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GROWTH AND PROPERTIES OF QUASIPERIODIC HETEROSTRUCTURES
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We have recently demonstrated the MBE growth of heterostructures in which layers of GaAs and AlAs were deposited in a
Fibonacci sequence. This yields a quasiperiodic structure with the ratio of incommensurate periods equal to the golden mean, 7. We
present an overview of the unique structural, electronic, and vibrational properties of this new class of materials emphasizing the role
of the incommensurate structure normal to the layers. Inevitably, defects are introduced by growth fluctuations but do not appear to
disrupt significantly the special characteristics which originate from the quasiperiodic ordering.

1. Introduction

The MBE technique lends itself ideally to the
artificial structuring of layered materials on
nanometer length scales. Over the past fifteen
years much effort has gone into making hetero-
structures which have periodically repeating layers,
i.e., superlattices. Recently, a new class of hetero-
structure was demonstrated in which the con-
stituent layers are deposited not in a periodic
fashion but according to a predetermined, yet
non-repeating, mathematical sequence based on
the Fibonacci series [1]. This yields a so-called
“quasiperiodic” (or incommensurate) structure
with very interesting and unusual properties.

It has long been recognized that quasiperiodic
ordering could offer interesting possibilities for
experimental studies of novel physical phenomena
[2]. The motivation for this was, in large part,
theoretical work on quasiperiodic one-dimensional
(1D) wave equations revealing spectra and eigen-
states state are quite unlike those of periodic or
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random 1D systems [3]. The major problem in
fabricating quasiperiodic structures has been the
fact that simple incommensurate modulations re-
quire increasingly larger layer thicknesses to ap-
proach the irrational limit. Layer deposition in
sequences generated by special growth rules pro-
vides a solution to this problem [1]. Heterostruc-
tures grown according to these sequences show a
degree of quasiperiodicity that is determined not
by the width of individual layers (which is arbi-
trary), but by the thickness of the sample [1].

A number of studies [5—9] have focussed on the
class of structures derived from the Fibonacci
sequence. The general properties of these materials
and results of our specific experiments on
Fibonacci GaAs-Al Ga,_, As heterostructures
are discussed in this paper.

2. Structural properties and X-ray scattering

One way to make a quasiperiodic heterostruc-
ture is to deposit the layers in a Fibonacci series
such that each succeeding generation of the series
is the sum of the previous two. Accordingly,.the
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arrangement of layers is built up as follows:

A
AB
ABA

ADA AD
ABDAAD

ABAAB ABA
ABAABABA ABAAB
..etc.

In order to obtain a Fibonacci superlattice, one
simply replaces A and B by two arbitrary blocks
of layers [1,7]. The resulting structure is shown
schematically in fig. 1. This arrangement leads to
a structure which shows two basic reciprocal peri-
ods in a ratio given by the golden mean 7=(1
+v/5)/2, perpendicular to the layers [1]. The as-
sociated structure factor consists of a dense set of
components such that diffraction peaks are ex-
pected at wavevectors given by k = 2ad”! (m+
nt), where m and n are integers and d = 7d, + dy;

GaAs

NV
Bl

GaAs

GoAs

N \A\{(Axf‘\\
GaAs

DN

0.25 um
MBE GaAs

......

SI GaAs

Fig. 1. Schematic arrangement of GaAs and AlAs layers in a

Fibonacci sequence ABAABABA... For the sample consid-

ered in section 2, the AlAs strata are nominally of identical
thicknesses ( ~17 A); da =59 A, dp =37 A.
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Fig. 2. (a) Synchrotron X-ray data (dots) and calculated dif-

fraction profile for the ideal Fibonacci structure (solid line);

the sample is described in section 2. (b) Indexing of strong

peaks in a low-resolution scan. Shaded region shown expanded
in (a).

d, and dy are the thicknesses of the building
blocks A and B [1].

X-ray diffraction patterns have been obtained
[4] from a Fibonacci heterostructure consisting of
A=[17 A AlAs-42 A GaAs] and B=[17 A
AlAs-20 A GaAs]; the sample was grown by
molecular beam epitaxy on a (001) GaAs sub-
strate. The patterns for k parallel to [001], in fig.
2, demonstrate many of the unusual properties of
quasiperiodic ordering. The synchrotron X-ray
data indicate that, at least up to the instrumental
resolution (= 0.0015 A FWHM), the diffraction
peaks do indeed form a dense set. Moreover, the
measurements agree remarkably well with the
calculated profile for an ideal Fibonacci structure
(solid curve in fig. 2) [4]. This, and also numerical
simulations {4], show that quasiperiodic ordering
is largely insensitive to the unavoidable random
fluctuations in the growth parameters such as the
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deposition fluxes and the timing of the source
shutters. A further interesting effect is observed in
the extended low-resolution scan of fig. 2b; the
dominant zinc-blende peaks and their satellites
can be expressed as k =2xd 77, with integer p.
This behavior results from d, /d being close to 7
in our sample [4]. It is not a general feature of
Fibonacci heterostructures.

3. Electronic and optical properties

Tight-binding models describing electrons in
Fibonacci structures have been studied by several
authors [6-9]. The spectrum is a Cantor set char-
acterized by clusters of eigenvalues that divide
into three subclusters [6-9). The wavefunctions
are critical (i.e., neither localized nor extended)
exhibiting either self-similar or chaotic behavior
[8,9]. This applies only to bulk states; finite sam-
ples can further show solutions localized at the
surfaces [8].

Investigations of the electronic structure of
Fibonacci GaAs—Al Ga;_ As heterostructures
using standard optical probes reveal mainly ex-
citonic features. The example of a structure with
A =[20 A Al,,Ga,,As—40 A GaAs] and B =20
A Al,,Ga,,As—20 A GaAs] is given in fig. 3a.
Fig. 3b shows results of effective-mass calcula-
tions of the electron, heavy-hole and light-hole

spectra of this sample, for motion normal to the
layers. These results were used to further de-
termine the Im(x) versus photon-energy plots
shown in fig. 3a. The comparison with the experi-
mental data indicates a correlation between the
positions of the exciton peaks and the largest
calculated plateaus; the latter reflect major gaps in
the 1D spectrum of fig. 3b. Since surface states
may also occur at these gaps, it is not clear whether
the excitons derive from bulk critical states or
from quasi-2D states localized at the surface.

4. Raman scattering by acoustic phonons and vibra-
tional properties

The spectrum of phonons in 1D Fibonacci
lattices shows a self-similar hierarchy of gaps which
decrease in size with the phonon frequency [6,8,9].
As expected, the eigenfunctions are extended in
the continuum limit. Their high-frequency behav-
ior is not as yet well understood although there is
some evidence favoring localization [6]. If this
turns out to be correct, a transition between ex-
tended and localized states may take place at
intermediate frequencies.

Raman scattering has been used to study longi-
tudinal acoustic (LA) phonons propagating paral-
lel to the growth axis in Fibonacci
GaAs—Al Ga, _, As heterostructures [5]. The re-
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Fig. 3. (a) Optical absorption coefficient and calculated Im(x) for transitions involving heavy- and light-hole states, in arbitrary units.
(b) Energy versus Bloch index. Heterostructure parameters are indicated in section 3.
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Fig. 4. Room temperature resonant Raman spectrum of the
heterostructure considered in section 4 corrected for thermal
factors, and calculated density of states of LA modes propagat-
ing along [001] (dashed curve). Arrows denote expected midfre-
quencies of main gaps in units of med™'; ¢ is the average

sound velocity.

sults reveal important differences between reso-
nant and non-resonant spectra. For the latter, the
scattering is largely determined by structural ef-
fects as in the case of periodic superlattices [10].
Off-resonance data from the sample described in
section 2 show doublets centered at frequencies
that follow a 77 behavior [5], consistent with the
X-ray findings. The Raman spectrum of the same
sample obtained under resonant conditions is
shown in fig. 4. The scattering reflects now a
weighted density of states of LA modes, providing

an experimental demonstration of the richness of
the phonon spectrum. Resonances with electronic
states localized at the surface can possibly account
for this behavior [5].
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