SPORADIC GROUPS, CODE LOOPS AND NONVANISHING COHOMOLOGY

Robert L. GRIESS, Jr.
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

Communicated by E.M. Friedlander and S. Priddy
Received 21 November 1985

Dedicated to Jack McLaughlin on the occasion of his sixtieth birthday

1. Introduction

I intend to discuss a number of interesting 2-locals in sporadic groups and show how code loops, which are certain Moufang loops, may be used to describe the subgroups abstractly. Existence proofs of parabolic subgroups of sporadics which are independent of the existence proofs of the sporadics have not existed in every case. When available, some such demonstrations of existence have been ad hoc. This paper partially alleviates that problem. It is, I believe, the first systematic attempt to describe some of the more complicated parabolics by a unified theme. I was moved to attempt this by Conway's use of a loop invented by Parker to describe a parabolic of shape $2^{2+11+22}\left(S_{3} \times M_{24}\right)$ in the monster [8]. The first direct construction of this parabolic is due to J. Tits, whose notes (see [35], especially III and IV, and preprint of [37]) were circulated months before Conway's work was publicized. They may well have influenced Conway's construction of the monster, though they do not contain the loop concept.

Extension-theoretic matters arise naturally in the course of the discussion. In particular, nonsplit extensions are often relevant here. By contrast, the parabolic subgroups of groups of Lie type are split extensions because of the Levi factors and one can obtain many of their properties easily because of the (B, N)-structure.

For some time, I have been fascinated by the connection between sporadic groups and exceptional degree 1 and 2 cohomology. It is a pleasure to acknowledge Jack McLaughlin's many observations which directed my attention to aspects of this phenomenon and his mastery of cohomology of groups.

In Section 2, I review basic matters about code loops and set up notation to study maps on them.

In Section 3, I discuss a few results about generic behavior of cohomology groups for naturally defined families of groups and modules and examples of nonvanishing cohomology in sporadic groups.

In Section 4, the important example of the loop \mathbb{D}_{16} is discussed. Its occurrence as a double basis of the Cayley numbers has been well known for some time. The group $\operatorname{Aut}\left(\mathbb{D}_{16}\right)$ is a nonsplit extension of an elementary abelian 2-group of order 8 by GL $(3,2)$. Basic structure information about this group is surprisingly easy to obtain from the loop point of view.

In Section 5, a general nonsplitting result for subgroups of $\operatorname{Aut}(L)$, for L a code loop, is obtained. Other nonsplitting results for group extensions are discussed.

In Section 6, the extensions of GL(3,2) over \mathbb{Z}_{4}^{3} which occur as maximal 2-locals in sporadics are analyzed. Since Alperin's early results on these extensions were never published, I give a proof of his result and include additional details about the nonsplit extension.

In Section 7, constructions of several other sporadic parabolics as maps on loops are achieved. I believe that this style of construction will apply to other cases.

A basic reference for parabolics in sporadic groups is [29].

2. Code loops

In this section, we review some basic definitions and results about code loops, the class of Moufang loops of interest.

Definition. A loop is a set L with binary composition $L \times L \rightarrow L$ such that there is an identity and for all $x \in L$ there is $y \in L$ such that $x y=y x=1$.

Definition. The loop L is Moufang if one (hence all) of the following identities holds:
(a) $x y \cdot z x=(x \cdot y z) x$,
(b) $(x y \cdot z) y=x(y \cdot z y)$,
(c) $x(y \cdot x z)=(x y \cdot x) z$
for all $x, y, z \in L$.
The nonzero real Cayley numbers from a Moufang loop.
We are interested in loops which are extensions of elementary abelian 2-groups by \mathbb{Z}_{2}. There are two equivalent formulations, (I) and (II) below. The first is due to R. Parker and the second to this author in [22], where the equivalence of the two procedures was demonstrated. I call such a loon a code loop.

First some notation. If V is a vector space over \mathbb{F}_{2} and $\phi: V \times V \rightarrow \mathbb{F}_{2}$ a function satisfying $\phi(0, x)=\phi(x, 0)=0$ for all $x \in X$, we make $\hat{V}=\mathbb{F}_{2} \times V$ into a loop by defining $(c, x)(d, y)=(c+d+\phi(x, y), x+y)$. Use bars for the map $\hat{V} \rightarrow V,(c, x) \rightarrow x$. Let $p: V \rightarrow \mathbb{F}_{2}$ be a function with $p(0)=0$ and identify \mathbb{F}_{2} with $\mathbb{F}_{2} \times 0<\hat{V}$. Define

$$
N\left(x_{1}, \ldots, x_{m}\right)=\sum_{\left(c_{i}\right) \in \mathbb{F}_{2}^{m}} p\left(c_{1} \bar{x}_{1}+\cdots+c_{m} \bar{x}_{m}\right)
$$

Note that $N\left(x_{1}, \ldots, x_{m}\right)=0$ if $\left\{\bar{x}_{1}, \ldots, \bar{x}_{m}\right\}$ is independent. Write $[x, y]$ for the commutator $(y x)^{-1}(x y)$ and $[x, y, z]$ for the associator $(x \cdot y z)^{-1}(x y \cdot z)$. Consider the conditions

$$
\begin{equation*}
x^{2}=N(x) \tag{S}
\end{equation*}
$$

(C) $\quad[x, y]=N(x, y)$.
(A) $[x, y, z]=N(x, y, z)$.
(I) Let $V \cong \mathbb{F}_{2}^{n}$ for some $n \geq 0$ and let $\mathscr{D} \subseteq V^{\#}=V-\{0\}$ have characteristic function p. Assume the evenness condition: $\sum_{x \in W} p(x)=0$ whenever $W \leq V, \operatorname{dim} W \geq 4$. There exists a Moufang loop L satisfying (S), (C) and (A).
(II) Let V be a doubly even binary code and let $p(x)=\frac{1}{4}|x|\left(=\frac{1}{4}\right.$ the weight of $\left.x\right)$. There exists a Moufang loop L satisfying (S), (C) and (A).

The evenness condition is automatically satisfied by doubly even codes; see [22]. We call $\mathscr{\eta}$ the set of odd vectors or odd codewords.

We want to define certain groups of maps on loops for use in Section 7. Write $P(A), P E(A)$ for the vector space of subsets, even subsets, respectively, of the set A.

Notation. A an alphabet and C a code in $P(A) ; M$ a code loop based on the code $\bar{M} ; V^{*}$ denotes $\operatorname{Hom}\left(V, \mathbb{F}_{2}\right)$ for a vector space V over $\mathbb{F}_{2} ;\langle$,$\rangle denotes the pairing$ of $V \times V^{*}$ or $V^{*} \times V$ into $\mathbb{F}_{2} ;\langle S, T\rangle=|S \cap T|(\bmod 2)$ for $S, T \in P(A)$.

Define maps

$$
\begin{array}{lll}
x(i, d), & i \in P(A), & d \in M \\
y(\lambda, \mu), & \lambda \in P(A), & \mu \in \bar{M}^{*} ; \\
\mathrm{z}_{\lambda}, & \lambda \in P(A) &
\end{array}
$$

on $M^{L}=\operatorname{Maps}(L, M)$, for $L \subseteq A$, by declaring the image of $\left(a_{k}\right), k \in L$, to be $\left(b_{k}\right)$, where

$$
\begin{aligned}
& b_{k}= \begin{cases}a_{k} d, & \langle i, k\rangle=1, \\
a_{k}, & =0 ;\end{cases} \\
& b_{k}=a_{k} z^{\langle\lambda, k\rangle\left\langle\mu, a_{k}\right\rangle} ; \\
& b_{k}=a_{k} z^{\langle\lambda, k\rangle} ;
\end{aligned}
$$

in the respective cases. Since $N(a, b, c)$ is trilincar, we may writc $b \cap c$ for the linear functional $a \rightarrow N(a, b, c)$. We are identifying $P(A)$ with $P(A)^{*}$.

We now restrict ourselves to the case where $i \in C, C$ is doubly even, $\lambda \in P E(A)$, $v \in P(A)$ of the form $i \cap j, i, j \in C$. Let X, Y, Z be the groups generated by, respectively, all $x(i, d), y(\lambda, \mu), z_{v}$. Then $Y Z=Y \times Z$ is abelian and $Z \leq Z Y \leq Z Y X$ is a central series.

We record a few elementary calculations.

$$
\begin{align*}
& z_{\lambda} z_{\mu}=z_{\lambda+\mu} \tag{2.1}\\
& {\left[z_{\lambda}, x(i, d)\right]=1,\left[z_{\lambda}, y(\mu, v)\right]=1} \tag{2.2}
\end{align*}
$$

(2.3) $\quad y(\lambda, \mu)$ is linear in each variable, $Y \cong P E(A) \otimes \bar{M}^{*}$.

$$
\begin{align*}
& x(i, d) x(j, e):\left(a_{k}\right) \rightarrow\left(b_{k}\right) \text { where } \tag{2.4}\\
& b_{k}=\left\{\begin{array}{lll}
a_{k} & \text { if }\langle i, k\rangle & =0,\langle j, k\rangle=0, \\
a_{k} d & =1, & =0, \\
a_{k} e & =0, & =1, \\
a_{k} \cdot d e z^{N\left(a_{k}, d, e\right)} & =1, & =1 .
\end{array}\right.
\end{align*}
$$

Proof. Straightforward, using (A) on the fourth line.

$$
\begin{align*}
& x(i, d)^{2}=z_{i}^{N d} . \tag{2.5}\\
& {[x(i, d), x(j, e)]=z_{i \cap j}^{N(d, e)}} \tag{2.6}
\end{align*}
$$

The commutator subgroup of X is $Z=\left\langle z_{B}\right| B=i \cap j$ for some $\left.i, j \in C\right\rangle$ if M is noncommutative.

$$
\begin{equation*}
[x(i, d), y(\lambda, \mu)]=z_{i \cap \lambda}^{\langle d, \mu\rangle} ; i \cap \lambda \in P E(A) \text { if } i, \lambda \in C \tag{2.8}
\end{equation*}
$$

3. Some generic behavior of cohomology and exceptional behavior within sporadic groups

Many individuals have observed that cohomology of a family of groups tends to have a regular pattern, except at the beginning of the series. Early examples of this may be seen in the work of Schur [31,32] and Steinberg [33, 34].

It is hard to say who first articulated this general observation. McLaughlin had done so by the late 1960's. In [5], credit is given to [6] and [27] (Landazuri was a student of McLaughlin).

I am aware of the following general results which are relevant to the above situation. The first concerns behavior as the rank increases and the second as the field increases.

Theorem 3.1 (Friedlander, 1976 [15]). Let k be a field with more than 2 elements and let $G_{n}(k)$ be one of $\mathrm{GL}_{n}, \mathrm{SL}_{n}, \mathrm{U}_{n}, \mathrm{O}_{n}, \mathrm{Sp}_{2 n}, \mathrm{SO}_{n}$ over k and let q be a prime, $q \neq$ char k. Then, the natural map

$$
H_{i}\left(G_{n}(k), \mathbb{Z} / q \mathbb{Z}\right) \rightarrow H_{i}\left(G_{n+1}(k), \mathbb{Z} / q \mathbb{Z}\right)
$$

is an isomorphism for certain specified values of i (when $G_{n}=\mathrm{GL}_{n}, \mathrm{SL}_{n}$ or U_{n}, $i \leq 2 n$ implies isomorphism).

Theorem 3.2 (Cline-Parshall-Scott-van der Kallen, 1977 [5]). Let G be a semisimple algebraic group defined and split over $\mathbb{F}_{p}, p>0$. Let $q=p^{m}, G(q)$ the \mathbb{F}_{q}-rational points of G, V an irreducible G-module and $V(e)$ the module obtained from V by t wisting with the eth power of the Frobenius $x \rightarrow x^{q}$. Then, for $q \gg 0$ and $e \gg 0$,

$$
H^{n}(G, V) \cong H^{n}(G(q), V(e)) \cong H^{n}(G(q), V)
$$

See also a result of Friedlander-Parshall [16].
Theorem 3.1 is the only general result I know of which suggests that the phenomenon of cohomology stabilizing as the rank increases is general. Here is a sample of evidence.

$$
\begin{aligned}
& \operatorname{dim} H^{1}\left(\operatorname{SL}(n, q), \mathbb{F}_{q}^{n}\right)= \begin{cases}1, & (n, q)=\left(2,2^{n}\right), n \geq 2,(3,2) \\
0, & \text { otherwise }\end{cases} \\
& \operatorname{dim} H^{2}\left(\operatorname{SL}(n, q), \mathbb{F}_{q}^{n}\right)= \begin{cases}1, & (n, q)=(3,2),(4,2),(5,2),\left(3,3^{n}\right), n \geq 2,(3,5) \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Cf. [25], [4], [12]; see Proposition 6.2.
A third sort of stability may be observed from this example (and others), that of stability as the characteristic increases. I do not know of any theoretical result expressing the general nature of such a phenomenon.

Examples of exceptional behavior (in the above senses) may be found in sporadic groups. If E_{n} denotes the nonsplit extension of $\operatorname{GL}(n, 2)$ by $\mathbb{F}_{2}^{n}, n=3,4,5$, we find that E_{3} is a maximal 2 -local in $G_{2}(K)$, for any field K of characteristic not $2, E_{4}$ is a maximal 2-local in .3 and E_{5} (the Dempwolff extension) is a maximal 2-local in F_{5}. See Section 6 for more on E_{3}.

Certain nonsplit extensions $\left(2_{\varepsilon}^{1+2 n}\right) \Omega^{\varepsilon}(2 n, 2)$ of extraspecial 2 -groups by the natural subgroup of index 2 in the outer automorphism group occur as centralizers of involutions in certain simple groups for $n \leq 4$. The list is the following.

$$
\begin{aligned}
(n, \varepsilon)=(1,+): & A_{6}, \\
(1,-): & \text { none, } \\
(2,+): & \operatorname{PSU}(4,3), \\
(2,-): & J_{2}, J_{3}, \\
(3,+): & \text { none, } \\
(3,-): & \text { Suz, } \\
(4,+): & .1, \\
(4,-): & \text { none. }
\end{aligned}
$$

These extensions E are nonsplit over $\mathrm{O}_{2}(E)$ modulo the center if and only if $n \geq 4$ or $(n, \varepsilon)=(3,-)$. In general, more than one type of nonsplit extension exists. See an appendix of my Montreal article [24] for a discussion of these extensions.

See [23, Section 13], for a different discussion of exceptional cohomology and finite simple groups.

4. The loop \mathbb{O}_{16} and nonsplit $2^{3} \mathrm{GL}(3,2)$

If L is the code loop afforded by the code L, a base of L means a set of elements x_{1}, \ldots, x_{n} whose images $\overline{x_{1}}, \ldots, \overline{x_{n}}$ in \bar{L} form a basis for \bar{L}. When this happens, x_{1}, \ldots, x_{n} form a set of generators for L if and only if L is not an elementary
abelian 2-group. In this section, we write (± 1) instead of \mathbb{F}_{2} for the kernel of $L \rightarrow \bar{L}$.

An important code loop is a subloop of the nonzero Cayley numbers. It is based on the unique binary Hamming code H with parameters $[7,4,3]$. One representation is the span of $\{(1111000),(1100110),(1010101)\}$ in \mathbb{F}_{2}^{7}. We call this loop \mathbb{D}_{16} and observe that $\overline{\mathbb{O}}_{16}=\mathbb{O}_{16} / Z\left(\mathbb{D}_{16}\right) \cong H$ and if $x, y, z \in \mathbb{O}_{16}$, then:

$$
x^{2}= \begin{cases}-1, & \bar{x} \neq 0, \tag{S}\\ 1, & \bar{x}=0 .\end{cases}
$$

(C)

$$
[x, y]= \begin{cases}-1, & \text { if } \bar{x}, \bar{y} \text { independent }, \\ 1, & \text { if } \bar{x}, \bar{y} \text { dependent } .\end{cases}
$$

(A) $\quad[x, y, z]= \begin{cases}-1, & \text { if } \bar{x}, \bar{y}, \bar{z} \text { independent }, \\ 1, & \text { if } \bar{x}, \bar{y} \text { dependent. }\end{cases}$

Note that \mathbb{O}_{16} contains the quaternion group Q_{8} as any subloop of index 2 .
I remark that \mathbb{O}_{16} forms a double basis for the Cayley numbers. Form the algebra $\mathbb{R}\left[\mathbb{D}_{16}\right]$ with basis \mathbb{D}_{16} and let $\langle z\rangle=Z\left(\mathbb{O}_{16}\right)$. Define $C=\mathbb{R}\left[\mathbb{D}_{16}\right] /(z+1)$. Then $\operatorname{dim} C=8, C$ has an involution $*$ fixing 1 and -1 based on $x \rightarrow z x \equiv-x$ if $x \in \mathbb{O}_{16}-\langle z\rangle$. Then $\left.(a b)^{*}=b^{*} a^{*}, c c^{*}\right\rangle 0$ if $c \neq 0$ and $c c^{*} \in \mathbb{R}$, for all a, b, c. Thus, C is a normed real division algebra, and is in fact the Cayley numbers [10].

A pleasant way to write \mathbb{O}_{16} is the following. The elements are ± 1 and $\pm x$, where x ranges over the days of the week. Define Monday \cdot Tuesday $=$ Thursday and require the multiplication to be preserved by the natural 7-cycle on the days of the week. The rest of the multiplication table follows from centrality of ± 1 and the rules (S), (C) and (A); it is given in Table 1 below.

I thank George Glauberman for explaining this to me and pointing out the reference [10].

Call an automorphism α of a code loop L diagonal if it is trivial on \bar{L}. This means that α may be identified with $\beta \in \operatorname{Hom}\left(\bar{L}, \mathbb{F}_{2}\right)$ by $(c, x)^{\alpha}=(c+\beta(x), x)$. The group of

Table 1. Multiplication in \mathbb{D}_{16}

[^0]| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | -1 | 5 | 8 | -3 | 7 | -6 | -4 |
| 3 | -5 | -1 | 6 | 2 | -4 | 8 | -7 |
| 4 | -8 | -6 | -1 | 7 | 3 | -5 | 2 |
| 5 | 3 | -2 | -7 | -1 | 8 | 4 | -6 |
| 6 | -7 | 4 | -3 | -8 | -1 | 2 | 5 |
| 7 | 6 | -8 | 5 | -4 | -2 | -1 | 3 |
| 8 | 4 | 7 | -2 | 6 | -5 | -3 | -1 |

diagonal automorphism is denoted $\operatorname{Diag}(L)$ or $\ln n(L)$ and is a normal subgroup of Aut(L).

Lemma 4.1. (i) Let x_{1}, x_{2}, x_{3} be a base of \mathbb{O}_{16}. Every element of \mathbb{O}_{16} has a unique expression $\pm x_{1}^{e_{1}} x_{2}^{e_{2}} x_{3}^{e_{3}}$, where $e_{i} \in\{0,1\}, i=1,2,3$.
(ii) If x_{1}, x_{2}, x_{3} and y_{1}, y_{2}, y_{3} are bases of \mathbb{O}_{16}, then $\pm x_{1}^{e_{1}} x_{2}^{e_{2}} x_{3}^{e_{3}} \rightarrow \pm y_{1}^{e_{1}} y_{2}^{e_{2}} y_{3}^{e_{3}}$, for $e_{i} \in\{0,1\}, i=1,2,3$, is an automorphism of \mathbb{O}_{16}.
(iii) If $\alpha \in \operatorname{Aut}\left(\mathbb{D}_{16}\right)$ and $|\alpha|=2$, there exists a base x_{1}, x_{2}, x_{3} of \mathbb{O}_{16} such that
(a) $\alpha: x_{1} \rightarrow-x_{1}, x_{2} \rightarrow x_{2}, x_{3} \rightarrow x_{3}$ if α is diagonal;
(b) $\alpha: x_{1} \rightarrow x_{2}, x_{3} \rightarrow x_{3}$ if α is not diagonal.

Proof. (i) is obvious. As for (ii), one only needs (i) and to observe that (S), (C), (A) and centrality of $\{ \pm 1\}$ form a set of defining relations for \mathbb{D}_{16}. In (iii), if α is nontrivial on $\overline{\mathbb{D}_{16}}:=\mathbb{O}_{16} / Z\left(\mathbb{O}_{16}\right)$, there is a basis $\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}$ of $\overline{\mathbb{D}_{16}}$ with $\alpha: \bar{x}_{1} \leftrightarrow \bar{x}_{2}, \bar{x}_{3} \leftrightarrow \bar{x}_{3}$. Lift \bar{x}_{1} to $x_{1} \in \mathbb{D}_{16}$ and define $x_{2}=x_{1}^{\alpha}$. If a lift $x_{3} \in \mathbb{D}_{16}$ of \bar{x}_{3} satisfies $x_{3}^{\alpha} \neq x_{3}$, $x_{3}^{\alpha}=-x_{3}$. Note that $\left(x_{1} x_{2}\right)^{\alpha}=x_{2} x_{1}=-x_{1} x_{2}$. So, we replace x_{3} by $x_{1} x_{2} x_{3}$ to get (iii).

Theorem 4.2. Aut $\left(\mathbb{O}_{16}\right)$ is a non-split extension $2^{3} \cdot L_{3}(2)$.

Proof. Let $Z=Z\left(\mathbb{D}_{16}\right) \cong \mathbb{Z}_{2}, A=\operatorname{Aut}\left(\mathbb{O}_{16}\right)$ and K the kernel of the natural map $A>\operatorname{Aut}\left(\mathbb{O}_{16} / Z\right)$. Then $K \cong \operatorname{IIom}\left(\mathbb{O}_{16} / Z, Z\right) \cong \mathbb{Z}_{2}^{3}$.

From Lemma 4.1, $A / K \cong L_{3}(2)$. Lemma 4.1 implies that every involution of $A-K$ is conjugate in A. However, a split extension $X=2^{3} \cdot L_{3}(2)$ has two classes of involutions outside $\mathrm{O}_{2}(X)$ since the Jordan canonical form of such an involution, t, in its action on $\mathrm{O}_{2}(X)$, is

$$
\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0, \\
0 & 0 & 1
\end{array}
$$

whence $H^{1}\left(\langle t\rangle, \mathrm{O}_{2}(X)\right) \cong \mathbb{Z}_{2}$.
A variation on the loop \mathbb{D}_{16} is $\mathscr{L}=\mathbb{D}_{16} \times \mathbb{Z}_{2}$, which is a code loop afforded by the code $\tilde{H} \subseteq \mathbb{F}_{2}^{8}$ spanned by our binary Hamming code $H \subseteq \mathbb{F}_{2}^{7} \subseteq \mathbb{F}_{2}^{8}$ and (1111111111).

Lemma 4.2. (i) $Z(\mathscr{L}) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
(ii) $A=\operatorname{Aut}(\mathscr{L})$ contains Aut \mathbb{O}_{16} and has structure $\mathrm{O}_{2}(A) \cong\left(\mathbb{Z}_{2}^{3}\right)^{2} \times \mathbb{Z}_{2}, A \geqq$ ($\left.\operatorname{Nut} \mathbb{O}_{16}\right) \times Z_{2}$ and $A^{\circ}=\{a \in A \mid a$ is trivial on $Z(\mathscr{L})\} \geq \operatorname{Aut}\left(\mathbb{O}_{16}\right)$ and $\mathrm{O}_{2}\left(A^{\circ}\right)$ is a direct sum of two modules, each isomorphic to $\mathrm{O}_{2}\left(\mathrm{Aut} \mathbb{D}_{16}\right)$.
(iii) A does not contain a copy of GL(3,2).

5. Nonvanishing degree 2 cohomology

I have been interested in ways to find nonsplit extesions, both because of my
general interest in group extension theory and my wish to understand subgroups of finite simple groups. The code loop situation provides new applications. Just for fun, I will review my criteria.
(I) ('The permutation trick', 1970 [19]). Let G be a subgroup of Σ_{n} and suppose that G has an involution t which moves $4(\bmod 8)$ letters and lies in every subgroup of index 2 in G. Then, the preimage \hat{G} of G in a covering group of Σ_{n} is nonsplit; in fact, if $Z=\operatorname{Ker}(\hat{G} \rightarrow G), Z \leq \hat{G}^{\prime} \cong Z(\hat{G})$, so that G has Schur multiplier of even order.

In fact, one has a similar result by replacing Σ_{n} by $\mathrm{O}(n, \mathbb{R})$ and the hypothesis on letters moved by the requirement that t have $4(\bmod 8)$ eigenvalues -1 . R. Steinberg explained this to me; it is implicit in Schur [32]. See the paper of Garrison and Gagola [17] for an interesting discussion of these ideas and related ones.
(II) ('The extraspecial trick', 1973 [20]). Let $G \leq \mathrm{O}^{\varepsilon}(2 n, 2)$, an orthogonal group on $V \cong \mathcal{F}_{2}^{2 n}$. Suppose that there are $t \in G,|t|=2$ and a 2 -dimensional subspace W such that
(a) t fixes $w \in W, w \neq 0$ nonsingular;
(b) W is nonsingular and t interchanges the two vectors in $W-\langle w\rangle$;
(c) if $H=\{g \in G \mid g$ fixes $w\}$, then t lies in every subgroup of index 2 in H.

Then $H^{2}(G, V)$ is nonzero. In fact, the natural extension of G on V given by $\operatorname{Aut}\left(2_{\varepsilon}^{1+2 n}\right)$ is nonsplit.
(III) ('The Chevalley group trick', 1979 [18]). Suppose that $p \geq 5$, that $p \| G \mid$, where $G \leq G(K)$, where K is a field of characteristic p and G is a Chevalley group functor. Let M be the adjoint module for $G(K)$. Then $H^{2}(G, M) \neq 0$.

To prove this, we may assume $|G|=p$ and $G(K)$ is untwisted. Then consider the extension of $G(K)$ by M obtained by constructing $G(R)$ where R is a local ring with $J=\operatorname{rad}(R), J^{2}=0 \neq J, R / J \cong K$ and $J=p R$. The result follows by an easy induction argument. The analogous statements for $p=2$ and 3 are false for $A_{2}(2)$ and $A_{1}(3)$, respectively.

The smallest case (III) applies to give $H^{2}\left(G, M_{3}\right) \neq 0$ where $G=A_{1}(5)$ is the simple group of order 60 and where we write M_{k} for an irreducible module of dimension $k=1,3$ and 5 ; these are all the $\mathbb{F}_{5} G$-irreducibles. Since M_{5} is the Steinberg module and the Schur multiplier of G has order prime to $5, H^{2}\left(G, M_{k}\right)=0$ for $k \neq 3$. On the other hand, Shapiro's lemma implies that if the prime q divides the order of the finite group H, there exists an irreducible N in characteristic q such that $H^{2}(H, N) \neq 0$. For $H=G$ and $q=5$, we have found that $N=M_{3}$.
(IV) Let G be a subgroup of $\operatorname{Aut}(V)$ where V is a doubly even binary code. Assume the existence of t and W as in (II) and replace 'nonsingular' hy 'odd code word'. Then $H^{2}(G, V) \neq 0$. In fact the extension of G given by Aut (\hat{V}), where \hat{V} is the code loop afforded by V, is nonsplit.

The proof of (II) with little change carries over to a proof of (IV). This criterion gives a different proof of Theorem 4.2 and, with the following argument, it proves that $\operatorname{Aut}(\hat{\mathscr{G}}) \cong 2^{12} M_{24}$ and $C_{\text {Aut }(\hat{\mathscr{G}})}(Z(\hat{\mathscr{G}})) \cong 2^{11} M_{24}$ are nonsplit; here \mathscr{G} is the Golay code. An 'odd vector' in \mathscr{G} is a dodecad and a doecad stabilizer in $\operatorname{Aut}(\mathscr{G}) \cong M_{24}$ is the simple group M_{12}. Let D be a dodecad and write $D=\mathscr{O}_{1}+\mathscr{O}_{2}, \mathscr{O}_{i}$ octads, $i=1,2$. Let $T=\mathscr{O}_{1} \cap \mathscr{O}_{2}$, a 2 -set and $S_{i}=\mathscr{O}_{i}-T$, six-sets, $i=1,2$. In $M_{24}, \operatorname{Stab}(D) \cong$ $M_{12}, \operatorname{Stab}(D) \cap \operatorname{Stab}(T) \cong \Sigma_{6} \cdot 2$ and $\operatorname{Stab}\left(S_{1}\right) \cap \operatorname{Stab}\left(S_{2}\right) \cap \operatorname{Stab}(T) \cong \Sigma_{6}$. Letting $W=\left\{\phi, \mathscr{O}_{1}, \mathscr{O}_{2}, D\right\}$ and t an involution in $\operatorname{Stab}(T) \cap \operatorname{Stab}(D)-\operatorname{Stab}\left(S_{1}\right)$, we may apply (IV).

6. A theorem of Alperin

In the late 1960's and early 1970's, work on simple groups of low 2-rank was of great importance in the classification of finite simple groups. Extensions of GL(3,2) by faithful modules $\mathbb{Z}_{2^{n}}^{3}$ were of special interest here since 2 -locals in several finite simple groups are of this shape. A basic result about such extension was announced by Alperin [1], but he did not publish details. We do so here. Note that O'Nan requires them in his paper [28] on the simple group of order $2^{9} 3^{4} 5 \cdot 7^{3} \cdot 11 \cdot 19 \cdot 31$. Some results in this section may be covered in the recent work [38].

Lemma 6.1. Let G be a group, V a G-module and $f: G \rightarrow V$ a 1-cocycle, i.e., a function which satisfies $f(x y)=f(x)^{y}+f(y)$. Then
(i) $f(1)=0$,
(ii) $f\left(x^{-1}\right)=-f(x)^{x^{-1}}$,
(iii) $f\left(x^{n}\right)=\sum_{k=0}^{n-1} f(x)^{x^{k}}=f(x)^{E(n)}$, where $n>0$ and $E(n)=\sum_{k=0}^{n-1} x^{k}$.

Proof. Trivial.
Proposition 6.2. $H^{k}\left(\mathrm{GL}(3,2), \mathbb{F}_{2}^{3}\right) \cong \mathbb{F}_{2}, k=1,2$.
Proof. This is a well-known result. Probably the easiest way to do this from scratch is to write out the projective indecomposables for $\mathbb{F}_{2} \mathrm{GL}(3,2)$ and the beginning of a projective resolution of \mathbb{F}_{2}, then compute cohomology with it. For a description of these projectives, see [3, p. 216].

Lemma 6.3. Let $U \neq V$ be a unipotent subgroups of $\operatorname{PSL}(2, q)$.
(a) The set of elements of $U V$ which are unipotent is $U \cup V$.
(b) Suppose $u_{1}, u_{2}, u_{3}, u_{4} \in U, v_{1}, v_{2} \in V$ and $u_{1} v_{1} u_{2}=u_{3} v_{2} u_{4}$. Then $v_{1}=v_{2}$ and, if $v_{1} \neq 1, u_{1}=u_{3}$ and $u_{2}=u_{4}$.

Proof. (a) Without loss we may take

$$
U=\left\{\left.\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right) \right\rvert\, t \in \mathbb{F}_{q}\right\} \quad \text { and } \quad V=\left\{\left.\left(\begin{array}{ll}
1 & 0 \\
t & 1
\end{array}\right) \right\rvert\, t \in \mathbb{F}_{q}\right\}
$$

Then

$$
\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
u & 1
\end{array}\right)=\left(\begin{array}{cc}
1+t u & t \\
u & 1
\end{array}\right)
$$

is unipotent only if its trace is 2 , i.e., $t u=0$.
(b) The equation implies that

$$
u_{3}^{-1} u_{1} v_{1}=v_{2} u_{4} u_{2}^{-1} \quad \text { and } \quad u_{2} u_{4}^{-1} u_{3}^{-1} u_{1} v_{1}=\left(u_{4} u_{2}^{-1}\right)^{-1} v_{2}\left(u_{4} u_{2}^{-1}\right) .
$$

Since the right side is unipotent, (a) implies that $v_{1}=1$ or $u_{2} u_{4}^{-1} u_{3}^{-1} u_{1}=1$. If $v_{1}=1$, $v_{2} \in U \cap V=1$. If $v_{1} \neq 1, v_{1} \in V \cap V^{u_{4} u_{2}{ }^{1}}$ implies that $u_{4} u_{2}^{-1} \in N_{U}(V)=1$ or $u_{2}=u_{4}$. At once, $v_{1}=v_{2}$ and $u_{1}=u_{3}$ follow.

Proposition 6.4. Let R be the 2-adic integers, I an ideal of $R, G \cong L_{3}(2)$ and let M be a 3-dimensional irreducible $\mathbb{F}_{2} G$-module.
(i) There is a unique module U for $\bar{R} G$, free over $\bar{R}=R / I$, of rank 3 , whose reduction modulo $2 R$ is isomorphic to M.
(ii) If V is a four group in G, the (complex) character of V on $U($ for $I=0)$ is $\varrho-1$, where ϱ is the character of the regular representation.
(iii) If S is a Σ_{3} subgroup of $G, S / S^{\prime}$ inverts $C_{U}\left(S^{\prime}\right) \cong R$.
(iv) On $U / 2^{n} U$, the fixed point set of V is isomorphic to \mathbb{Z}_{2} or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Proof. (i) For $I-0$, this is part of the well known general theory of correspondence between representations of $R G$ and $(R / 2) G$. See $[13,14]$ for instance. For $I \neq 0$, we argue by induction on n, where $I=2^{n} R$. Without loss, $n>1$. Write $\bar{R}=R / 2^{n} R$, $\overline{\bar{R}}=R / 2^{n-1} R$. Let \bar{U} be the unique $\overline{\bar{R}} G$-module which lifts M. Let $\phi: G \rightarrow \mathrm{GL}(\bar{U})$ be the associated representation. Choose a free $\overline{\bar{R}}$-module \bar{V} such that $V / 2^{n} V \cong \overline{\bar{U}}$ as \bar{R}-modules, and let G_{1} be the inverse image of G^{ϕ} in $\operatorname{GL}(\bar{U})$. The kernel K of $\pi: G_{1} \rightarrow G^{\phi}$ is abelian and is isomorphic to $\operatorname{Hom}(M, M)$ as an $\mathbb{F}_{2} G$-module. This module is isomorphic to $\mathbb{F}_{2} \oplus S$, where S is the Steinberg module. Thus, π is a split epimorphism, and the splitting is unique up to conjugacy. The induction is now complete.
(ii) This follows from (i) and the complex character table of G.
(iii) Let $\langle h\rangle=S^{\prime}, t \in S-S^{\prime}, I=0$. Then $[U, h]$ is a free $R\langle t\rangle$-module of rank 2 over R. So, t has eigenvalues 1 and -1 on $[U, h]$. Now use (ii) and the t-stable decomposition $U=[U, h] \times C_{U}(h)$.
(iv) In G there are two conjugacy classes of four-groups, represented by V_{1}, V_{2}, say, where $C_{M}\left(V_{1}\right) \cong Z_{2}$ and $C_{M}\left(V_{2}\right) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Let $\bar{U}=U / 2^{n} U$. If the statement is false for $V_{i}, C_{\bar{U}}\left(V_{i}\right) \cong \mathbb{Z}_{2^{r}}$ for some $r>2$, if $i=1$ and $C_{\bar{U}}\left(V_{i}\right) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2^{r}}$ for some $r \geq 2$ if $i=2$. Without loss, $n=r$. Define $\left\langle u_{0}\right\rangle=C_{\bar{U}}\left(V_{i}\right) \cap C_{\bar{U}}(h)$, where $h \in N_{G}\left(V_{i}\right)$, $|h|=3$. Then $\left|u_{0}\right|=2^{n}$. Say $i=1$. Let $x \in V_{1}^{\#}$. There is $u \in 2 U$ such that x inverts $u u_{0}$. Without loss, x inverts $\langle k\rangle \cong \mathbb{Z}_{3}$ and $u \in[2 U, k]$; see (iii). Thus $\left(u u_{0}\right)^{-1}\left(u u_{0}\right)^{x}=$ $u^{x} u$ forces $u^{-1}=u^{x}$ and $u_{0}^{-1}=u_{0}^{x}$, a contradiction to $n=r \geq 2$. Say $i=2$. Then, taking h as above, we see that $h=r \geq 2$ implies that h acts trivially on $C_{\bar{U}}\left(V_{i}\right)$, a contradiction.

Theorem 6.5. (a) Let $G=\mathrm{GL}(3,2)$ and let V_{n} be the G-module of Proposition 6.4(i) (so that $V_{n} \cong \mathbb{Z}_{2^{n}}^{3}$ as abelian groups). Then $H^{k}\left(G, V_{n}\right) \cong \mathbb{Z}_{2}, k=1,2$ and all $n \geq 1$.

Furthermore
(b) the natural epimorphism of G-modules $V_{n} \rightarrow V_{n-1}$ induces the 0-map $H^{1}\left(G, V_{n}\right) \rightarrow H^{1}\left(G, V_{n-1}\right)$ and an isomorphism $H^{2}\left(G, V_{n}\right) \rightarrow H^{2}\left(G, V_{n-1}\right) ;$
(c) the natural inclusion $V_{n-1} \rightarrow V_{n}$ of G-modules induces an isomorphism $H^{1}\left(G, V_{n-1}\right) \rightarrow H^{1}\left(G, V_{n}\right)$ and the $0-m a p H^{2}\left(G, V_{n-1}\right) \rightarrow H^{2}\left(G, V_{n}\right)$.
(d) Let A_{n}, B_{n} represent the split and nonsplit extensions of G by V_{n}, for all $n \geq 1$. There are natural inclusions $i_{n}: A_{n} \rightarrow A_{n+1}$ extending the natural inclusions $V_{n} \rightarrow V_{n+1}$ and natural epimorphisms $q_{n}: A_{n} \rightarrow A_{n-1}$ extending $V_{n} \rightarrow V_{n-1}$. Furthermore, there exist embeddings $j_{n}: B_{n} \rightarrow A_{n+1}$ which extend $\left.i_{n}\right|_{V_{n}}$. They satisfy $\operatorname{Im}\left(i_{n}\right) \operatorname{Im}\left(j_{n}\right)=A_{n+1}$ and $B_{n-1} q_{n} \cong B_{n-2}$, for $n \geq 3$. If $m \neq n$, there is no inclusion of B_{m} in B_{n}. For $m<n$, there is an embedding $B_{m} \rightarrow A_{n}$.

Proof of (a), the case $\boldsymbol{k}=\mathbf{1}$. We use induction on n. For $n=1$, use Proposition 6.2. We henceforth assume that $n>1$. We have a natural epimorphism $p: V_{n} \rightarrow V_{n-1}$ of modules and we get $H^{1} V_{n} \xrightarrow{p_{*}} H^{1} V_{n-1}$.

We argue that $p_{*}=0$. Let B be a subgroup of order 21 in G. Let f be a 1 -cocycle, $f: G \rightarrow V_{n}$. We may assume that $\left.f\right|_{B} \equiv 0$ since $\left(|B|,\left|V_{n}\right|\right)=1$. Since $f(x y)=$ $f(x)^{y}+f(y), f$ is constant on right cosets of B. Take $g \in G-B,|g|=7$, and set $v=f(g)$. For $n \geq 1$ define $E(n)=\sum_{k=0}^{n-1} g^{k}$. Lemma 6.1(iii) implies that $f\left(g^{n}\right)=v^{E(n)}$. If $v=0, f=0$ since $G=\langle B, g\rangle$.

Assume $|v|=2^{r}, r \geq 2$. We shall derive a contradiction, proving that if $v \neq 0$, $|v|=2$. Then $p_{*}=0$ follows.
So, we assume $r \leq 2$. Define $S:=\left\{v^{E(k)} \mid k=1, \ldots, 7\right\}$; then $\operatorname{Im}(f)=S \cup\{0\}$. We shall prove several properties of S.

We claim that $S B=S$. This is clear from the equation $f(x b)=f(x)^{b}+f(b)=f(x)^{b}$. Let $\langle u\rangle$ be a Sylow 7 -group of B. Then $\langle u\rangle$ is transitive on S since $|S|=7$ and u fixes no nonzero vector of V_{n}. Thus, the stabilizer in B of an element of S has order 3 .

Take an integer $m \in\{1, \ldots, 6\}$. Lemma 6.1(ii) implies that $f\left(g^{-m}\right)=-f\left(g^{m}\right)^{g^{-m}}$. There are unique integers $p, q \in\{0, \ldots, 6\}$ so that $f\left(g^{-m}\right)-v^{u^{p}}$ and $f\left(g^{m}\right)-v^{u^{q}}$ whence $v^{u^{p} g^{m} u^{-q}}=-v$. Set $x_{m}=u^{p} g^{m} u^{-q}$. Then $x_{m_{1}}=x_{m_{2}}$ implies $m_{1}=m_{2}$ by Lemma 6.3(b). Thus we have produced six distinct elements in $H:=\left\{y \in G \mid\langle v\rangle^{y}=\langle v\rangle\right\}$. By considering $V_{n} / \Omega_{r-1}\left(V_{n}\right)$, we see that H is contained in a Σ_{4} subgroup of G and since $3\left||H|\right.$ and we have six distinct elements which invert $\langle v\rangle$, we get $H \cong \Sigma_{4}$. Since I^{\prime} is generated by elements of order 3 and Aut $\langle v\rangle$ is a 2 -group, $v^{H}=\{ \pm v\}$, $\pm S=v^{G}$ and $H^{\prime} \leq C(v)$. This contradicts Proposition 6.4(ii).
Since $p_{*}=0$, the long exact cohomology sequence applies to $0 \rightarrow V_{1} \rightarrow V_{n} \rightarrow$ $V_{n-1} \rightarrow 0$ gives $0 \rightarrow H^{1} V_{1} \rightarrow H^{1} V_{n} \xrightarrow{p_{*}=0} H^{1} V_{n-1}$, or $H^{1} V_{n} \cong H^{1} V_{1} \cong \mathbb{Z}_{2}$, proving (a) for $k=1$.

Proof of (a), the case $\boldsymbol{k}=\mathbf{2}$. We may assume $n \geq 2$, by Proposition 6.2. The long exact sequence for $0 \rightarrow V_{1} \xrightarrow{i} V_{n} \xrightarrow{p} V_{n-1} \rightarrow 0$ gives

$$
0 \rightarrow H^{1} V_{1} \xrightarrow{i^{1}} H^{1} V_{n} \xrightarrow{p^{1}} H^{1} V_{n-1} \xrightarrow{\delta^{1}} H^{2} V_{1} \xrightarrow{i^{2}} H^{2} V_{n} \xrightarrow{p^{2}} H^{2} V_{n-1} .
$$

From the above, $p^{1}=0$ and by Proposition $6.2, \delta^{1}$ is an isomorphism $\mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$. Therefore, $i^{2}=0$. By induction, $H^{2} V_{n} \neq 0$.

Using (a) for $k=1$ and $0 \rightarrow V_{1} \rightarrow V_{n+1} \rightarrow V_{n} \rightarrow 0$, we get

$$
\mathbb{Z}_{2} \cong H^{1} V_{n+1} \xrightarrow{p^{1}=0} H^{1} V_{n}=\mathbb{Z}_{2} .
$$

Let L_{1} and L_{2} be nonconjugate complements to V_{n+1} in a split extension $V_{n+1} \rtimes L_{1}$. Since $p^{1}=0$, their images in $V_{n} \times L_{1}$ under the natural map become conjugate. On the other hand, $V_{n} \times L_{1}$ does have complements not conjugate to L_{1}. Consider one and then its preimage J in $V_{n+1} \times L_{1}$. Then $J \cap V_{n+1}=2 V_{n+1}$ and J does not split over $2 V_{n+1}$ since $H^{1}\left(2 V_{n+1}\right) \cong H^{1} V_{n} \cong \mathbb{Z}_{2}$ and we have already accounted for the complements. Therefore, we have $H^{2} V_{n} \neq 0$, proving (a) for $k=2$.

Statements (b) and (c) follow from points made in the proof of (a).
To prove (d), let $n \geq 1$ and define B_{n} as follows. Since the natural map $H^{\prime}\left(G, V_{n+1}\right) \rightarrow H^{\prime}\left(G, V_{1}\right)$ is 0 , there is a complement C to V_{1} in A_{1} not conjugate to the image of A_{n+1} in V_{1} under $q=q_{n+1} q_{n} \cdots q_{2}$. Define $B_{n}=C^{q}{ }^{-1}$. The rest is an exercise.

It is well known that the two types of extension of \mathbb{Z}_{4}^{3} by $\operatorname{GL}(3,2)$ (nontrivial action) occur as maximal 2 -locals in sporadic groups. The split one occurs in the Higman-Sims group and the nonsplit one occurs in the O'Nan group. It seems worthwhile to display this nonsplit extension as an explicit matrix group, in fact as a subgroup of $\mathrm{GL}(3, \mathbb{Z} / 8 \mathbb{Z})$, and record some properties.

Proposition 6.6. Let $G=\operatorname{GL}(3,2)$.
(a) The matrices

$$
x=\left(\begin{array}{lll}
2 & 5 & 3 \\
5 & 3 & 2 \\
1 & 0 & 0
\end{array}\right), \quad t=\left(\begin{array}{lll}
7 & 4 & 4 \\
4 & 4 & 7 \\
4 & 7 & 4
\end{array}\right), \quad y=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

in $\mathrm{GL}(3, \mathbb{Z} / 8 \mathbb{Z})$ have orders 7,2 and 3 , respectively.
(b) $\langle t, y\rangle \cong \Sigma_{3}$ and $\langle x, y\rangle$ is nonabelian of order 21 .
(c) x, y and t satisfy $x^{7}=y^{3}=y^{-1} x y x^{-2}=t^{2}=1=(y t)^{2}=(x t)^{3}$.
(d) $\langle x, y, t\rangle=\langle x, t\rangle \cong G$ via the natural map $\mathrm{GL}(3, \mathbb{Z} / 8 \mathbb{Z}) \rightarrow \mathrm{GL}(3,2)$ 'reduction modulo 2^{\prime}.
(e) Up to conjugacy in $\mathrm{GL}\left(3, \mathbb{Z} / 2^{n} \mathbb{Z}\right)$, for any $n \geq 1$, there is a unique subgroup isomorphic to G.
(f) Define

$$
s=x^{5} y t x=\left(\begin{array}{ccc}
0 & 0 & 7 \\
3 & 0 & 4 \\
5 & 5 & 1
\end{array}\right) \in G
$$

Then $P_{1}=\left\langle s^{2}, t\right\rangle$ and $P_{2}=\left\langle s^{2}, s t\right\rangle$ are four-groups.
Proof. It is straightforward to check (a), (b) and (c). From [9, p. 216], we get that (c) implies (d).

Define $G_{n}:=\mathrm{GL}\left(3, \mathbb{Z} / 2^{n} \mathbb{Z}\right)$ and let $\phi_{m, n}$ be the natural map $G_{m} \rightarrow G_{n}$, for $m \geq n$. Set $K_{m, n}:=$ Ker $\phi_{m, n}$. Then, as a module for $G_{1}, \overline{K_{m, n}}:=K_{m, n} / K_{m, n+1}$ is isomorphic to the space of 3×3 matrices with G_{1} acting by conjugation. This module is the direct sum of the trivial module and the Steinberg module, which is projective and injective. To get existence, we quote Proposition 6.4(i) or use induction on m. Namely, we observe that $H^{2}\left(G_{1}, \bar{K}_{m, n}\right) \cong H^{2}\left(G_{1}, \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}$ but that the nontrivial extension of G_{1} does not arise here. If it did, we would have a subgroup $H \cong \operatorname{SL}(2,7)$ of G_{n}, and, by induction, the involution $z \in Z(H)$ acts by a scalar $\alpha=1+2^{n-1}$. Then $\operatorname{det} z=\alpha^{3}=\alpha \neq 1$, whereas H is perfect. To get uniqueness up to conjugacy, we use $H^{\prime}\left(G_{1}, \bar{K}_{m, n}\right)=0$ for $n=1, \ldots, m-1$.

The proof of (f) is straightforward.

Proposition 6.7. Let $n \geq 1$ and let $G_{1}=G_{1, n}, G_{2}=G_{2, n}$ represent the two isomorphism types of extensions of $\mathrm{GL}(3,2)$ over $V=\mathbb{Z}_{2^{n}}^{3}$, with G_{1} split over V.
(i) $G_{i} / \Phi(V)$ is split if and only if $i=1$.
(ii) In G_{i}, let T be a Sylow 3-group and let $S_{n} \in \operatorname{Syl}_{2}\left(N(T)\right.$). Then $S_{n} \cong D_{2^{n+1}}$. In particular, $G_{i}-V$ contains involutions.
(iii) Let F be the inverse image in G_{i} of $a \mathbb{Z}_{4}$ subgroup of G_{i} / V. Then F splits over V if and only if $i=1$. In the nonsplit case, if $x \in F$ maps to a generator of $F / V \cong \mathbb{Z}_{4}, x^{4} \in V-\Phi(V)$. Thus, the exponent of G_{1} is $4 \cdot 3 \cdot 7$ if $n=1$ and $2^{n} \cdot 3 \cdot 7$ if $n \geq 2$ and the exponent of G_{2} is $2^{n+2} \cdot 3 \cdot 7$ if $n \geq 1$.

Remark. (i) contradicts a result in [2].
Proof. (i) We use the proof and notation of Theorem 6.5. Let $\phi_{n}: V_{n} \rightarrow V_{n-1}$ be the natural epiomorphism. Then $\left(\phi_{n}\right)_{*}: H^{2} V_{n} \rightarrow H^{2} V_{n-1}$ is an isomorphism. By taking composites, we get (i).
(ii) Set $\left\langle v_{n}\right\rangle=C_{V_{n}}(T)$. Then $\left|S_{n}:\left\langle v_{n}\right\rangle\right|=2$. Let $s_{n} \in S_{n}-\left\langle v_{n}\right\rangle$. The groups $\left\{\left\langle v_{n}\right\rangle \mid n \geq 1\right\}$ form an inverse system. Let $c_{n} \in \mathbb{Z} / 2^{n} \mathbb{Z}$ be defined by $v_{n}^{s_{n}}=c_{n} v_{n}$. Then the class of $\left(c_{1}, c_{2}, \ldots,\right)$ in the 2 -adic integers is -1 , so there is an integer $n_{0}>0$ such that $n_{1}>n_{0}$ implies $c_{n} \equiv-1\left(\bmod 2^{n_{1}}\right)$.

Given our integer n, we take $\left.n_{1}\right\rangle \max \left\{n, n_{0}\right\}$. Since $\left\langle v_{n}\right\rangle, s_{n}$ is the image of $\left\langle v_{n}\right\rangle$, $s_{n_{1}}$, respectively, under natural maps $G_{i, n_{1}} \rightarrow G_{i, n}$, we get $c_{n} \equiv c_{n_{1}} \equiv-1\left(\bmod 2^{n}\right)$. To get (ii), all we need to do is show that S_{n} splits over $\left\langle v_{n}\right\rangle$. Let $m=\min \left\{n \mid S_{n}\right.$ is nonsplit over $\left.\left\langle v_{n}\right\rangle\right\}$ and assume $m<\infty$. For any $k, s_{k}^{2} \in \Omega_{1}\left(\left\langle v_{k}\right\rangle\right)$. So, $s_{m+1}^{4}=1$ and, applying the natural map $G_{i, m+1} \rightarrow G_{i, m}$, we get $s_{m}^{2}=1$, a contradiction which proves (ii).
(iii) It suffices to assume $n=1$. Let $G=G_{2,1}$ and let $0 \neq v \in V=\mathrm{O}_{2}(G), Q=C_{G}(v)$. Then $\left|\mathrm{O}_{2}(Q)\right|=2^{5}$ and $Q / \mathrm{O}_{2}(Q) \cong \Sigma_{3}$; if $h \in Q,|h|=3, C_{Q}(h)=\langle v\rangle \times\langle h\rangle$. By (ii),
$G-V$ contains involutions, whence $\mathrm{O}_{2}(Q /\langle v\rangle)$ is elementary abelian. Taken an involution $x \in Q-\mathrm{O}_{2}(Q)$. Without loss, $h^{x}=h^{-1}$. Since $V /\langle v\rangle$ is an injective $\langle h, x\rangle$ module, there is a complement $W /\langle v\rangle$ to $V /\langle v\rangle$ in $\mathrm{O}_{2}(Q) /\langle v\rangle$.

We claim that W is quaternion. If false, $[W, h]\langle h, x\rangle$ complements V in Q, making G split, a contradiction. Thus W is quaternion, whence $W\langle x\rangle$ is semidihedral of order 16 and so contains a unique \mathbb{Z}_{8} subgroup, W_{1}. We may take F to satisfy $F / V=W_{1} V / V$. If F were split over V, F would contain no element of order 8 , which is incompatible with $W_{1} \leq F$.

A representation of the nonsplit Alperin extension by matrices

Denote by Alp, the unique nonsplit extension of GL(3,2) by \mathbb{Z}_{4}^{3}. We give Alp as a subgroup of $G L(4, \mathbb{Z} / 8 \mathbb{Z})$ contained in the subgroup Q consisting of all matrices of the form

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
& & * &
\end{array}\right)
$$

Such a matrix has the form

$$
\left(\begin{array}{l|lll}
1 & 0 & 0 & 0 \\
\hline c & & M & \\
c & & &
\end{array}\right)=\left(\begin{array}{l|lll}
1 & 0 & 0 & 0 \\
\hline & & & \\
& & I &
\end{array}\right)\left[\begin{array}{c|ccc}
1 & 0 & 0 & 0 \\
\hline 0 & & & \\
0 & & M & \\
0 & & &
\end{array}\right],
$$

where c is a column vector of height 3 . We may denote such a matrix by $(c \mid M)$ or $(r \mid M)$ where $r=^{t} c$. The rules for a product are

$$
(c \mid M)\left(c^{\prime} \mid M\right)=\left(c+M c^{\prime} \mid M M^{\prime}\right) \quad \text { and } \quad(r \mid M)\left(r^{\prime} \mid M^{\prime}\right)=\left(r+r^{\prime} M \mid M M^{\prime}\right)
$$

We have $\mathrm{O}_{2}(Q)=\left\{(r \mid I) \mid r \in \mathbb{Z}_{8}^{3}\right\}$ and we take $V:=\operatorname{Alp} \cap \mathrm{O}_{2}(Q)=\mathrm{O}_{2}$ (Alp) to be $\left\{(2 r \mid I) \mid r \in \mathbb{Z}_{8}^{3}\right\}$. Write $[i, j, k]$ for $((i, j, k) \mid I) \in \mathrm{O}_{2}(Q)$. Set

$$
X=\left(\begin{array}{lll}
2 & 5 & 3 \\
5 & 3 & 2 \\
1 & 0 & 0
\end{array}\right), \quad Y=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \quad T=\left(\begin{array}{lll}
7 & 4 & 4 \\
4 & 4 & 7 \\
4 & 7 & 4
\end{array}\right) \in \mathrm{GL}(3, \mathbb{Z} / 8 \mathbb{Z})
$$

We define $x=(0 \mid X), y=(0 \mid Y)$ and $t=\left(r_{0} \mid T\right)$, where t is chosen to satisfy $y^{t}=y^{-1}$ (which requires r_{0} to have the form $r_{0}=(k, k, k)$) and to make $y t x$ have order 16 (which requires k to be odd); $r_{0}=(1,1,1)$ works.

The 168 Alperin matrices are listed in Table 2 in the following order: first, the 21 matrices $x^{i} y^{j}$ for $i=0, \ldots, 6$ and $j=0,1,2$ in the order $(i, j)=(0,0),(0,1), \ldots,(6,2)$; second, the 147 matrices $x^{i} y^{j} t x^{k}$ for $i, k=0, \ldots, 6$ and $j=0,1,2$ in the order $(i, j, k)=$ $(0,0,0),(0,0,1), \ldots,(0,1,0),(0,1,1), \ldots,(6,2,6)$. The Alperin matrices are therefore a system of coset representatives for O_{2} (Alp) in Alp, where Alp is a particular subgroup of $\mathrm{GL}(4, \mathbb{Z} / 8 \mathbb{Z})$ isomorphic to the nonsplit extension $\mathbb{Z}_{4}^{3} \cdot \operatorname{GL}(3,2)$. The fact that $\langle x, y, t\rangle$ is this extension follows from Theorem 6.5 (the proof of (a) for $k=2$),

Table 2. The Alperin transversal
Transversal element is below and to the right of its label (1 to 168)

1				2				3				4				5				6			
1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0
0	1	0	0	0	0	1	0	0	0	0	1	0	2	5	3	0	3	2	5	0	5	3	2
0	0	1	0	0	0	0	1	0	1	0	0	0	5	3	2	0	2	5	3	0	3	2	5
0	0	0	1	0	1	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0	0	1
7				8				9				10				11				12			
1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0
0	0	1	0	0	0	0	1	0	1	0	0	0	5	3	2	0	2	5	3	0	3	2	5
0	3	2	5	0	5	3	2	0	2	5	3	0	5	5	5	0	5	5	5	0	5	5	5
0	2	5	3	0	3	2	5	0	5	3	2	0	0	1	0	0	0	0	1	0	1	0	0
13				14				15				16				17				18			
1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0
0	3	2	5	0	5	3	2	0	2	5	3	0	5	5	5	0	5	5	5	0	5	5	5
0	0	0	1	0	1	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0	0	1
0	5	3	2	0	2	5	3	0	3	2	5	0	3	2	5	0	5	3	2	0	2	5	3
19				20				21				22				23				24			
1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0
0	0	0	1	0	1	0	0	0	0	1	0	1	7	4	4	1	6	7	5	1	4	3	0
0	2	5	3	0	3	2	5	0	5	3	2	1	4	4	7	1	3	0	4	1	2	7	1
0	5	5	5	0	5	5	5	0	5	5	5	1	4	7	4	1	7	1	2	1	5	6	7
25				26				27				28				29				30			
1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0
1	7	5	2	1	1	2	7	1	3	3	7	1	4	0	7	1	4	4	7	1	3	0	4
1	0	4	7	1	7	5	6	1	5	2	7	1	3	7	3	1	4	7	4	1	7	1	2
1	7	3	3	1	0	4	3	1	7	4	0	1	2	7	5	1	7	4	4	1	6	7	5
31				32				33				34				35				36			
1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0
1	2	7	1	1	0	7	4	1	7	5	6	1	5	2	7	1	3	7	3	1	4	7	4
1	5	6	7	1	7	3	3	1	0	4	3	1	7	4	0	1	2	7	5	1	7	4	4
1	4	3	0	1	7	5	2	1	1	2	7	1	3	3	7	1	4	0	7	1	4	4	7
37				38				39				40				41				42			
1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0
1	7	1	2	1	5	6	7	1	7	3	3	1	0	4	3	1	7	4	0	1	2	7	5
1	6	7	5	1	4	3	0	1	7	5	2	1	1	2	7	1	3	3	7	1	4	0	7
1	3	0	4	1	2	7	1	1	0	7	4	1	7	5	6	1	5	2	7	1	3	7	3
43				44				45				46				47				48			
1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0
2	6	1	7	2	0	1	4	2	1	3	2	2	3	6	1	2	5	1	5	2	4	4	1
2	7	6	1	2	5	5	1	2	4	0	1	2	1	4	4	2	2	1	3	2	4	5	0
1	7	4	4	1	6	7	5	1	4	3	0	1	7	5	2	1	1	2	7	1	3	3	

49				50				51				52				53				54			
1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0
2	5	0	4	2	1	7	6	2	3	2	1	2	1	5	5	2	0	4	5	2	1	4	0
2	1	3	6	2	6	1	7	2	0	1	4	2	1	3	2	2	3	6	1	2	5	1	5
1	4	0	7	1	4	4	7	1	3	0	4	1	2	7	1	1	0	7	4	1	7	5	6

61				62				63				64				65				66			
1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0
2	2	1	3	2	4	5	0	2	1	3	6	1	4	4	7	1	3	0	4	1	2	7	1
2	1	4	0	2	6	1	3	2	4	1	4	2	1	7	6	2	3	2	1	2	1	5	5
1	0	4	3	1	7	4	0	1	2	7	5	2	6	1	7	2	0	1	4	2	1	3	2

67				68				69				70				71				72			
1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0
1	0	7	4	1	7	5	6	1	5	2	7	1	3	7	3	1	4	7	4	1	7	1	2
2	0	4	5	2	1	4	0	2	6	1	3	2	4	1	4	2	7	6	1	2	5	5	1
2	3	6	1	2	5	1	5	2	4	4	1	2	5	0	4	2	1	7	6	2	3	2	1

73		74				75				76				77				78			
10	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	
15	6	1	7	3	3	1	0	4	3	1	7	4	0	1	2	7	5	1	7	4	
24	0	2	1	4	4	2	2	1	3	2	4	5	0	2	1	3	6	2	6	1	
21	5	2	0	4	5	2	1	4	0	2	6	1	3	2	4	1	4	2	7	6	
79		80				81				82				83				84			
10	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	
16	7	1	4	3	0	1	7	5	2	1	1	2	7	1	3	3	7	1	4	0	
20	1	2	1	3	2	2	3	6	1	2	5	1	5	2	4	4	1	2	5	0	
25	5	2	4	0	1	2	1	4	4	2	2	1	3	2	4	5	0	2	1	3	

91				92				93				94				95				96			
1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0
2	1	3	6	2	6	1	7	2	0	1	4	2	1	3	2	2	3	6	1	2	5	1	5
7	5	6	3	7	3	3	3	7	0	0	7	7	7	0	0	7	6	3	5	7	0	7	0
1	3	7	3	1	4	7	4	1	7	1	2	1	5	6	7	1	7	3	3	1	0	4	3

97				98				99				100				101				102			
1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0
2	4	4	1	2	5	0	4	2	1	7	6	2	3	2	1	2	1	5	5	2	0	4	5
7	3	5	6	7	5	6	3	7	3	3	3	7	0	0	7	7	7	0	0	7	6	3	5
1	7	4	0	1	2	7	5	1	7	4	4	1	6	7	5	1	4	3	0	1	7	5	

109			110				111				112				113				114			
10	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0
20	4	5	2	1	4	0	2	6	1	3	2	4	1	4	2	7	6	1	2	5	5	1
17	3	3	1	0	4	3	1	7	4	0	1	2	7	5	1	7	4	4	1	6	7	5
21	4	4	2	2	1	3	2	4	5	0	2	1	3	6	2	6	1	7	2	0	1	

121				122				123				124				125				126			
1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0
2	0	1	4	2	1	3	2	2	3	6	1	2	5	1	5	2	4	4	1	2	5	0	4
1	3	0	4	1	2	7	1	1	0	7	4	1	7	5	6	1	5	2	7	1	3	7	3
2	3	2	1	2	1	5	5	2	0	4	5	2	1	4	0	2	6	1	3	2	4	1	4
127				128				129				130				131				132			
1	0	0	0		0	0	0		0	0	0	1	0	0	0	1	0	0	0	1	0	0	0
7	3	3	3	7	0	0	7	7	7	0	0	7	6	5	3	7	0	7	0	7	3	5	6
17	7	4	4	1	6	7	5	1	4	3	0	1	7	5	2	1	1	2	7	1	3	3	7
		7	6			2			1	5	5	2				2	1	4	0			1	

133			134				135				136				137				138			
10	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0
75	6	3	7	3	3	3	7	0	0	7	7	7	0	0	7	6	3	5	7	0	7	0
14	0	7	1	4	4	7	1	3	0	4	1	2	7	1	1	0	7	4	1	7	,	6
24	1	4	2	7	6	1	2	5	5	1	2	4	0	1	2	1	4	4	2	2	1	3

139				140				141				142				143				144			
1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0		1	0	0	0
7	3	5	6	7	5	6	3	7	3	3	3	7	0	0	7	7	7	0	0	7	6	3	5
1	5	2	7	1	3	7	3	1	4	7	4	1	7	1	2	1	5	6	7	1	7	3	3
2	4	5	0	2	1	3	6	2	6	1	7	2	0	1	4	2	1	3	2	2	3	6	

145			146				147				148				149				150			
10	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0
70	7	0	7	3	5	6	7	5	6	3	1	4	7	4	1	7	1	2	1	5	6	7
10	4	3	1	7	4	0	1	2	7	5	2	6	1	7	2	0	1	4	2	1	3	2
25	1	5	2	4	4	1	2	5	0	4	7	3	3	3	7	0	0	7	7	7	0	0
151			152				153				154				155				156			
10	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0
17	3	3	1	0	4	3	1	7	4	0	1	2	7	5	1	7	4	4	1	6	7	5
23	6	1	2	5	1	5	2	4	4	1	2	5	0	4	2	1	7	6	2	3	2	1
76	3	5	7	0	7	0	7	3	5	6	7	5	6	3	7	3	3	3	7	0	0	7
157			158				159				160				161				162			
10	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0
14	3	0	1	7	5	2	1	1	2	7	1	3	3	7	1	4	0	7	1	4	4	7
21	5	5	2	0	4	5	2	1	4	0	2	6	1	3	2	4	1	4	2	7	6	1
77	0	0	7	6	3	5	7	0	7	0	7	3	5	6	7	5	6	3	7	3	3	3
163			164				165				166				167				168			
10	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0
13	0	4	1	2	7	1	1	0	7	4	1	7	5	6	1	5	2	7	1	3	7	3
25	5	1	2	4	0	1	2	1	4	4	2	2	1	3	2	4	5	0	2	1	3	6
70	0	7	7	7	0	0	7	6	3	5	7	0	7	0	7	3	5	6	7	5	6	3

Proposition 6.7 (ii) and the facts that when $n=1$, two nonconjugate complements to $\mathrm{O}_{2}\left(G_{1}\right)$ in the split extension G_{1} meet in a group of odd order (of order 21, in fact) and that a pair of conjugate complements meet in a D_{8}-subgroup.

7. Descriptions of sporadic parabolics by loops

Our purpose here is to make a few loop-theoretic descriptions of certain sporadic 2 -locals. We concentrate on a few nontrivial examples and do not attempt an exhaustive treatment. We use notation of Section 6.

The group Aut \mathbb{D}_{16}. This occurs as a maximal 2-local in $G_{2}(K)$, where K is any field of characteristic not 2 .

The group $2 \cdot$ Aut \mathbb{O}_{16}. This occurs as a nonmaximal 2-local in McL. Its socle is $\mathbb{Z}_{2} \times V_{1}$ as a $\operatorname{GL}(3,2)$-module and the quotient

$$
\text { Aut } \left.\mathbb{O}_{16} /\left[\text { Aut } \mathbb{O}_{16}, \mathrm{O}_{2}\left(\operatorname{Aut} \mathbb{D}_{16}\right)\right)\right] \cong \operatorname{SL}(2,7)
$$

Parabolics of shape $\mathbb{Z}_{4}^{3} \mathrm{GL}(3,2)$ in HiS and $\mathrm{O}^{\prime} \mathrm{Nan}$
We have already discussed the two isomorphism types of such 2-constrained groups; see Section 6. The split one occurs as a maximal 2-local in the Higman-Sims group and the nonsplit one as a maximal 2-local in the O'Nan group.

Write $V_{n} \cong \mathbb{Z}_{2^{n}}$ and let A_{n}, B_{n} be the split and nonsplit extensions of $\operatorname{GL}(3,2)$ by
V_{n}; see Theorem 6.5. We show how to describe A_{n} and B_{n} with automorphisms of a loop. We have below two natural epimorphisms (solid arrows) and we let \mathscr{L}_{n} be the pullback, i.e. $\left\{(a, b) \in U_{n} \times \mathbb{D}_{16} \mid a^{\alpha}=b^{\beta}\right\}$:

Here, $Z_{n} \cong \mathbb{Z}_{2^{n}}$. Define $A_{n}^{*}:=\left\{\sigma \in \operatorname{Aut}\left(U_{n}\right) \times \operatorname{Aut}\left(\mathbb{D}_{16}\right) \mid \sigma\right.$ fixes \mathscr{L}_{n} and induces an element of our GL $(3,2)$ on $\left.U_{n} / Z_{n} \cong V_{n}\right\}$ and $R_{n}:=\left\{\sigma \in A_{n}^{*} \mid \sigma\right.$ induces 1 on $\left.U_{n} / Z_{n}\right\}$. Then $R_{n}=V_{n}^{*} \times D$, where $V_{n}^{*} \cong \operatorname{Hom}\left(V_{n}, Z_{n}\right)$ and $D \cong \operatorname{Diag}\left(\mathbb{O}_{16}\right)$; see Section 4. So, $R_{n} \cong \mathbb{Z}_{2^{n}}^{3} \times \mathbb{Z}_{2}^{3}$. Certainly, A_{n}^{*} maps onto $\operatorname{Aut}\left(\mathbb{O}_{16}\right)$ but, $A_{n}^{*} / D \cong A_{n}$. For $n \geq 2$, we get $B_{n-1}^{*} \leq A_{n}^{*}$ corresponding to $B_{n-1} \leq A_{n}$ as in Theorem $6.5(\mathrm{~d})$. Let D_{0} be the diagonal A_{n}^{*}-submodule of $\Omega_{1}\left(V_{n}^{*}\right) \times D$.

We claim that B_{n-1}^{*} / D_{0} is nonsplit. If not, let $X \leq B_{n-1}^{*}, X \geq D_{0}$, complement $V_{n}^{*} \times D$ modulo D_{0} in B_{n-1}^{*}. Using Theorem $6.5(\mathrm{~d})$ on the inclusion of X into B_{n-1}^{*} / D, we see that X contains a subgroup $Y \cong \mathrm{GL}(3,2)$. However, since $\operatorname{Aut}\left(\mathbb{O}_{16}\right)$ is nonsplit, Y acts trivially on the second factor, whence so does A_{n}^{*}, a contradiction.

The parabolic $2^{3+8} \mathrm{GL}(3,2)$ in Rudvalis' group, Ru
The subgroup P satisfies: $\mathrm{O}_{2}(P)$ has class $2, Z=Z\left(\mathrm{O}_{2}(P)\right)$ is a 3-dimensional irreducible for $\bar{P}:=P / \mathrm{O}_{2}(P) \cong \mathrm{GL}(3,2), \mathrm{O}_{2}(P) / Z$ is the Steinberg module for \bar{P}. If we go to the covering group $\widehat{\mathrm{Ru}}$ we find that $\mathrm{O}_{2}(\hat{P})$ has class 2 and that $\mathrm{O}_{2}(\hat{P})^{\prime}=$ $Z\left(\mathrm{O}_{2}(\hat{P})\right)$ is the direct sum of a 3- and a 1-dimensional module for GL(3,2). Furthermore, $\hat{P}=\mathrm{O}_{2}(\hat{P}) \hat{L}, \hat{L} \cap \mathrm{O}_{2}(\hat{P})=Z\left(\mathrm{O}_{2}(\hat{P})\right)$ and $\hat{L} \cong \mathbb{Z}_{2} \times$ Aut \mathbb{O}_{16}. See [21], [7] for details.

Lemma 7.1. Let $G=\mathrm{GL}(3,2)$, S the Steinberg module for $\mathbb{F}_{2} G$. Then $S \otimes S \cong$ $P_{1} \oplus P_{3} \oplus P_{3^{\prime}} \oplus P_{8} \oplus P_{8} \oplus P_{8}$, where (P_{i} or $P_{i^{\prime}}$) is the projective cover of an irreducible V_{i} (or $V_{i^{\prime}}$) of dimension i and where P_{3} and $P_{3^{\prime}}$ are dual modules; $S=P_{8}$.

Also, $d_{k}=\operatorname{dim} \operatorname{Hom}\left(\Lambda^{2} S, V_{k}\right)=1$ for $k=1,3,3^{\prime}$ and 8.

Proof. From the action of G on 3×3 matrices of trace 0 , we get $d_{1}>0$ and $d_{8}>0$. Recall that $\operatorname{dim} P_{k}=8,16,16,8$ for $k=1,3,3^{\prime}, 8$. Since $V_{8}=P_{8}$ is absolutely irreducible, $d_{1} \leq 1$. Since V_{8} is self-dual, $d_{3}=d_{3^{\prime}}$. Since Rudvalis's group exists $d_{3}=d_{3}>0$. Since S is projective, so is $S \otimes S$, whence $S \otimes S$ is a direct sum of various P_{k} 's. Above comments and a dimension count, together with the isomorphisms $T_{1}:=S \otimes S \geq T_{2}:=\langle x \otimes x \mid x \in S\rangle \geq T_{3}:=\langle x \otimes y-y \otimes x \mid x, y \in S\rangle, \quad T_{1} / T_{2} \cong \Lambda^{2} S \cong T_{3}$, $T_{2} / T_{3} \cong S$, force the required answer.

Lemma 7.2. There is a unique group P with the following properties:
(i) $Q:=\mathrm{O}_{2}(P)$ has class 2 and order 2^{11}.
(ii) $P / Q \cong \mathrm{GL}(3,2)$.
(iii) $Z(Q)$ is the faithful 3-dimensional module V_{3} for P / Q and $Q / Z(Q)$ is the Steinberg module.
(iv) If $L \geq Z(Q)$ complements Q modulo $Z(Q)$ in P, the isomorphism type of L is given (i.e. either split or nonsplit $\left.2^{3} \cdot \mathrm{GL}(3,2)\right)$.

Proof. Let S be the Steinberg module for $\mathbb{F}_{2} G, G=\mathrm{GL}(3,2)$. Let $1 \rightarrow R \rightarrow F \rightarrow S \rightarrow 1$ be a free presentation for the group S and let

$$
R_{1}=\left(F^{\prime} \cap R\right)\left\langle x^{2} \mid x \in R\right\rangle \quad \text { and } \quad R_{2}=[R, F]\left\langle x^{2} \mid x \in R\right\rangle
$$

Then $R \geq R_{1} \geq R_{2}, R / R_{1} \cong S$ and $R / R_{2} \cong \Lambda^{2} S \oplus S$.
We may lift the action of G on S to the action of a group G_{1} on F / R_{2}, where $G_{1} / \mathrm{O}_{2}\left(G_{1}\right) \cong G$ and $\mathrm{O}_{2}\left(G_{1}\right) \cong \operatorname{Hom}\left(S, A^{2} S \oplus S\right)$ as G-modules. Since S is projective and injective so is $\operatorname{Hom}\left(S, \Lambda^{2} S \oplus S\right)$, which implies that G_{1} contains a copy of G, unique up to conjugacy. The construction of a group Q as above is equivalent to choosing $R_{2} \leq R_{3} \leq R$ to satisfy
(a) R_{3} is G-invariant and $R / R_{3} \cong V_{3}$,
(b) $F^{\prime} R_{3}=R$.

How unique is this choice? Certainly, $R_{3} \cap R^{\prime}$ is determined, by Lemma 7.1, so we need only study $R / R_{3} \cap R^{\prime}$, which looks like $2^{3+8+8}=\left(2^{3} \times 2^{8}\right) 2^{8}$ or $2^{3} \mathbb{Z}_{4}^{8}$. The group R_{3} corresponds to a central G-chief factor of shape 2^{8} in this and so R_{3} is uniquely determined. We take $Q=F / R_{3}$.

Condition (iv) is easy to handle, given Q and $G \leq \operatorname{Aut}(Q)$.
Lemma 7.3. Let $G \cong \mathrm{GL}(3,2)$ and V an indecomposable 6 -dimensional $\mathbb{F}_{2} G$-module with composition factors V_{3} and $V_{3^{\prime}}$. Then $\operatorname{dim} H^{2}(G, V)=1$ and if $f: \operatorname{soc} V \rightarrow V$ is the inclusion, and $g: V \rightarrow V / \operatorname{soc} V$ the quotient, $H^{2}(G, f)$ is the $0-m a p$ and $H^{2}(G, g)$ is an isomorphism.

Proof. Set $M=V \oplus \mathbb{F}_{2}$, a permutation module for G on the cosets of $H \leq G$, $H \cong \Sigma_{4}$. By Shapiro's Lemma $H^{2}(G, M) \cong H^{2}\left(H, \mathbb{F}_{2}\right)=\mathbb{F}_{2}^{2}$. Since $H^{2}\left(G, \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}$, we get $H^{2}(G, V) \cong \mathbb{F}_{2}$. Similarly, $H^{1}(G, V) \cong \mathbb{F}_{2}$.

Using the long exact sequence for cohomology ($H^{n} \equiv H^{n}(G,-)$), applied to $0 \rightarrow 3 \rightarrow V \rightarrow 3^{\prime} \rightarrow 0$ (representing $0 \rightarrow \operatorname{soc} V \stackrel{f}{f}, V \underline{g}, V / \operatorname{soc} V \rightarrow 0$) we get

$$
H^{0} 3^{\prime} \rightarrow H^{1} 3 \rightarrow H^{1} V \rightarrow H^{1} 3 \rightarrow H^{2} 3 \rightarrow H^{2} V \rightarrow H^{2} 3^{\prime}
$$

proving the lemma.
We now propose a realization of P via loop maps. We use the notation and results
of Section 2. Let H be the Hamming code on the index set $\Omega=\mathbb{F}_{2}^{3}-\{0\}$ and consider $F:=\left\{\left(a_{k}\right) \mid k \in \Omega, a_{k} \in \mathbb{O}_{16}\right\}$. The group $G=\operatorname{Aut}\left(\mathbb{D}_{16}\right)$ acts on Ω and \mathbb{D}_{16}, hence on this set. Here, \mathbb{D}_{16} is based on the 'code' H^{*} in which all nonzero vectors are declared 'odd'. We may identify Ω with $H^{*}-\{0\}$.

Define maps $x(i, d), \quad i \in H, d \in \mathbb{D}_{16}$, by $x(i, d):\left(a_{k}\right) \rightarrow\left(a_{k}^{\prime}\right)$ where $a_{k}^{\prime}=a_{k} d$ if $\langle k, i\rangle=1$ and $a_{k}^{\prime}=a_{k}$ if $\langle k, i\rangle=0$. Then $\left(a_{k}\right)^{x(i, d) x(j, e)}=\left(a_{k}^{\prime}\right)$ where

$$
\begin{array}{rlrl}
a_{k}^{\prime} & =a_{k} d \cdot e & \text { if }\langle k, i\rangle & =1,\langle k, j\rangle \\
& =a_{k} d & & =1, \\
& =a_{k} e & & =0, \\
& =a_{k} & & =0, \\
& & =0, & \\
=0
\end{array}
$$

Therefore, $[x(i, d), x(j, e)]=z_{i \cap j}^{N(d, e)}$. We have $x(i, d) x(i, e)=x(i, d e) y(i, d \cap e)$ and $x(i, d) x(j, d)=x(i+j, d) z_{i n j}^{N d}$. In the notation of Section $2, X Y Z / Y Z \cong H \otimes H^{*}$ as G modules, where we make the additional restriction that $\lambda \in H$; see (2.8). We are interested in $X_{0} Y Z$, where X_{0} is generated by all products $\Pi_{r} x\left(i_{r}, d_{r}\right)$ with $\Sigma_{r}\left\langle i_{r}, d_{r}\right\rangle=0$. Since $(X Y Z)^{\prime}=Z, X Y Z / Z$ is abelian and $X_{0} Y Z / Y Z \cong S$ is projective and injective as G-modules, we get a subgroup $Q_{0}, Z \leq Q_{0} \leq X_{0} Y Z$ such that $Q_{0} Y=$ $X_{0} Y Z$. In fact, Q_{0} is uniquely determined by these conditions since $Y Z / Z \cong H \otimes H$, of shape ($3^{\prime} 33^{\prime}$), involves only composition factors not isomorphic to S.

We argue that $Q_{0}^{\prime}=Z$. Certainly, Q_{0}^{\prime} is a G-submodule of $Z \cong P E(H)$, of shape (33^{\prime}) ${ }^{\mathrm{t}}$. In the group $R=X Y Z$ we define $R_{0} \geq Q_{0}$ by $R_{0} / Q_{0}=C_{R / Q_{0}}(G) \cong \mathbb{Z}_{2}$. By considering the G-action on the Lie rings associated to R_{0} and Q_{0}, one sees that it suffices to prove $R_{0}^{\prime}=Z$.

For i, d, let $\xi(i, d) \in R_{0}$ satisfy $\xi(i, d)=x(i, d) y$, for some $y \in Y Z$. Take a basis $\left\{z_{\alpha}\right\}$ for Z. We claim that $[\xi(i, d), \xi(j, e)]=\Pi_{\alpha} z_{\alpha}^{p_{\alpha}+q_{a}}$, where there exist scalars a_{α}, b_{α} such that $p_{\alpha}=a_{\alpha} N(d, e)$ and $q_{\alpha}=b_{\alpha} N(d, e, f)$ for some $f \in \mathbb{D}_{16}$. The claim follows from the formulas of Section 2.

Observe that there is an α such that $a_{\alpha}=1$. For instance, $[x(i, d) x(j, e)]=z_{i \cap j}^{N(d, e)}$ implies that some $a_{\alpha} \neq 0$. We now claim that, for any such $\alpha, z_{\alpha} \in R_{0}^{\prime}$. If false, $p_{\alpha}(d, e)+q_{\alpha}(d, e)=0$ for all d, e or that $N(d, e)$ is linear in d and e, which is false. We conclude that $z_{i \cap_{j}} \in Q_{0}^{\prime}$. High transitivity implies that $Z \leq Q_{0}^{\prime}$.

Let $A=\operatorname{Aut}\left(\mathbb{O}_{16}\right)$ and let A act on L by $g \in A, g:\left(a_{k}\right) \rightarrow\left(\left(a_{k^{8}}\right)^{g}\right)$. Then $g \in \operatorname{Diag}\left(\mathbb{D}_{16}\right)=\mathrm{O}_{2}(A)$ acts by $\left(a_{k}\right) \rightarrow\left(a_{k} z^{\langle k, S\rangle}\right)$ for some $S \in H \leq \operatorname{PE}(\Omega)$. The group $Z A \leq \Sigma_{L}$ satisfies $Z \cap A=\operatorname{soc}(Z)$ and

$$
1 \rightarrow Z \rightarrow Z A \rightarrow \mathrm{GL}(3,2) \rightarrow 1
$$

is split, according to Lemma 7.3. We take $P_{1}:=Q_{0} A \leq \Sigma_{L}$, proving the Lemma.
We give explicit generators for Q_{0} modulo Z. Let $\left\{i_{1}, i_{2}, i_{3}\right\}$ be a basis of H and let $\left\{d_{1}, d_{2}, d_{3}\right\}$ be a basis of \mathbb{O}_{16} modulo its center. We take them to express the duality of H and H^{*}. An element of $X Y Z / Z$ may be represented by a 3×6 matrix over \mathbb{F}_{2}, where the elementary matrix unit $E_{j k}$ stands for the coset of $x\left(i_{j}, d_{k}\right)$ if $k \leq 3$ and for the coset of $y\left(i_{j}, i_{k}\right)$ if $4 \leq k \leq 6$. Let M_{L}, M_{R}, respectively; be the span
of the $E_{j k}$ for $j=1,2,3$ and for $k=1,2,3$ and 4,5,6, respectively.
We may identify the action of G on this set of matrices by taking the natural action of G on $V_{3} \otimes V_{3}$ to be the action on M_{R}. Since M_{L} is not a module direct summand, we need a factor set to modify the natural action of G on $V_{3} \otimes V_{3^{\prime}}$ to get the right action on $V_{3} \otimes V$. The rule $x(i, d) x(i, e)=x(i, d e) y(i, d \cap e)$ gives the factor set. Note that the subgroup of $\operatorname{GL}(3,2)$ preserving the direct sum is the group of permutation matrices Σ_{3}, taken with respect to the basis $\left\{i_{1}, i_{2}, i_{3}\right\}$ (or, equivalently, with respect to $\left\{d_{1}, d_{2}, d_{3}\right\}$).

Our generators for Q_{0} modulo Z are all

$$
\begin{array}{ll}
\xi_{j k}:=x\left(i_{j}, d_{j}\right) x\left(i_{k}, d_{k}\right) y\left(i_{j}, i_{k} i_{l}\right), & \text { for }\{j, k, l\}=\{1,2,3\}, \\
\eta_{j k}:=x\left(i_{j}, d_{k}\right) y\left(i_{j}, i_{j} i_{l}\right) y\left(i_{l}, i_{j}\right), & \text { for }\{j, k, l\}=\{1,2,3\} .
\end{array}
$$

These generators correspond to the respective matrices

$$
\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \text { and }\left(\begin{array}{llllll}
0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

and those obtained from them by natural action of Σ_{3} on the indices $\{1,2,3\}$ and $\{4,5,6\}$ via the bijection $k \leftrightarrow k+3$. To get a basis, remove one $\xi_{j k}$. The validity of this paragraph was cstablishcd with a computer program.

For $X=L, R$, let p_{X} be the projection of $M=M_{L} \oplus M_{R}$ onto the summand M_{X}. Then p_{X} carries this 8 -dimensional space of matrices isomorphically onto $M_{L}^{0}=$ $\{[A \mid 0] \mid \operatorname{tr} A=0\}$ if $X=L$ and onto $M_{R}^{0}=\{[0 \mid B] \mid$ the sum of the off-diagonal terms is 0$\}$ if $X=R$. The Σ_{3}-module M_{L}^{0} is a direct sum of the 2 -dimensional faithful modulc M_{L}^{1} and M_{L}^{2}, isomorphic to the group algebra $\mathbb{\tau}_{2} \Sigma_{3}$; in fact, $M_{L}^{1}=\{[A \mid 0] \mid A$ is diagonal and $\operatorname{tr} A=0\}$ and $M_{L}^{2}=\{[A \mid 0] \mid$ the diagonal of A is 0$\}$. The above isomorphism $M_{L} \cong M_{R}$ carries M_{L}^{1} to $\{[0 \mid B] \mid B$ is diagonal and $\operatorname{tr} B=0\}$ and M_{L}^{2} to the span of all $E_{j, j+3}+E_{j, k+3}+E_{k, j+3}$, for $j \neq k$.

Proposition 7.4. $P \approx P_{1} / \operatorname{soc}(Z)$.

Proof. Lemma 7.2.
A slight variation of this idea ought to give \hat{P}, possibly something using the extended code for $H \times\langle\Omega\rangle$ in \mathbb{F}_{2}^{8}.

Remark 7.5. It is not always necessary to employ the loop concept to describe parabolics in sporadics. In the monster, the centralizer of a 2 -central involution has shape $\left(2_{+}^{1+24}\right)(.1)$ and is described with the theory of extraspecial groups and their automorphisms. Some 2 -locals in sporadics are so small that no special theories are needed.

Remark 7.6. To study representations of certain sporadic parabolics P, it is useful
to have a group \hat{P} with a quotient isomorphic to P. The kernels of relevant $\hat{P} \rightarrow P$ are

$$
\begin{array}{rlrl}
\mathbb{Z}_{2} & \text { for } P & =\left(2_{\varepsilon}^{1+2 n}\right)\left(\Omega^{\varepsilon}(2 n, 2)\right) & \\
\mathbb{Z}_{2}^{2} & & \text { in } J_{2}, J_{3}, \text { Suz, } 1 ; \\
\mathbb{Z}_{2}^{3} & & \left.=2^{2+11+22}\right)\left(\Sigma_{3} \times M_{24}\right) & \\
\text { in } F_{1} ; \\
\text { GL }(3,2) & & \text { in Ru. }
\end{array}
$$

References

[1] J. Alperin, Sylow 2-subgroups of 2-rank 3, in: Finite Groups '72 (Proc. Gainesville Conf., Univ. Florida, Gainesville, FL, 1972), North-Holland Mathematical Studies, Vol. 7 (North-Holland, Amsterdam, 1973) 1-12.
[2] G. Avrimin, The image of the restriction map on 2-cohomology, Arch. Math. (Basel) 34 (1980) 502-508.
[3] D. Benson, Modular Representation Theory via Representation Rings, Lecture Notes in Math. (Springer, Berlin, 1985).
[4] N. Blackburn, The extension theory of the symmetric and alternating groups, Math. Z. 117 (1970) 191-206.
[5] E. Cline, B. Parshall, L.L. Scott, Jr. and W. van der Kallen, Rational and generic cohomology, Invent. Math. 39 (1977) 143-163.
[6] E. Cline, B. Parshall, L.L. Scott, Jr., Cohomology of finite groups of Lie type, I, Inst. Hautes Etuds Sci. Publ. Math. 45 (1975) 169-191.
[7] J. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of Finite Groups (Oxford University Press, 1985).
[8] J. Conway, A simple construction for the Fischer-Griess Monster group, Invent. Math.
[9] J. Conway, Three lectures on exceptional groups, in: G. Higman and M. Powell, eds., Finite Simple Groups, Oxford, 1969 (Academic Press, London, 1971).
[10] H.S.M. Coxeter, Integral Cayley numbers, Duke Math. J. 13 (1946) 561-578.
[11] U. Dempwolff, On the extensions of an elementary group of order 2^{5} by GL(5,2), Rend. Sem. Mat. Padova 48 (1972) 359-364.
[12] U. Dempwolff, On the second cohomology of GL(n, 2), J. Austral. Math. Soc. 16 (1973) 207-209.
[13] L. Dornhoff, Group Representation Theory, 2 volumes (Marcel Dekker, New York 1971, 1972).
[14] W. Feit, The Representation Theory of Finite Groups (North-Holland, Amsterdam, 1982).
[15] E.M. Friedlander, Homological stability for classical groups over finite fields, Algebraic K-Theory (Proc. of a conference at Northwestern University in Evanston, IL, 1976), Lecture Notes in Math. 551 (Springer, Berlin, 1976) 290-302.
[16] E.M. Friedlander and B. Parschall, On the cohomology of Chevalley groups, Bull. Amer. Math. Soc. 7 (1982) 247-250.
[17] S. Gagola and S. Garrison, Real characters, double covers and the multiplier, J. Algebra 74 (1982) 20-51.
[18] R.L. Griess, Jr., Lecture at the Santa Cruz conference, 1979.
[19] R.L. Griess, Jr., A sufficient condition for a finite group of even order to have nontrivial Schur multiplicator, Notices Amer. Math. Soc. (1970).
[20] R.L. Griess, Jr., Automorphisms of extraspecial groups and nonvanishing degree 2 cohomology, Pacific J. Math. 48 (1973) 403-422.
[21] R.L. Griess, Jr., Schur multipliers of the known finite simple groups, III, in: Proc. of the Rutgers Group Theory Year 1983-84 (Cambridge University Press, Cambridge, 1984) 69-80.
[22] R.L. Griess, Jr., Code loops, J. Algebra, to appear.
[23] R.L. Griess, Jr., The friendly giant, Invent. Math. 69 (1982) 1-102.
[24] R.L. Griess, Jr., The monster and its nonassociative algebra, Proc. Montreal Conference on Finite Groups, to appear.
[25] D.G. Higman, Flag transitive collineation groups of finite projective spaces, Illinois J. Math. 6 (1962) 434-446.
[26] B. Huppert, Endliche Gruppen I (Springer, Berlin, 1967).
[27] V. Landazuri, Thesis, University of Michigan, 1975.
[28] M. O'Nan, Some evidence for the existence of a new simple group, Proc. London Math. Soc. 32 (1976) 421-479.
[29] M. Ronan and S.D. Smith, 2-local geometries for finite groups, Proc. The Santa Cruz Conference on Finite Groups (Amer. Math. Soc., Providence, RI, 1980).
[30] I. Schur, Ueber die Darstellung der endliche Gruppen durch gebrochene lineare Substitutionen, Crelle J. Math. 127 (1904) 20-50.
[31] I. Schur, Untersuchungen ueber die Darstellungen der endlichen Gruppen durch gebrochene lineare Substitutionen, Crelle J. Math. 132 (1907) 85-137.
[32] I. Schur, Ueber die Darstellungen der symmetrischen und alternierenden Gruppen durch gebrochene lineare Substitutionen, Crelle J. Math. 139 (1911) 155-250.
[33] R. Steinberg, Générateurs, relations et revêtements de groupes algébriques, Colloq. Théorie des Groupes Algébriques (Bruxelles, 1962), Librairie Universitaire, Louvain (Gauthier-Villars, Paris, 1962) 113-127.
[34] R. Steinberg, Lectures on Chevalley groups, Yale Lecture Notes, 1967.
[35] J. Tits, Remarks on Griess' construction of the Griess-Fischer sporadic group I, II, III, IV, Preprints distributed 1982-1983.
[36] J. Tits, Théorie des groupes, Annuaire du Collège de France, 1982-1983.
[37] J. Tits, Le monstre, Séminaire Bourbaki, 620, November 1983.
[38] Peterfalvi, Le théorème de Bender-Suzuki, I, Preprint.

[^0]: Let $1, \ldots, 8$ represent 1 , Monday, Tuesday, \ldots, Sunday. Thus, $\mathbb{D}_{16}=\{ \pm 1, \pm 2, \ldots, \pm 8\}$. The (i, j)-entry below represents the product of i and j. For example, Tuesday \cdot Monday $=-$ Thursday and Saturday \cdot Tuesday $=-$ Friday.

