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An approximation to the non-relativistic Coulomb propagator, correct to second order in fi, is derived. The result is ex- 
pressed in terms of the auxiliary variables introduced in the solution of the corresponding Hamilton-Jacobi equation. 
Higherarder contributions can be computed as required, but no explicit summation of the expansion has yet been found. 

in a recent article [l] we described a time-depen- 
dent WKB expansion technique for propagators which 
do not conform to the simple Feynman structure K 
= F(t) exp(iS/A). The method was applied to the radi- 
al propagators for multidimensional harmonic oscilla- 
tors, yielding explicit summations both as asymptotic 
expansions in ascending powers of A and as convergent 
expansions in descending powers of tt. These sums 
were, in fact, identified as alternative representations 
for a Bessel function. 

In the present paper we shall apply this method to 
the non-relativistic Coulomb propagator, for which no 
closed form yet exists (for a review of the current sta- 
tus of the problem, see ref. [2]). This remains a long- 
missing element in Feynman’s path-integral formula- 
tion of quantum mechanics. Further study of the 

Coulomb propagator, representing the prototype sys- 
tem in the quantum theory of matter, is intrinsically 
valuable. In addition, the potential for application to 
atomic physics and quantum chemistry is yet to be 
fully exploited. In earlier work we have solved for 
the zeroth-order (classical) [3] and first-order (semi- 
classical) approximations [4]. We will arrive at an ex- 
pansion in ascending powers of A which we will exhib- 
it explicitly to second order. We are not able at this 
time to sum the series. 

The Coulomb propagator is the solution of the 
time-dependent S&r&linger equation 

iaK/at+;V;Kt(Z/q)K=O (1) 

subject to the initial condition 

K(rl,~2,0)=Url -Q). (2) 

We employ atomic units, A = e = m = 1, but restore A 
for use as an expansion parameter. It has been shown 
[2] that the propagator can be reduced to the form 

K(x,v,f)=-& g-5 
( 1 

k(X,Y, t) (3) 

in terms of the variables 

x=r1tr2+r12, y=r1tr2-r12, (4) 

such that (1) reduces to a pseudo one-dimensional 
form 

: i/c, + k,, t (Z/x) k = 0 

subject to the initial condition 

(9 

k&y, 0) = 6(x -Y) . (6) 

The variables x andy were introduced by Hostler, 
who first derived a closed form for the (time-indepen- 
dent) non-relativistic Coulomb Green’s function [S]. 
The dependence on just these two combinations of 
variables, whereas rotational symmetry alone would 
imply three variables, say rl, r2, r12, is a consequence 
of the SO(4) [or SO(3, l)] dynamical symmetry of 
the Coulomb problem. This is connected as well with 
the additional constant of the motion: the Runge- 
Lenz vector [6]. 

As shown by Feynman and others [7], for Hamil- 
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tonians expressible as quadratic forms in generalized 

coordinates and momenta, the propagator has the 
structure 

K(41,42,t)=F(t)exp[iS(41,42,t)/Al (7) 

in which S is the classical action, the solution of the 
corresponding Hamilton-Jacobi equation. The mod- 
ulating function F, dependent on t alone, usually 
follows easily from the time-dependent Schrijdinger 
equation with its associated initial condition. 

For non-harmonic potentials, including the 
Coulomb problem, the simple structure (7) no longer 
suffices. We propose to represent the propagator 

k(x,y, t) (cf. eq. (3)) in the slightly more general 
form 

k(x,y, 0 = f(x,r, t) expV(x,y, WI , (8) 
with the preexponential factor now free to contain 
dependence on x andy, as well as t. Substituting (8) 
into (5) gives 

-(is, t Sz - Z/x)ft ifi(ift t 2S, fx t S,,f) 

t@fxx =o. (9) 

In the limit A + 0, eq. (9) reduces to the classical 
Hamilton-Jacobi equation for the Kepler-Coulomb 

problem, 

:s,ts~-z/x=o. (10) 

The solution, which we obtained a long time ago [3], 
can be expressed as 

S = v [sinh(h - cl> cosh(X + p) + 3(h - cl)] , (11) 

in terms of the auxiliary variables X, P, v defined by 
the followi’ng network of implicit relations: 

Zx = 4v2 sinh2h , Zy = 4v2 sinh2E.c , 

Z2t = 2~3 [sinh(A - /L) cosh(X + /L) - (X - P)] . (12) 

As done in ref. [ 11, we assume an expansion of 
f(x,y, t) in ascending powers of A: 

f(x,r, t) =n$ (w”fqx,Y, t) . (13) 

With use of (10) and (13), eq. (9) is transformed to a 
recursive relation for the f @1(x, y, t): 

1 2 ft 07) +W;f,‘n’+S,,fw =fJ(xn_l). (14) 

For further progress, we must reexpress eq. (14) in 
terms of the h, cl, v variables. To transform the deriv- 
atives we require the elements of the Jacobian matrix 

a (h, P, v)/a (x, y , t) enumerated in the array given in 

table 1. For compactness, the following abbrevia- 
tions will be employed: S, = sinh h, C, = cash h, S,, 
= sinh ~1, C,, = cash j,~. Also we have defined 

j(h) E $ t 3S, - 3?CA , 

J(kCc)~C,j@)-CAI’Q. (19 

The following identities are readily verified: 

Chj’@) = Shj(h) t 2Sz , 

C,J,, = &,J + 2S;C, (JA = aJ/ah) , 

CpJp =SpJ - 2S;Ck (Jll = aJ/a/.i) . (16) 

The x-derivatives of the action function can now be 
expressed as 

C, 
-- SX - 2vS, ’ S xx =--&($-2). (17) 

Also 

(18) 

Remarkably, eq. (14) with n = 0 reduces to an ordi- 
nary differential equation for f co), 

Table 1 

X Y t 

A l/Ev’SxC,, +S~Cp/4~2C~J - S&/4 v2 J -- ShCp/2 v3 J 

U ShS,/4v2J l/8vZS,& - C&/4v2C,J - C&I2dJ 
v - ShCp/4vJ C&/4 VJ C,C,lZ v2 J 
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--&[? +;(+-$)f(u)] =O. (19) 

The solution is of the form 

f(O) = (S,/J)1/2 X function of p, v . m 

The symmetry between h and I-( implies further that 

f(O) = (S,S,/#12 X function of v . (21) 

It seems reasonable, given the structure of the above 
formulas involving the auxiliary variables, that the 
dependence on v takes the form: const. P. In fact, 
for (Y = -312 and 

f(O) = (Z2/4ni)1/2 v-3/2 (SASP/@12 , (22) 

the semiclassical approximation to the Coulomb prop- 

agator 

k 0 f(O) exp(S/h) (23) 

satisfies the initial condition (6). It is not necessarily 
true, however, that the same value of o is appropriate 
for the complete tt expansion, which is an asymptotic 
series. 

With use of (19), eq. (14) can be recast in the form 

f(O) & (L!?) = 8v3s;f,(!y . (24) 

The x-derivatives in (24) must now be expressed in 
terms of A, n, v. For functions of the form 

f = r++#G, cl) (25) 

we find from the preceding transformation formulas 

(26) 

The requisite derivatives and integrals of the products 

Ps;cA Cf S;C;J” (27) 

are evaluated in symbolic form by a computer program. 
Thereby eq. (24) can be solved sequentially to any 
order n. We display explicitly only the function, f(l), 
which has the structure 

f(l) = V-if@' m$o r&m)/JM , 
(‘W 
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with 

5 (S:c,” - C,3$)2 
#(1,3) =-_- 

12 c3c3 ’ h P 

5 (S:c,” - c;s;> + 1 cs:c, - c,‘s;, 
f+5w) = ; 

c&T,’ 3 
C&I 

1 s^2s; 
----&Cc,CP) 

8 CkCp 

1 CS$p - w/J _9_ w, - cm 
PTO) = iz w, 32 cc h P 

1 ($C,’ - C,‘S,‘) 
+zi c3c3 * 

(29) 
A P 

Each increment of n generates four additional nega- 
tive powers of J(X, p). The successive orders f @) in- 
crease rapidly in complexity and follows no readily 
discernible pattern. 
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