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1. INTRODUCTION 

Let ~(4 t3=CIz+PI~2~aBxnP be a real quadratic polynomial of 
(4 OeR2’. Let P~(.G 5)=CI.+/II=2 u,~x”<~ be the second order part of 
p(x, 5) and P((x, r), (JJ, 4)) be the polarized form of p2(x, <). Let a( ., .) be 
the standard symplectic form on R2”. F is the Hamiltonian map of pZ 
defined by a((~, 5), F(y, q))= P((x, 0, (y, q)) and tr+p, is defined as the 
sum of the positive eigenvalues of - i. F. 

Let P~(x, D) be the Weyl operator with symbol p(x, 0, i.e., p”(x, D) u = 
(27~~~” jjp((x+y)/2, t) e”.‘p-““5 u(y) dy d(, where u E ,Y’( R”), the space of 
rapidly decreasing C” functions. 

Melin proved in [3] that (p”‘(x, D) U, u) 2 0 for any u E Y(R”) if and 
only if infp(x, 5) + tr+ p2 20. In particular, if p(x, 5) 2 0, then 
p”‘(x, D) z 0. 

It is a very different case for a system of differential operators. Hiirman- 
der gave the following example in [ 11. 

Let 

(.u, 5)~ R2; 
then p(x, <) 2 0 but 

(PYx,Dp],[;:])= -fj(u’)2dx<O, 
where U, = u”, u2 = i(u - xu’) and u E 9’(Rn) is real-valued and not iden- 
tically equal to zero. 

In this paper we will study the positivity of systems of operators with the 
symbol 

Ax, 5) = 
ax2 + b12 a-d 

ax5 1 cx2+dt2 ’ 
(x, 5)~ R2 a, b, c, dB0, 

ad+ bc#O. 
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Remark 1.1 By the symplectic invariance of the Weyl operators, given 
any (x,, to) and u E 9’(R), we can find U, E Y(R) such that 
lim, + m (p”(x, D) u,, u,) = (p(x,, &,) U, u). See [l] for the details. It 
follows that p(x, [) 2 0 is a necessary condition for p”‘(x, D) to be positive. 
Hence pw(x, D) cannot be positive if one of a, b, c, d is strictly negative. It is 
also obvious that if a, b, c, d> 0 and ad + bc = 0, then p”‘(x, D) 3 0 if and 
only if 0: = 0. Therefore from now on we will always assume a, 6, c, d > 0 
and ud+bc#O. 

The main result of this paper is the following theorem. 

THEOREM 1.1. P’(x) D)>O ifand only zf(l,, &) and (A,, A,) belong to 
the domain Q. where 

~ = (ad)“* - (bc)“*+ c( (ad)“*- (bc)‘:* - c( 
I (ad)“‘+ (bc)“’ ’ I2 = (ad)‘/* + (&)I/* 

and L2 is a convex closed subset of R2, symmetric with respect to both the 
X and the Y axes (Fig. 1). The precise definition of ~2 will be given in 
Section 3. 

In particular, the positivity of pl’(x, D) depends only on 
((ud)l”, (bc)1’2, a). The following corollary is a consequence of the fact that 
{(x,y):x2+y2Q2} is a proper subset of Q. 

COROLLARY 1.1. cx* 6 4(abcd)“* is a sufficient but not necessary 
condition for p”‘(x, D) to be positive. 

FIGURE 1 
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It is easy to see that p(x, 020 if and only if c1< (~d)‘/~+ (b~)‘/~, 
which corresponds to [A,[ + (il,l Q 2. Since Q is a proper subset of 
{(x3 Y): l-4 + IYI ~2~~ we see that there exist positive symbols p(x, 5) such 
that pw(x, D) is not positive. 

Moreover, if abed = 0, say b = 0, then 

~ = (ad)“‘+ CY 
I (ad)“* ’ 

~ = (ad)li2 - a 
’ (ad)‘12 

and A, + /I, = 2. 

SinceSZn{(x,y):Ixl+lyl=2}={(1,1),(1,-1),(-1,1),(-1,-1)},we 
obtain the following corollary. 

COROLLARY 1.2. If abed = 0, then pw(x, D) > 0 if and only if c( = 0. 

Hormander’s example is of course just a special case of Corollary 1.2. 
The proof of Theorem 1.1 will be given in Sections 3,4 and 5. Section 2 

contains some definitions and lemmas that will be needed. 

2. HERMITE FUNCTIONS AND INFINITE HERMITIAN MATRICES 

Let H,(X) = ( - 1)” e-‘*(d”/dx”) e@, n = 0, 1, 2,..., be the Hermite 
polynomials. The Hermite functions a,(x) = (~‘VZ!(~)~‘*) ~ ‘j2 e-(“2)“2H,,(~), 
n = 0, 1) 2 )...) form an orthonormal basis of L*(R). 

From the well-known formulas [2] 

it follows that 

2xH,(x)=H,+,(x)+2nH,-,(x) 

Hn(x) = 2nH,-. ,(x), 

where D = - i(d/dx) and (r _ 1(x) = 0. 
The following lemma is a direct consequence of the previous formulas. 

LEMMA 2.1. Let u belong to Y(R). With respect to the basis {o,Jx)}~==,, 
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(i) the map u -+ x2u is represented /I!. the irz#inite matrix (ai,),S,l,S ,. , 
where 

f(2n + I ), j=j=n 

aij= +((n + l)(n + 2))“‘, i=n,j=n+2ori=n+2,j=n 

i.e. 

taij) = 

(ii) the map u 
where 

otherwise, 

112 0 (l/2) ‘I2 
0 312 0 

(1/2)“2 0 512 
0 (3/2)‘/’ 

+ D’u is represented by the infinite matrix (b,,), ~ i,, ~ a , 

$(2n + 1 ), i=j=n 

b ;j = -$((n+ l)(n+2))“*, i=n,j=n+2ori=n+2,j=n 

0, otherwise, 

i.e., 

- (1/2)“2 0 
0 -(3/2)“2 . 

512 

.1 

, 

. . 

111) the map u -+ i(xD+ Dx) u is represented by the matrix 
( c ) (‘” ,, O<r,j<mT where 

-it((n+ l)(n+2))‘12, i=n,j=n+2 
(cij) = i i$ (n + 1 )(n + 2))“2, i=n+2,j=n 

i.e., 

Cc,) = 

0 otherwise, 

- 0 0 -i( l/2)“* 0 
0 0 0 -i(3/2)“2 

i( l/2)‘!* 0 0 
0 i( 3/2)‘/* . . 1. 
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DEFINITION 2.1. Let A be an infinite complex Hermitian matrix; then A 
is positive if (Av, v) 3 0 for any complex vector with finitely many non- 
zero components. 

Remark 2.1. If A 3 0 and T is an infinite matrix with the property that 
TV has finitely many non-zero components whenever v has finitely many 
non-zero components, then T*ATb 0. 

We are particularly interested in band matrices of the form 

a;, b, E R, a, > 0. 

The following lemma is obvious. 

LEMMA 2.2. B is positive ij’ and only if 

t a,x:+2 ,1 1 ~ 1 b,x,x,+,>O ,for n = 1, 2 ,... and xk E R. 
k=l k=l 

I[ is easy to see that if (b;l < 1 b, 1, rhen 

c &x:+2 c bkxkxk+,>o for any real numbers x, , x2 ,..., x, 
k=l k=l 

implies that C; = , akxi + 2 C”: ’ b’ x x k , k k x + I 20 for any real numbers 
-‘cl 3 x2,-, x,,. 

COROLLARY 2.1. If B’ is obtained from B by replacing b, by b;, where 
lb;/ 6 Ibk(, then B>O implies B’aO. 

LEMMA 2.3. If‘ hi # 0, i = 1, 2 ,..., then B > 0 ij’ and only if det B, > 0 for 
n = 1, 2,..., where 

Proof The sufficiency is a well-known theorem in linear algebra. The 
necessity will be proved by contradiction. We know that BaO implies 
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det B,, 3 0 for n = 1, 2 ,.... Let m be the first integer such that det B,, = 0. 
Then det B, + , = a, + z det B, - b:, + , det B, , < 0, a contradiction. 

Q.E.D. 

LEMMA 2.4. Let B = (aij), G ij < 3c, where 

i=j=n, 

i=n,j=n+ 1 or j=n, i=n+ 1, 

i.e., 

I 

1 b,l(a,4”’ 0 

B= hl(wd”* 1 Wbw#‘* 
0 Mwd”* 1 

. . 

Then B>O ifand only ifB>O. 

1. 
Proof: B = T*BT and B = S*& where T is the diagonal matrix 

Ma, P2 
I ll(a2)“2 .1 . . 

and S is the diagonal matrix 

The lemma now follows from Remark 2.1. Q.E.D. 

3. TRANSFORMATION OF THE PROBLEM 

Let 

Pb, 5) = 
ax2 + bt2 u.xt 

ax5 I cx*+dr* ’ 

We will assume that a, b, c, d > 0 in this section. 
Let H be the Hilbert space L*(R)@ L*(R) and S be the subspace 

aR) 0 Y(R). 
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LEMMA 3.1. There exists a bounded operator T: H + H such that 
T: S + S is an automorphism and T*p”(x, D) T= qw(x, D), where 

4(x, 5) = Px’ + r5’ 4 
d yx2 +j?r2 1 ’ 

/3 = (ad)‘j2, y = (bc)“*. 

Proof Let T, : H -+ H be defined by 

T, is bounded and T, : S -+ S is an automorphism. T:p”(x, D) T, = 
q;(x, D), where 

4,(x, 5) = 
(a3cd/b)“4x2 + (b3cd/a)1’4c2 ad 

RX5 (abc3/d)‘14 x2 + (abd3/c)‘j4 5’ 1 ’ 

Let h = (bd/ac)‘14. By the symplectic invariance of Weyl operators [ 11, 
there exists a unitary operator U on L2(R) such that U: Y(R) + Y(R) is 
an automorphism, U*x2U= hx’, U*D’U= (l/h) D2 and U*(xD + Dx)/2U 
= (xD + Dx)/2. 

Let T,: H+ H be defined by T2[:]= [El, then T?q;r(x, D) T,= 
qw(x, D). The proof is completed if we let T= T, T,. Q.E.D. 

We now introduce a basis for H. Let 

e2k = and e2kfI= 

0 [ 1 , 
Ok 

where rrk, k = 0, 1, 2 ,..., are the Hermite functions. { en}FCo is a basis of H. 
Let o, = ((n + l)(n + 2)/4)“‘, n = 0, 1, 2 ,.... 

The following lemma is a direct consequence of Lemma 2.1. 

LEMMA 3.2. With respect to the basis {e,};=,, q”‘(x, D) is represented 
by the infinite matrix 

where A, = [(2n + 1)/2](/? + y)[A ‘f] and B, = w,,[Q ;_lapl 
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LEMMA 3.3. There exists u unitary operator U: H -+ H such that 
U: S-r S is an automorphism and U*q”‘(x, D) U is represented the irfinite 
matrix 

A, 0 c, 0 

0 A, 0 c, 

where A, = [(2n + 1)/2](,8 + y)[A y] and 

nrO,l mod4, 

( CO~(P~~ pry], nr2,3 mod4. 

Proof. Let U: H -+ H be defined by the infinite matrix 

I u, 0 0 u, 0 0 u, 0 0 . . 

1 
) 

where 

u,= 

[ 0 1 0 i’ 1 nz0, 1 mod4, 

[ 0 1 -i’ 0 1 nz2,3 mod4. 

U*q”‘(x, D) U has the desired representation. Q.E.D. 

LEMMA 3.4. There exists a unitary operator W: H -+ H such that 
W: S + S is an automorphism and W*q”‘(x, D) W is represented by the 
infinite matrix 
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E, = 

0 1 p-y-c! ' 
n~O,l mod4, 

0 

1 p-y+cc ’ 
ng2,3 mod4. 

Proof. Let V: H -+ H be defined by 

vu= [I 1 (u + v)/(2)“’ 
u (u- u)/(2)“* 1 . 

If we let W= UV, where U is the unitary operator in Lemma 3.3, then 
W*q”‘(x, D) W has the desired representation. Q.E.D. 

LEMMA 3.5. There exists a bounded operator Q: H + H such that 
Q: S - S is an automorphism and Q*q”‘(x, D) Q is represented by the irzfinite 
matrix 

where F, = (2n i 1)/2[; y], 

0” nz0, 1 mod4, 
G,= 

0, nz2,3 mod4, 

Proof Let Q,: H+ H be defined by Ql[:] = l/(/?+~)~‘~[:]. If we let 
Q = WQI, where W is the operator in Lemma 3.4, then Q*q’“(x, D) Q has 
the desired representation. Q.E.D. 

Let [, = ((2n + 1)(2n + 2)/(4n + 1)(4n + 5))“* and q,, = ((2n + 2)(2n + 3)/ 
(4n + 3)(4n + 7))“* for n = 0, 1, 2 ,.... 
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LEMMA 3.6. q”‘(x, D) > 0 if and only if the,following infinite matrices N, , 
N,, N,, N, are positive, where 

N, = 

N,= 

N, = 

and 

N,= 

Proof: By Lemma 3.5, q+“(x, D) > 0 if and only if the matrices 

are positive. 
If we write out the components of F,, Go, F2, G2,..., we see that the first 

matrix is equal to the following one: 
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(l/2) 0 aA 0 
0 (l/2) 0 %h 

WA 0 (5/2) 0 w212 
wJ2 0 (5/2) 0 ~~1, 

0212 0 (912) 0 

0 02l, 
0 

(912) . . 

This matrix is positive if and only if the matrices 

c (l/2) (%A, 0 
1 r (l/2) ad2 0 1 

~0, (5/2) m2A2 and ~~2, (5/2) ~~4 
~~1, (9/2) ~~4 (9/2) 

0 . , 0 . . 

are positive. By Lemma 2.4, these matrices are positive if and only if N, 
and N, are positive. Similarly, the second matrix at the beginning of the 
proof is positive if and only if N, and N4 are positive. Q.E.D. 

Observe that N,, N, 3 0 implies N,, N, > 0 by Corollary 2.1. We have 
therefore proved the following proposition. 

PROPOSITION 3.1. p”‘(x, D) > 0 if and only ij’ N, , N, > 0. 

4. THE DOMAIN Q 

As in Section 3, let c,, = ((2n + 1)(2n + 2)/(4n + 1)(4n + 5))li2 for 
n = 0, 1, 2 ,... . N(x, y) is the following infinite matrix. 

r 

1 iox 
0 

i()x 1 ilY 

I i,Y 1 i2x 

i*x 1 i3Y 

I 0 i3Y 1 

DEFINITION 4.1. Q= {(x, y): N(x, y)>(I). 

The following two propositions give some elementary properties of Sz. 

PROPOSITION 4.1. (i) !I2 is convex. 
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(ii) Zf (X,J)EQ, then the rectangle ((a, h): Ial d Ix and 
161 < lyl > c 52. In particular, f2 is symmetric with respect to the X and Y 
axes. 

(iii) n is closed. 

ProojI Parts (i) and (iii) are obvious. Part (ii) follows from 
Corollary 2.1. Q.E.D. 

PROPOSITION 4.2. (i) (0, Y) E sr! if and only if y’ d 15/4. 
(ii) (x, 0) E Q if and only if x2 d 5/2. 

(iii) rf (x, y) E Q, then 2x2/5 + 4y2/15 < 1 unless xy = 0. 

Proof: To prove (i) oberve that N(0, y) consists of blocks of the form 

[ i 1 ’ n=o, 1,2 ,.... 
2n+ 

1 Y i2n+lY 1 1 
Since t2,, + L is decreasing in n, N(0, y) > 0 if and only if 

[ 

1 
det (4/15)“2Y 

(4/15)“* Y > o 
1 1 ’ . 

Part (ii) is proved similarly. Part (iii) follows from writing down the 
determinant of the first 3 by 3 block in N(x, y) and Lemma 2.3. Q.E.D. 

From now on we will assume that 0 <Y’ < 15/4 and 0 <x2 < 5/2. 
Consequently 1 is strictly greater than [2nx2 and c2,,+, y2, for n = 0, 1, 2 ,.... 

Let 

1 1 42 0 
x/2 1 Y/2 

wx, Y) = Y/2 1 x/2 

0 -42 1 Y/2 
y/2 .. . 

I . 

LEMMA 4.1. M(x,y)~Oifandonfyif’Ixl+Iyl~2. 

Proof: It is obvious that M(0, y) > 0 iffy* 6 4 and M(x, 0) > 0 iff x2 < 4. 
Let a,= 1 and a,,, = l-x2/4a,. When x=y, M(x,y)>O iff a,>0 for all 
n. It is elementary to show that a, > 0 for all n iff x2 < 1. Since the set 
{(x,Y):~kY)~o} is a convex set, we can deduce from the information 
above that it is exactly the set {(x, Y): 1x1 + lyl < 2). Q.E.D. 

FROPO~ITI~N 4.3. f22c ((x,y): /xl+ /y/,(2}. 
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Proof. If (x, y) E cJ, then by considering submatrices far away we see 
that M(x, y) z 0. Therefore Q c {(x, y): 1x1 + lyl < 2) by Lemma 4.1. 

Q.E.D. 

In order to state a sufficient condition for (x, y) to be an element of Sz, 
we introduce the following Mobius transforms. 7’,(z) = 1 - ii,+, y’/ 
(1 -g, x2/z), n =o, 1, 2,.... 

Let rn = 1 - <$,+ 1 y2, 6, = ($,x2 and yn = [:,x2/(1 - [:,,+ I y’), for 
n = 0, 1) 2 )... . Then T,(co)=t,, 7’,(6,)=00, T,(y,)=O, 6,<y,, and 
1 - [&x2/z > 0 for z > 6,. (r”} is an increasing sequence with limit 1 - y2/4. 
(6,) and {yn} are decreasing sequences with limits x2/4 and x2/(4-y’), 
respectively. 

Let 

D,, = 

1 iox 
iox 1 i,Y 0 

i,Y 1 

1 i2nX 

0 i22 1 12n+*Y 

i 2n+lY 1 

7 for n B 0. 

LEMMA 4.2. V T,,(l)>y,, T,T,,(l)>y, ,..., T,-,... T,(l)>y,, then 
det D,>O. 

Proof We can reduce D, to the following matrix by row operations. 

LJ 
an 

0 

i,Y 
aI 

0 

a,,-, i2”X 
a,, 

where a0 = 1 -[‘x2 a 
T,,( 1) for k” Z b. 

-l-(~;kX2/Tk-,...T0(1))fOI’k>l anda,,+,= 2k - 

Tk ’ ’ ’ 
By the assumption all the diagonal entries of B, are positive, therefore 

det D, = det 8, > 0. Q.E.D. 

So far we have found some bounds for 52, the following proposition gives 
information about the interior of Q. 
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PROPOSITION 4.4. {(x, y): x2 + y2 < 2) c G’. 

We need one more lemma for the proof of Proposition 4.4. 

LEMMA 4.3. (1 - (4k + 5) t/(8k + 9))(1 - (4k + 2) t/(8k + 5)) - 
(4k + 3)(4k + 4)(2 - t)/(8k + 5)(8k + 9) 3 0 for t E [0, l] and k = 0, 1, 2 ,... 

Proof: Define Fk(t) as the left side of the inequality. By direct com- 
putation, F;- < 0 on [0, 1 ] and Fk( 1) = 0. Therefore Fk > 0 on [0, 11. 

Q.E.D. 

Proof of Proposition 4.4. By Proposition 4.1, we only have to consider 
the case where x,ykO. The cases x=0, 06~62”~ and O<X<~‘/~, y=O 
follow from Proposition 4.2. 

If 0 <y < x, we are going to prove by induction that T,,... T,( 1) > 
(4n+5)/(8n+9)>yH+,, for n=O, 1,2 ,.... 

Since 1 - 2x2/5 - 3y2/5 = 1 - x2/2 - y2/2 + (x2 - y2)/10 2 0, 
T,( 1) = 1 - (3/5). (4y2/9)/( 1 - 2x2/5) 3 519. Also, 6x2/13 + 7.8. y’l 
13.17<6(x2+y2)/13<12/13<1, which implies that y,=(5.6x2/9.13)/ 
(1 -7.8y2/13. 17)<5/9. 

Assume that the inequalities hold for n = 0, 1, 2,..., k - 1. Tk . . . T,( 1) = 1 
- i:, + I Y’l( 1 - 5:,x2/T,-1 -.. T,(l))> 1 - i:,+, y21(1 - [:,x2/ 
(4k + 1/8k + I)), by the induction hypothesis and the fact that T, is increas- 
ing on [ykr co). Since 1 - (4k + 2) x2/(8k + 5) - (4k + 3) y2/(8k + 5) = 1 
- x2/2 - y2/2 + (x2 - y2)/(2. (Xk + 5))30, Tk... T,,(l) > (4k + 5)/ 
(8k + 9). Also, (4k + 6)x2/(8k + 13) + (4k + 7)(4k + 8) y2/(8k + 
13)(8k + 17)< (x2 + y2)(4k + 6)/(8k + 13)< (8k + 12)/(8k + 13)< 1, 
which implies y k + l d (4k + 5)/(8k + 9). Hence the inequalities hold for all n 
and therefore (x, y) E I2 by Lemma 4.2. 

We still have to consider the case 0 <x 6 y (hence x 6 1). This time we 
are going to prove by induction that T, . .. T,( 1) 2 (4n + 5) x2(8n + 9) 3 
Y ?I + I ’ 

T,( 1) 2 5x2/9 if and only if (1 - 5x2/9)( 1 - 2x2/5) - 3 .4. y2/(5 .9) 2 0. 
On the other hand, (l-5x2/9)(1-2x2/5)-3.4.y2/(5.9) > (1 - 
5x2/9)( 1 - 2x2/5) - 3.4. (2 - x2)/(5. 9). Therefore T,( 1) 2 5x2/9 by the 
case k = 0 in Lemma 4.3. Also, 7113 > 7.8. y2/( 13.17) implies 
1-7~8~y2/(13~17)~6/13,whichinturnimpliesthaty,=(5~6~x2/9~13)/ 
(l-7.8.y2/13.17)<5x2/9. 

Assume that the inequalities hold for n = 0, l,..., k - 1. T,. . T,( 1) = 1 
- i:k+,y’lU - i:k~~l(Tk~,...To(l))) 2 1 - i:k+ly21(1 - &x2/ 
((4k + 1) x2/(8k + 1 ))), by the induction hypothesis. By Lemma 4.3, (1 - 
(4k + 5) x2/(8k + 9))(1 - (4k + 2) x2/(8k + 5)) - (4k + 3)(4k + 4) 
y2/(8k + 5)(8k + 9) 2 (1 - (4k + 5)x2/(8k + 9))(1 - (4k + 2)x2/(8k 
+ 5)) - (4k + 3)(4k + 4)(2 - x2)/(8k + 5)(8k + 9)>0, which implies 
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that Tk... T,,(l) > (4k + 5) x2/(8k + 9). Also, (4k+7)/8k+ 13)2 
(4k + 7)(4k + 8) y2/(8k + 13)(8k + 17) implies 1 - (4k + 7)(4k + 8) y**/ 
(8/~+13)(8k+17)2(4k+6)/(8k+13), which in turn implies that yk+i> 
(4k+ 5) x2/(8k+9). Hence the inequalities hold for all n and therefore 
(x, y) E Sz by Lemma 4.2. Q.E.D. 

From Proposition 4.4 we know that the points (1, 1 ), (1, - 1 ), ( - 1, 1) 
and (- 1, - 1) belong to SZn ((x, y): 1x1 + lyl = 2). We want to show that 
they are the only points in the intersection. 

Ifx+y=2,wecanwriteN(x,y)=A*A+(l-x)&where 

A= p,=(2k+1/4k+l)“*, ~k=(2k/4k+1)“2 

and 

0 -i0 

-co 0 il 0 

B= I I i, 0 -i2 

0 -i2 0 13 

i3 ... 

We now define an infinite vector u by the following formulas, where uk is 
the kth component of u. The definition of u depends on a large positive 
integer n. 

0, = -po= -1. 

v* = PO/t, = (5/2)‘/2. 

u3= -pop1/S152= -(1.3.9/2*4)“*. 

~k=(-l)k(PoPL...Pk~2/5152...5k-1) 

=(-1)“(1.3..(2k-3)(4k-3)/2.4.(2k-2))”* for kbn. 

uj = -vi- I(j- 1)/j for j>n+l. 

It is obvious that UE 1’ and (Au), =0 for 1 < k<n - 1. Also, 
(Au),= (-l)‘-” v; (nlj)(pj- 5j) for j> n. 

LEMMA 4.4. llAoll* = 0:. 0( l/n). 
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Prooj 

(Av);=u$(n*/j*)[(+ l)“‘/(4j-3)“*-(j/j+ 1)(2j)“‘/(4j+ l)‘!*]* 

=~,2-(n~/j*)((1/2)~~~~5/4j+R~)* 

= v~(n21j2)(25/32j2 + iTj), where ]8,16 M/j3 

with M independent of j. 

.‘. f (Au): = II:. n*. f (2.5/32j4 + ai/j2) 
i=tf i=n 

=V ~*n’~O(1/n3) 

=u?;.O(l/n). Q.E.D. 

On the other hand, (Bv,v) = 2c,“=, (-l)“ck Iukuk+I = 
2~;:~~(-~)kik-,~kUk+,+2~~=,,=,l---)kik-,~k~k+,~ 

LEMMA 4.5. 2C;:{(-l)k[k .Ivkvk+,=(-l)"u~/2+(-1)"b,, where 
f h,, ) has a positive limit. 

Proof Let us define a,=2C;:i (-l)kik-rvkvk+I +(-I),+’ vz/2= 
2 + 2 c;!:(-l)“+’ 3.5...(2k - 1)/2.4...(2k - 2) + (-,)‘+I 
1 . 3. .. (2n - 3). (4n - 3)/2.4... (2n - 2). 2, for n >, 2. 

Hence, a2 = 0.75, a3 = -0.6875, a4 = 0.71875, a5 = -0.6992187, etc. It is 
easy to prove by induction that a2>a4>a6> ..., -a3< -a4c ..., 
a2,+a2,+l >O and q,,+a 2n+, goes to zero as n goes to infinity. 

Therefore h,, = ( - 1 )” a,, has a positive limit. In fact, lim h,, = 0.70.. . . 
Q.E.D. 

LEMMA 4.6. 2~~z,,(-1)k[kmIukvk+I = (-1)” +‘uz/2+(-l)“+‘v~. 
0(1/n). 

Proof. 2 ckr_,, (-1)" ik-Ivkuk+l = 2 c,"=,,(-1)"" rk-,vf, 
n*/(k(k+ l))= vt;.n’ CF==n (- 1) k”‘(l/(k(k+ l)$Rk), where Bk = (2ik-l 
- l)/(k(k + I))= [2((2k - 1)(2k)/(4k - 3)(4k + 1))“’ - l]/(k(k+ 1)). 

It is easy to see that there exists a constant C such that 0 < Rk d C/k4, 
for k = n, n + l,.... Therefore Crzn R, = 0( l/n’). 

XT”=, (-l)k+‘/(k(k + 1)) = (-,)“+I C,Eo 2/((n + 2j)(n + 2j)(n + 2j 
+ l)(n + 2j + 2)) = (-1)““/(2n*) + O(1/n3). The proof is now 
complete. Q.E.D. 

Combining Lemmas 4.5 and 4.6, we obtain the following corollary. 

COROLLARY 4.1. (Bv,v)=(-1)“6,,+(-1)“+1u~~O(l/n). 
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Finally, we want to estimate vi. 

LEMMA 4.7. vi = U(n’/*). 

Proof 

The proof is completed by an application of Stirling’s formula 
n! -(27m)“2.,~~,~“(1 + 1/12n+ ... ). Q.E.D. 

We are now in the position to prove the next proposition. 

PROPOSITION 4.5. Q n {(x, y): 1x1 + lyl = 2) = ((1, l), (1, -l), 
t-1, -11, C-1, 1)). 

Proof By Proposition 4.1, we may assume that x + y = 2. From the 
discussion above, we know that (N(x,y) v, v) = llAul[’ + (1 - X)(&I, 
v) = 1+.0(1/n) + (1 - ~)((-l)~ b, + 115,4l(l/n))=O(n-“2) + (1 -x) 
( - 1)” b,. Therefore N(x, y) cannot be positive unless x = 1, in which case 
we also have y = 1. Q.E.D. 

We can also use the vector u to show that Sz is separated from the boun- 
daries of {(x, y): 1x1 + IyI 6 2) by smooth curves with positive curvature. 

Let 

E= 

1, 4 
LEMMA 4.8. (Ev, v) = U(n2j3). 

Proof: First we assume n = 2m. 

<-WO)=~ f 12kv2k+lv2k+2 
k=O 

M cc 

=2 1 i 2kv2k+Lv2k+2+2 c t2kV2k+lv2k+2. 
k=O k=m+l 
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By the definitions of v and i,,, the first sum 

= -2 f (4k+ 1)(1.3...(4k+ 1))/(2 
k=O 

(cf. proof of Lemma 4.7) 

= O(m3j2) 

= O(n3j2). 

For the second sum, we have 

2 f iZkvZk+lvZktZ 

k=m+l 

= 2n2vi z 
k=mfl 

x [(4k+ 1)(4k+2)/(8k+ l)(Sk+5)]“‘/[(2k+ 1)(2k+2)] 

= 2n2ui. O( l/m) 

= O(n312), by Lemma 4.7. 

The proof for odd n is similar. Q.E.D. 

PROPOSITION 4.6. Q can be separated from the boundary qf 
{(x, y): 1x1 + 1 yl < 2) by smooth curve.s of positive curvature. 

Proof: It suffices to prove the proposition in a small neighborhood of 
(1, 1). 

The infinite matrix N(x, y) = N(2 -y, y) + (x + y - 2) E. By the proof 
of Proposition 4.5, (N(2 - y, y) v, v) = (y - 1 )( - 1)” 6, + O(n ~ ‘I’). Com- 
bining this estimate with Lemma 4.8, we have (N(x, y) v, v) = 
(y - l)( - 1)” 6, + I, + (x + y - 2) I,, where I, = O(n-‘12) and 1, = O(n312). 

For y # 1, there exists C, > 0 independent of y such that C,/( 1 -y)’ < n 
implies I, < j y - 1 l/4. There also exists C, > 0 independent of x and y such 
that C,( 1 -y)” I2 < 11 - y1/4, if n < 2C,/( 1 -y)‘. 

Therefore if x+~-2=C,(l-y)~ and C,/(l-~)~<n<2C,/(l -y)‘, 
then (N(x,y)v,v)=((l-y)(-l)“b,+Il-yl/2. When (l-~)~is small, 
we can find both odd and even n to satisfy C,/( 1 - y)’ < n < 2C, /( 1 - Y)~. 
Since b, > f for all n, by choosing a proper parity for n, we have 
(Nx, Y) 0, v> -co. 



POSITIVITYOF A SYSTEMOFOPERATORS 89 

Hence for y close to 1, (1, 1) is the only point on the curve x + y - 2 = 
C,( 1 -y)” that also belongs to 52. By the convexity of 52, x + y - 2 = 
C,( 1 -v)” separates a from x + y = 2 near (1, 1). 

5. PROOF OF THEOREM~.~ 

We may now prove Theorem 1.1 in two steps. In the first step we assume 
a, b, c, d> 0. From Proposition 3.1, we know that p”‘(x, D) > 0 if and only 
if N(1,, 1,) and N(&, Ai)>O, which is equivalent to (A,, 1,) and (A,, 1,) 
belonging to Sz. 

In the second step we look at the general case where a, b, c, d 2 0 and 
ad+ bc > 0. Let us assume first that p”‘(x, D) > 0. Given E > 0, we define 
ae=a+E, b,=b+E, c,=c+E, de-d+& and 

PEG? 5) = 
aEx2 + b,t2 ax5 

ax5 c,x= + d,t= 1 ’ 

Also, A,,, = [&de)“* - (bccJ1’* + a]/[(u,d,)“* + (b,c,)“*] and &= 
[(aed,)“* - (bec,)li2 - a]/[(a,d,)“2 + (bec,)“2]. Obviously, we have 
p:(x, D)>p”‘(x, D). From the first step we know that (IzI,E, &,) and 
(&, 1,,8) belong to 0. Since fi is obviously a closed set, (1,) 1,) and 
(A,, 1,) belong to Sz because Ai,& and & tend to 1, and 1, as E tends to 0. 

Conversely, let us assume that (Ai, A2) and (A,, 1,) belong to Sz. We may 
also assume that at least one of a, b, c, d, say b, equals 0 (hence ad > 0). It 
follows that 1, + A2 = 2, which implies that A, = I, = 1 (Proposition 4.5). 
Therefore a = 0 and pw(x, D) is obviously positive. Q.E.D. 
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