can be attributed to catalase, as much as 75% of the activity was not affected by the addition of 1 mM KCN. Several lines of evidence demonstrate that this KCN-insensitive O_2 evolution from H_2O_2 in the dark is catalyzed by the cycling of S states in the oxygen-evolving complex including: (1) inactivation of H_2O_2 -mediated O_2 evolution by Ca/EDTA washing; (2) susceptibility of the activity to inhibition by amines like ammonia and Tris; (3) inhibition by CCCP which is known to accelerate the rate of deactivation of the S_2 state and; (4) a direct dependence of the rate of O_2 evolution on the presence of calcium and (5) chloride. ### Introduction drazone. Photosynthetic oxygen evolution is catalyzed by the oxygen-evolving complex by cycling through five stable or semistable intermediate states known as S states [1,2]. By studying the interactions of flash-illuminated chloroplasts with hydrogen peroxide, Velthuys and Kok [3] found that H₂O₂ causes a two-electron donation to the oxygenevolving complex which reduces S_2 to S_0 and S_1 to S_{-1} in the dark. At the same time, H_2O_2 can cause a two-electron oxidation of the oxygen-evolving complex to regenerate S_2 and S_1 from S_0 and S_{-1} , respectively. Thus, it was proposed that the oxygen-evolving complex uses H₂O₂ in the dark as a substrate for catalase-like activity that utilizes a cycle between S_0 and S_2 or S_{-1} and S_1 . In this cycle, it was hypothesized that two molecules of Abbreviations: Mes, 4-morpholineethanesulfonic acid; PS II, Photosystem II; CCCP, carbonyl cyanide *m*-chlorophenyl hy- Correspondence: W.D. Frasch, Division of Biological Sciences, The University of Michigan, Ann Arbor, MI 48109, U.S.A. H₂O₂ dismute to form two water molecules and one molecule of oxygen. The conversion of hydrogen peroxide to oxygen by Photosystem II has also been examined in the light [4–7]. Under these conditions, an electron acceptor on the reducing side of PS II is required. Free manganese was found to have an essential role in this light-dependent reaction, since the addition of EDTA abolished the effect [7]. The source of this free Mn may result from the release of Mn from the oxygen-evolving complex in the presence of H₂O₂ and light, since Sandusky and Yocum (personal communication) have found that addition of H2O2 in the light will cause the release of manganese in intact thylakoids. Ghanotakis et al. [9] found that the release of manganese and inactivation of photosynthetic O₂ evolution from the oxygen-evolving complex caused by H₂O₂ and light was accelerated when the extrinsic 23 and 17 kDa proteins were removed. Sayre and Homann [10] suggested that H_2O_2 may be produced by the oxygen-evolving complex upon illumination. The recent observation [11,12] that inside-out thylakoids depleted of the 23 and 17 kDa proteins produced significant amounts of H₂O₂ upon illumination supports and extends this hypothesis. In thylakoids as well as PS II preparations, the rate of oxygen-evolving complex-catalyzed O2 evolution in the dark from H₂O₂ is barely detectable above the large background of O2 evolution catalyzed by the high abundance of catalase that is also present [3]. We have examined the evolution of O_2 from H_2O_2 in the dark that is catalyzed by PS II reaction centers prepared as per Ghanotakis and Yocum [13]. We observed that the final step of purification of these reaction centers removes the majority of this catalase activity. The experiments described here indicate that in darkness, H₂O₂ is not inhibitory to the oxygen-evolving complex but that the cyanide-insensitive O₂ evolution from H₂O₂ is catalyzed specifically by the oxygen-evolving complex of PS II. ## Methods and Materials Photosystem II preparations were isolated from spinach by a modification of the Bertold et al. [14] procedure as described by Bowlby and Frasch [15]. These PS II preparations were used to make PS II reaction centers as described by Ghanotakis and Yocum [13]. These reaction centers exhibited rates of O_2 evolving activity of 1150–1285 μ mol O_2/mg Chl per h. Photosynthetic O_2 evolution from PS II preparations was measured with a Clark-type electrode with 3 μg of Chl/ml in a 2 ml reaction vessel, 250 μM dichlorobenzoquinone and 3 mM ferricyanide as an electron acceptor and 2 mM sucrose, 50 mM Mes (pH 6.0) and 10 mM NaCl. Photosynthetic O_2 evolution from PS II reaction centers was measured as described above but with the substitution of 10 mM CaCl₂ for NaCl. Oxygen evolution from H_2O_2 in darkness was measured in 50 mM Mes (pH 6.0), 10 mM CaCl₂, 50 μ M KCN, 2 mM sucrose and 80 mM H_2O_2 except where otherwise indicated. The reaction was started by the addition of 1.5 μ g of Chl/ml of PS II reaction centers. Removal of the manganese from the oxygenevolving complex by Ca(II)/EDTA-washing was done at 4°C by incubating reaction centers (100 µg Chl/ml) for 1 h in 1 M CaCl₂, before pelleting the membranes in a microfuge, resuspending the pellet in 50 mM Mes (pH 6) to wash the membranes, then pelleting as before and resuspending in 50 mM Mes (pH 6) with 20 mM EDTA. After a 15 min incubation, the EDTA solution was removed by centrifugation as before. The membranes were washed once in Mes (pH 6) before final resuspension in the same buffer. The concentrations of free Ca(II) and free Mn(II) in the presence of EDTA was calculated by successive approximation using the stability constants for CaEDTA and MnEDTA from Martell and Smith [16]. #### Results Cyanide insensitivity Even highly purified PS II preparations contain substantial amounts of catalase. In the presence of 400 mM $\rm H_2O_2$, the rate of $\rm O_2$ evolution in darkness was 17 mmol $\rm O_2/mg$ Chl per h. Since catalase is inhibited by low concentrations of cyanide, the fraction of $\rm O_2$ evolution that is attributable to catalase can be determined. Fig. 1 shows the effect of KCN on the rate of $\rm O_2$ evolution catalyzed by Photosystem II preparations using $\rm H_2O_2$ in darkness. The vast majority of the activity catalyzed by PS II preparations was inhibited by low con- Fig. 1. Inhibition by KCN of O_2 evolution in darkness with H_2O_2 as substrate catalyzed by Photosystem II preparations (\bigcirc) or by PS II reaction center preparations (\bigcirc). The membranes were prepared and rates of O_2 evolution were assayed as described in Methods and Materials. The hydrogen peroxide concentration during the assay was 400 mM. The rates of O_2 evolution in the dark in the absence of inhibitor were 17031 and 545 μ mol O_2 /mg Chl per h for the PS II preparations and PS II reaction center preparations, respectively. centrations of KCN. With more than 95% of the observable O_2 evolution resulting from catalase, it was impossible to measure accurately the rate which may have resulted specifically from the oxygen-evolving complex. However, purification of the PS II reaction centers from this PS II preparation yields membranes that are relative free of cyanide sensitive O_2 evolution. In reaction centers where the rate of photosynthetic O_2 evolution is 1280 μ mol O_2 /mg Chl per h, a rate of 545 μ mol O_2 /mg Chl per h could be observed in the dark upon addition of H_2O_2 . As shown in Fig. 1, 75% of this rate was insensitive to 1 mM KCN. The cyanide-insensitive O_2 evolution from H_2O_2 was examined to determine whether it originated from the oxygen-evolving complex. Washing membranes in 1 M CaCl₂ removes the 33 kDa protein and destabilizes the manganese of the oxygen-evolving complex such that the Mn is gradually released form the membrane [17]. Loss of the Mn in this manner results in irreversible inactivation of photosynthetic O2-evolving activity. Table I shows the effect of the Ca/EDTA washes and the effect of KCN on the rate of photosynthetic O2 evolution and O2 evolution in the dark with H₂O₂ as substrate catalyzed by reaction centers. The Ca/EDTA washes abolished photosynthetic O₂-evolving activity and decreased the dark H₂O₂-dependent activity to 35% of the control. The addition of 50 µM KCN to the reaction centers reduced the rate of H₂O₂-dependent O₂ evolution by about 40%, which is approximately the proportion of Ca/EDTA insensitive activity. In fact, the addition of 50 µM KCN to Ca/EDTA-washed membranes was sufficient to inhibit all of the O₂-evolving activity that remained. Similar results were obtained when the membranes were illuminated in 0.8 M Tris (pH 8.4) and washed with 20 mM EDTA to remove manganese from the oxygen-evolving complex (data not shown). # Involvement of the S, state Several reagents will affect the S₂ state during photosynthetic O₂ evolution. If the dark-catalyzed O₂ evolution from H₂O₂ occurs via the two S-state cycles as hypothesized by Velthuys and Kok [3], the S₂-S₀ cycle should be affected by these reagents. Fig. 2 shows the effect Tris on the O₂ evolution from H₂O₂ in darkness. Up to about 40% of the activity was inhibited by the presence of this amine during the reaction. Ammonium sulfate and NH₄Cl caused inhibition of the dark O₂ evolution in a similar manner (Fig. 3). The concentration dependence of these amines was approximately the same as observed previously for photosynthetic O₂ evolution [18,19]. The anion associated with this inhibitor also had a significant effect on the concentration dependence but not the maximal extent of inhibition induced by ammonia. Lower concentrations of the amine were required to achieve maximal inhibition when sulfate was the counter ion than when chloride was used. The antagonistic effect between ammonia and chloride for inhibition of dark O₂ evolution supports the involvement of the S₂ state in this process, since it has been hypothesized that unprotonated ammonia inhibits photosynthetic O₂ evolution by displacing the chloride that is required by the oxygen-evolving complex to progress beyond the S_2 state [20–23]. The dependence on Cl⁻ of the rate of dark O₂ TABLE I THE EFFECT OF INACTIVATION OF PHOTOSYNTHETIC O_2 EVOLUTION BY RELEASE OF MANGANESE ON THE RATE (v) OF O_2 EVOLUTION FROM H_2O_2 IN DARKNESS | Treatment | $H_2O \xrightarrow{h\nu} O_2^a$ | | $H_2O_2 \rightarrow O_2$ | | $H_2O_2 \xrightarrow{+50 \mu M KCN} O_2$ | | |--------------------------------|---------------------------------|-----|--------------------------|-----|--|-----| | | \overline{v} | % | \overline{v} | % | \overline{v} | % | | Control | 1250 | 100 | 563 | 100 | 333 | 100 | | CaCl ₂ /EDTA-washed | 0 | 0 | 195 | 35 | 0 | 0 | ^a Photosynthetic O₂ evolution as described in Methods and Materials. Rates are expressed as $\mu \mod O_2/mg$ Chl per h. Fig. 2. Inhibition by Tris of O_2 evolution in darkness with H_2O_2 as substrate catalyzed by PS II reaction center preparations. The concentrations of Tris indicated were added directly to the assay vessel in darkness. The rate of O_2 evolution from H_2O_2 in the absence of Tris was 333 μ mol O_2/mg Chl per h. evolution from H_2O_2 was examined directly in Fig. 4. Depletion of the chloride from these reaction centers by dialysis was sufficient to eliminate all of the photosynthetic O_2 evolving activity in a reversible manner. However, the chloride-depleted membranes were still capable of evolving significant amounts of O_2 from H_2O_2 in the dark. This latter rate of O_2 evolution was dependent on the Fig. 3. Inhibition by ammonia of O_2 evolution in darkness with H_2O_2 as substrate catalyzed by PS II reaction center preparations. Ammonia was added to the reaction vessel as either ammonium sulfate (\blacksquare) or as ammonium chloride (\blacksquare) and is expressed as the total concentration of the protonated and unprotonated amine species. The rates of O_2 evolution in the absence of inhibitor were 593 μ mol O_2 /mg Chl per h. Fig. 4. Activation by chloride of the rate of O_2 evolution in darkness with H_2O_2 as substrate catalyzed by PS II reaction center preparations. The reaction center membranes were depleted of Cl^- by washing in Mes (pH 6), then dialysing the membranes in the same buffer for 3 h at 4°C. The rate of photosynthetic O_2 evolution prior to Cl^- depletion was 930 μ mol O_2/mg Chl per h and after depletion was as indicated by the open circles. The rate of O_2 evolution from H_2O_2 in darkness after depletion of chloride is indicated by the closed circles presence of Cl⁻ and was found to increase up to about 2-fold upon addition of the anion. The concentration dependence for the enhancement of the rate by Cl⁻ was similar to that observed for photosynthetic O₂ evolution [13]. Fluoride, known to compete with the binding of Cl⁻ in the oxygen-evolving complex and inhibit photosynthetic O₂ evolving activity [23], also inhibits O₂ evolution from H₂O₂ in darkness, as shown in Fig. 5. As with other inhibitors specific to the S₂ state, F⁻ effectively removed only about half of this activity in darkness. The rate of deactivation of the S_2 state is greatly accelerated by reagents like CCCP [24]. The effect of CCCP on the rate of O_2 evolution from H_2O_2 is shown in Fig. 6. Concentrations of CCCP comparable to those known to accelerate deactivation of the S_2 states were found to inhibit this O_2 evolution in darkness. However, concentrations higher than 1 μ M CCCP did not decrease the activity below 50% of the control. # The role of divalent cations The reaction-center preparation used for these assays is lacking the 23 kDa protein. Under such Fig. 5. Inhibition by fluoride of the rate of O_2 evolution catalyzed by PS II reaction centers in darkness with H_2O_2 as substrate. The rate of O_2 evolution was 491 μ mol O_2 /mg Chl per h in the absence of inhibitor. conditions, rates of photosynthetic O_2 evolution are about one-third of the rate that can be achieved if 5 mM Ca(II) is added [13]. The partial dependence on Ca(II) of the rate of O_2 evolution from H_2O_2 in the dark is confirmed by the experiment shown in Fig. 7. In the absence of Ca(II), a rate of 520 μ mol O_2 /mg Chl per h was observed. This rate increased more than 2-fold upon addition of the divalent cation until a maximal rate was observed at 5 mM Ca(II). These results are comparable to the dependence of photosynthetic O_2 Fig. 6. Inhibition by CCCP of the rate of O_2 evolution catalyzed by PS II reaction centers in darkness with H_2O_2 as substrate. The rate of O_2 evolution in the absence of CCCP was $186 \ \mu \text{mol } O_2/\text{mg}$ Chl per h. evolution on Ca(II) in terms of the fraction of residual activity, extent of enhancement of activity and the concentration dependence on Ca(II). The effect of the rate of O_2 from H_2O_2 in darkness on the concentration of divalent cations was also determined by the addition of EDTA. The manganese concentration in the assay that is associated with the oxygen-evolving complex was estimated to be 0.15 μ M. Assuming all of this Mn was accessible to EDTA, the concentration of free Mn(II) and Ca(II) in the presence of EDTA was determined by iteration using the stability constants for the EDTA complexes of these cations [16]. Because the stability constant of MnEDTA is three orders of magnitude tighter than that of CaEDTA, addition of 0.1 mM EDTA was enough to completely remove the manganese from the solution in the presence of 5 mM calcium, even if all 0.15 µM Mn in the sample were solvent-accessible. However, as denoted by the squares in Fig. 7, addition of the EDTA affected the rate of O₂ evolution from H₂O₂ in the dark in a manner similar to the depletion of Ca(II) alone. This suggests that H₂O₂ does not cause the release of Mn from the oxygen-evolving complex in the dark. These conclusions are supported further by the observation that addition of Mn(II) to the assay does not facilitate the rate of O₂ evolution from Fig. 7. The dependence on calcium of the rate of O_2 evolution catalyzed by PS II reaction centers in darkness with H_2O_2 as substrate. The rates are plotted as a function of the addition of $CaCl_2$ to the assay (O) and as a function of the depletion of Ca(II) from the assay by the addition of EDTA in the presence of 5 mM Ca(II) (III). The concentration of free Ca(II) after the addition of EDTA was determined as described in Methods and Materials. TABLE II THE EFFECT OF FREE MANGANESE ON THE RATE OF O_2 EVOLUTION IN DARKNESS FROM H_2O_2 | Ca(II)
(mM) | Mn(II)
(mM) | EDTA
(mM) | v (μmol O ₂ /
mg Chl per h) | |----------------|----------------|--------------|---| | 5 | 0 | 0 | 758 | | 5 | 0 | 0.1 | 720 | | 5 | 0.11 | 0.1 | 657 | | 5 | 0.20 | 0.1 | 558 | H₂O₂ in darkness (Table II), but inhibits it. The cause of this inhibition is unclear but may result from competition for the binding of Ca(II). #### Discussion The results described above demonstrated that the O_2 evolved in darkness from reaction centers when H_2O_2 is used as a substrate is catalyzed by the oxygen-evolving complex. This evidence includes: (i) cyanide insensitivity, which shows that the activity does not originate from catalase; (ii) inactivation by Ca(II)/EDTA washing or by Tris-washing; (iii) inhibition by Tris, ammonia, fluoride or CCCP; (iv) a direct dependence of the rate on calcium and (v) on chloride. Velthuys and Kok [3] proposed a model for the conversion of H₂O₂ to O₂ catalyzed by the oxygen-evolving complex. In this model, the S_0 state can be oxidized to S₂ by H₂O₂ to yield water. The S_2 state can then catalyze the oxidation of H_2O_2 to O_2 to return to the S_0 state (Fig. 8A). From flash yield experiments, these workers hypothesized that a cycle that involves the S₁ and S_{-1} states could evolve O_2 from H_2O_2 as well. Several of the experiments reported here support the hypothesis that both a cycle that involves S, and one independent of S₂ operate to evolve O₂ evolution from H₂O₂ in darkness. The reagents that are believed to inhibit S2 specifically, which include ammonia [18] Tris [19] and fluoride [23], inhibit this activity in the dark. The reagent CCCP, known to accelerate the rate of deactivation of the S_2 state [24] and keep the concentration of S_2 low, also is inhibitory. Several lines of evidence suggest that chloride is required for the formation of a competent S₂ state [20-23] and it has been suggested that the chloride is required as a bridging ligand between the manganese of the oxygenevolving complex [20]. As with the other S_2 -specific processes, depletion of chloride also inhibits O_2 evolution from H_2O_2 in the dark. However, although all of these treatments affect this activity, none is able to decrease the rate of O_2 evolution by more than 50%, which suggests that the oxygen-evolving complex can evolve O_2 via a cycle that does not involve S_2 as well. The S_2 - S_0 hydrogen peroxide cycle was believed to be more efficient than the S_1 - S_{-1} cycle [3]. The membranes used in the current study were dark adapted such that the ratio of S_1 to S_0 was approx. 75:25. Since the S_2 -specific inhibitors induced up to 50% inhibition, the S_2 - S_0 cycle must be responsible for a greater fraction of the activity when both cycles are free to evolve O_2 from H_2O_2 . In previous studies where H_2O_2 is used as an alternate substrate for O₂ evolution by PS II, the membranes have been illuminated [4-7]. This reaction has been found to depend on the presence of Mn(II) in solution and can be inhibited by low concentrations of EDTA [7]. In the present study, concentrations of EDTA that will remove all of the manganese free in solution during the assay did not affect the rate of O₂ evolution from H₂O₂ in darkness as long as enough Ca(II) was available. This suggests that H₂O₂ in darkness does not cause the release of free Mn from the oxygenevolving complex and that Mn is not required for O₂ evolution from H₂O₂. The dependence of light-mediated O₂ evolution from H₂O₂ on manganese in solution suggests that this process may be mediated by the mechanism shown in Fig. 8B. In this mechanism, light causes the formation of higher S states. Hydrogen peroxide interacts with the higher S states to cause the release of Mn from the oxygen-evolving complex. The light then Fig. 8. Proposed mechanisms for O_2 (A) evolution from H_2O_2 (A) in the dark after Velthuys and Kok [3], and (B) during illumination. generates the oxidant, Z⁺, which is capable of oxidizing Mn(II) in solution under conditions in which the oxygen-evolving complex is inhibited. The oxidized manganese catalyzes the oxidation of H_2O_2 to O_2 . In this reaction, H_2O_2 does not cause the interconversion of the S states of the oxygenevolving complex. This mechanism is supported by recent observations of Sandusky [25] and Yocum that show that H₂O₂ causes the release of Mn from the oxygen-evolving complex upon illumination. Since Velthuys and Kok [3] found that the addition of H₂O₂ upon formation of the S₃ state was not inhibitory but promoted the S₁-S₋₁ cycle, H₂O₂ may induce the release of Mn from the oxygen-evolving complex upon formation of the S_{4} state. The results presented here show that H_2O_2 can cause the direct interconversion of the S states. This reaction provides an assay for the oxygenevolving complex which is independent of the photoreaction and allows the substrate concentration to be varied. ## Acknowledgements This study was supported by research grants from the National Science Foundation (DMB-8604118), the Rackham Foundation, the Office of Energy Research and a National Institutes of Health Biomedical Research Support Grant to the Vice President for Research to W.D.F. ## References - 1 Kok, B., Forbush, B. and McGloin, M. (1970) Photochem. Photobiol. 11, 457-475 - 2 Forbush, B., Kok, B. and McGloin, M. (1971) Photochem. Photobiol. 14, 307-321 - 3 Velthuys, B. and Kok, B. (1978) Biochim. Biophys. Acta 502, 211-221 - 4 Inoue, H. and Nishimura, M. (1971) Plant Cell Physiol. 12, 739-747 - 5 Takahama, U., Inoue, H. and Nishimura, M. (1974) Plant Cell Physiol. 15, 971-978 - 6 Takahama, U., Inoue, H. and Nishimura, M. (1974) Plant Cell Physiol. 15, 979-986 - 7 Velthuys, B. (1983) in The Oxygen-Evolving System of Photosynthesis (Inoue, Y., Crofts, A.R., Govinjee, Murata, N., Renger, G. and Satoh, K., eds.), pp. 83-90, Academic Press, Tokyo - 8 Reference deleted - 9 Ghanotakis, D., Topper, J.N. and Yocum, C.F. (1984) Biochim. Biophys. Acta 767, 524-531 - 10 Sayre, R.T. and Homann, P.H. (1979) Arch. Biochem. Biophys. 1996, 525-533 - 11 Åkerlund, H.-E. (1984) in Advances in Photosynthesis Research (Sybesma, C., ed.), Vol. I, pp. 391-394, Martinus Nijhoff/Dr. W. Junk, Dordrecht - 12 Schröder, W.P. and Åkerlund, H.-E. (1986) Biochim. Biophys. Acta 848, 359–363 - 13 Ghanotakis, D.F. and Yocum, C.F. (1986) FEBS Lett. 197, 244-248 - 14 Bertold, D.A., Babcock, G.T. and Yocum, C.F. (1981) FEBS Lett. 134, 231-234 - 15 Bowlby, N.R. and Frasch, W.D. (1986) Biochemistry 25, 1402-1407 - 16 Martell, A.E. and Smith, R.M. (1974) Critical Stability Constants, Vol. I, pp. 204-211, Plenum Press, New York - 17 Ono, T. and Inoue, I. (1984) FEBS Lett. 168, 281-286 - 18 Velthuys, B. (1975) Biochim. Biophys. Acta 396, 392-401 - 19 Frasch, W.D. and Cheniae, G.M. (1980) Plant Physiol. 65, 735-745 - 20 Sandusky, P.O. and Yocum, C.F. (1984) Biochim. Biophys. Acta 766, 603-611 - 21 Itoh, S., Yerkes, C.T., Koike, H., Robinson, H.H. and Crofts, A.R. (1984) Biochim. Biophys. Acta 766, 612-622 - 22 Theg, S., Jursinic, P. and Homan, P. (1984) Biochim. Biophys. Acta 766, 636-646 - 23 Sandusky, P.O. and Yocum, C.F. (1986) Biochim. Biophys. Acta 849, 85–93 - 24 Renger, G. (1972) Biochim. Biophys. Acta 256, 428-439 - 25 Sandusky, P.O. (1985) Ph.D. Dissertation, University of Michigan, Ann Arbor, MI