Positivity of a System of Differential Operators

LI-YENG SUNG

Department of Mathematics, The University of Michigan, Ann Aarbor, Michigan 48109

Received April 8, 1985; revised December 2, 1985

1. Introduction

Let $p(x, \xi) = \sum_{|\alpha+\beta| \le 2} a_{\alpha\beta} x^{\alpha} \xi^{\beta}$ be a real quadratic polynomial of $(x, \xi) \in R^{2n}$. Let $p_2(x, \xi) = \sum_{|\alpha+\beta| = 2} a_{\alpha\beta} x^{\alpha} \xi^{\beta}$ be the second order part of $p(x, \xi)$ and $P((x, \xi), (y, \eta))$ be the polarized form of $p_2(x, \xi)$. Let $\sigma(\cdot, \cdot)$ be the standard symplectic form on R^{2n} . F is the Hamiltonian map of p_2 defined by $\sigma((x, \xi), F(y, \eta)) = P((x, \xi), (y, \eta))$ and $\operatorname{tr}^+ p_2$ is defined as the sum of the positive eigenvalues of $-i \cdot F$.

Let $p^w(x, D)$ be the Weyl operator with symbol $p(x, \xi)$, i.e., $p^w(x, D) u = (2\pi)^{-2n} \iint p((x+y)/2, \xi) e^{i(x-y)\cdot\xi} u(y) dy d\xi$, where $u \in \mathcal{S}(\mathbb{R}^n)$, the space of rapidly decreasing C^{∞} functions.

Melin proved in [3] that $\langle p^w(x, D) u, u \rangle \ge 0$ for any $u \in \mathcal{S}(\mathbb{R}^n)$ if and only if $\inf p(x, \xi) + \operatorname{tr}^+ p_2 \ge 0$. In particular, if $p(x, \xi) \ge 0$, then $p^w(x, D) \ge 0$.

It is a very different case for a system of differential operators. Hörmander gave the following example in [1].

Let

$$p(x,\,\xi) = \begin{bmatrix} x^2 & x\xi \\ x\xi & \xi^2 \end{bmatrix}, \qquad (x,\,\xi) \in R^2;$$

then $p(x, \xi) \ge 0$ but

$$\left\langle p^{w}(x,D)\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \right\rangle = -\frac{1}{2} \int (v')^2 dx < 0,$$

where $u_1 = v''$, $u_2 = i(v - xv')$ and $v \in \mathcal{S}(R^n)$ is real-valued and not identically equal to zero.

In this paper we will study the positivity of systems of operators with the symbol

$$p(x,\xi) = \begin{bmatrix} ax^2 + b\xi^2 & \alpha x\xi \\ \alpha x\xi & cx^2 + d\xi^2 \end{bmatrix}, \quad (x,\xi) \in \mathbb{R}^2 \quad a,b,c,d \ge 0,$$

$$ad + bc \ne 0.$$

Remark 1.1 By the symplectic invariance of the Weyl operators, given any (x_0, ξ_0) and $u \in \mathcal{S}(R)$, we can find $u_n \in \mathcal{S}(R)$ such that $\lim_{n \to \infty} \langle p^w(x, D) u_n, u_n \rangle = \langle p(x_0, \xi_0) u, u \rangle$. See [1] for the details. It follows that $p(x, \xi) \geqslant 0$ is a necessary condition for $p^w(x, D)$ to be positive. Hence $p^w(x, D)$ cannot be positive if one of a, b, c, d is strictly negative. It is also obvious that if $a, b, c, d \geqslant 0$ and ad + bc = 0, then $p^w(x, D) \geqslant 0$ if and only if $\alpha = 0$. Therefore from now on we will always assume $a, b, c, d \geqslant 0$ and $ad + bc \neq 0$.

The main result of this paper is the following theorem.

THEOREM 1.1. $P^w(x, D) \ge 0$ if and only if (λ_1, λ_2) and (λ_2, λ_1) belong to the domain Ω , where

$$\lambda_1 = \frac{(ad)^{1/2} - (bc)^{1/2} + \alpha}{(ad)^{1/2} + (bc)^{1/2}}, \qquad \lambda_2 = \frac{(ad)^{1/2} - (bc)^{1/2} - \alpha}{(ad)^{1/2} + (bc)^{1/2}}$$

and Ω is a convex closed subset of R^2 , symmetric with respect to both the X and the Y axes (Fig. 1). The precise definition of Ω will be given in Section 3.

In particular, the positivity of $p^w(x, D)$ depends only on $((ad)^{1/2}, (bc)^{1/2}, \alpha)$. The following corollary is a consequence of the fact that $\{(x, y): x^2 + y^2 \le 2\}$ is a proper subset of Ω .

COROLLARY 1.1. $\alpha^2 \le 4(abcd)^{1/2}$ is a sufficient but not necessary condition for $p^w(x, D)$ to be positive.

FIGURE 1

It is easy to see that $p(x, \xi) \ge 0$ if and only if $\alpha \le (ad)^{1/2} + (bc)^{1/2}$, which corresponds to $|\lambda_1| + |\lambda_2| \le 2$. Since Ω is a proper subset of $\{(x, y): |x| + |y| \le 2\}$, we see that there exist positive symbols $p(x, \xi)$ such that $p^w(x, D)$ is not positive.

Moreover, if abcd = 0, say b = 0, then

$$\lambda_1 = \frac{(ad)^{1/2} + \alpha}{(ad)^{1/2}}, \quad \lambda_2 = \frac{(ad)^{1/2} - \alpha}{(ad)^{1/2}} \quad \text{and} \quad \lambda_1 + \lambda_2 = 2.$$

Since $\Omega \cap \{(x, y): |x| + |y| = 2\} = \{(1,1), (1, -1), (-1, 1), (-1, -1)\}$, we obtain the following corollary.

COROLLARY 1.2. If abcd = 0, then $p^w(x, D) \ge 0$ if and only if $\alpha = 0$.

Hörmander's example is of course just a special case of Corollary 1.2. The proof of Theorem 1.1 will be given in Sections 3,4 and 5. Section 2 contains some definitions and lemmas that will be needed.

2. HERMITE FUNCTIONS AND INFINITE HERMITIAN MATRICES

Let $H_n(x) = (-1)^n e^{x^2} (d^n/dx^n) e^{-x^2}$, n = 0, 1, 2,..., be the Hermite polynomials. The Hermite functions $\sigma_n(x) = (2^n n! (\pi)^{1/2})^{-1/2} e^{-(1/2)x^2} H_n(x)$, n = 0, 1, 2,..., form an orthonormal basis of $L^2(R)$.

From the well-known formulas [2]

$$2xH_n(x) = H_{n+1}(x) + 2nH_{n-1}(x)$$

$$H'_n(x) = 2nH_{n-1}(x),$$

it follows that

$$x\sigma_n(x) = \left(\frac{n+1}{2}\right)^{1/2} \sigma_{n+1}(x) + \left(\frac{n}{2}\right)^{1/2} \sigma_{n-1}(x)$$

$$D\sigma_n(x) = i\left(\frac{n+1}{2}\right)^{1/2} \sigma_{n+1}(x) - i\left(\frac{n}{2}\right)^{1/2} \sigma_{n-1}(x),$$

where D = -i(d/dx) and $\sigma_{-1}(x) = 0$.

The following lemma is a direct consequence of the previous formulas.

LEMMA 2.1. Let u belong to $\mathcal{S}(R)$. With respect to the basis $\{\sigma_n(x)\}_{n=0}^{\infty}$,

(i) the map $u \to x^2 u$ is represented by the infinite matrix $(a_{ij})_{0 \le i,j \le \infty}$, where

$$a_{ij} = \begin{cases} \frac{1}{2}(2n+1), & i=j=n\\ \frac{1}{2}((n+1)(n+2))^{1/2}, & i=n, j=n+2 \text{ or } i=n+2, j=n\\ 0, & otherwise, \end{cases}$$

i.e.

$$(a_{ij}) = \begin{bmatrix} 1/2 & 0 & (1/2)^{-1/2} & 0 \\ 0 & 3/2 & 0 & (3/2)^{1/2} \\ (1/2)^{1/2} & 0 & 5/2 \\ 0 & (3/2)^{1/2} & & \ddots \end{bmatrix};$$

(ii) the map $u \to D^2 u$ is represented by the infinite matrix $(b_{ij})_{0 \le i,j \le \infty}$, where

$$b_{ij} = \begin{cases} \frac{1}{2}(2n+1), & i=j=n\\ -\frac{1}{2}((n+1)(n+2))^{1/2}, & i=n, j=n+2 \text{ or } i=n+2, j=n\\ 0, & otherwise, \end{cases}$$

i.e.,

$$(b_{ij}) = \begin{bmatrix} 1/2 & 0 & -(1/2)^{1/2} & 0 \\ 0 & 3/2 & 0 & -(3/2)^{1/2} \\ -(1/2)^{1/2} & 0 & 5/2 \\ 0 & -(3/2)^{1/2} & & \ddots \end{bmatrix};$$

(iii) the map $u \to \frac{1}{2}(xD+Dx)u$ is represented by the matrix $(c_{ii})_{0 \le i, i, i \le \infty}$, where

$$(c_{ij}) = \begin{cases} -i\frac{1}{2}((n+1)(n+2))^{1/2}, & i = n, j = n+2\\ i\frac{1}{2}((n+1)(n+2))^{1/2}, & i = n+2, j = n\\ 0 & otherwise, \end{cases}$$

i.e.,

$$(c_{ij}) = \begin{bmatrix} 0 & 0 & -i(1/2)^{1/2} & 0 \\ 0 & 0 & 0 & -i(3/2)^{1/2} \\ i(1/2)^{1/2} & 0 & 0 \\ 0 & i(3/2)^{1/2} & & \ddots \end{bmatrix}.$$

DEFINITION 2.1. Let A be an infinite complex Hermitian matrix; then A is positive if $\langle Av, v \rangle \ge 0$ for any complex vector with finitely many non-zero components.

Remark 2.1. If $A \ge 0$ and T is an infinite matrix with the property that Tv has finitely many non-zero components whenever v has finitely many non-zero components, then $T^*AT \ge 0$.

We are particularly interested in band matrices of the form

$$B = \begin{bmatrix} a_1 & b_1 & 0 & 0 \\ b_1 & a_2 & b_2 & 0 \\ 0 & b_2 & a_3 & b_3 \\ 0 & 0 & b_3 & \ddots \end{bmatrix}, \quad a_i, b_i \in R, a_i > 0.$$

The following lemma is obvious.

LEMMA 2.2. B is positive if and only if

$$\sum_{k=1}^{n} a_k x_k^2 + 2 \sum_{k=1}^{n-1} b_k x_k x_{k+1} \ge 0 \quad \text{for} \quad n = 1, 2, \dots \quad \text{and} \quad x_k \in \mathbb{R}.$$

It is easy to see that if $|b'_k| \leq |b_k|$, then

$$\sum_{k=1}^{n} a_k x_k^2 + 2 \sum_{k=1}^{n-1} b_k x_k x_{k+1} \ge 0 \quad \text{for any real numbers } x_1, x_2, ..., x_n$$

implies that $\sum_{k=1}^{n} a_k x_k^2 + 2 \sum_{k=1}^{n-1} b'_k x_k x_{k+1} \ge 0$ for any real numbers $x_1, x_2, ..., x_n$.

COROLLARY 2.1. If B' is obtained from B by replacing b_k by b'_k , where $|b'_k| \leq |b_k|$, then $B \geq 0$ implies $B' \geq 0$.

LEMMA 2.3. If $b_i \neq 0$, i = 1, 2,..., then $B \geqslant 0$ if and only if det $B_n > 0$ for n = 1, 2,..., where

$$B_n = \begin{bmatrix} a_1 & b_1 & & \\ b_1 & a_2 & & \\ & \ddots & & \\ 0 & & b_n & a_{n+1} \end{bmatrix}.$$

Proof. The sufficiency is a well-known theorem in linear algebra. The necessity will be proved by contradiction. We know that $B \ge 0$ implies

det $B_n \ge 0$ for n = 1, 2,... Let m be the first integer such that det $B_m = 0$. Then det $B_{m+1} = a_{m+2}$ det $B_m - b_{m+1}^2$ det $B_{m-1} < 0$, a contradiction.

Q.E.D.

LEMMA 2.4. Let $\tilde{B} = (\alpha_{ii})_{1 \leq i,j \leq \infty}$, where

$$\alpha_{ij} = \begin{cases} 1, & i = j = n, \\ b_n/(a_n a_{n+1})^{1/2}, & i = n, j = n+1 \text{ or } j = n, i = n+1, \end{cases}$$

i.e.,

$$\widetilde{B} = \begin{bmatrix} 1 & b_1/(a_1a_2)^{1/2} & 0 \\ b_1/(a_1a_2)^{1/2} & 1 & b_2/(a_2a_3)^{1/2} \\ 0 & b_2/(a_2a_3)^{1/2} & 1 \\ & & \ddots \end{bmatrix}.$$

Then $B \ge 0$ if and only if $\tilde{B} \ge 0$.

Proof. $\tilde{B} = T^*BT$ and $B = S^*\tilde{B}S$, where T is the diagonal matrix

$$\begin{bmatrix} 1/(a_1)^{1/2} & & & \\ & 1/(a_2)^{1/2} & & \\ & & \ddots & \end{bmatrix}$$

and S is the diagonal matrix

$$\begin{bmatrix} (a_1)^{1/2} & & & \\ & (a_2)^{1/2} & & \\ & & \ddots \end{bmatrix}.$$

The lemma now follows from Remark 2.1.

Q.E.D.

3. Transformation of the Problem

Let

$$p(x,\xi) = \begin{bmatrix} ax^2 + b\xi^2 & \alpha x\xi \\ \alpha x\xi & cx^2 + d\xi^2 \end{bmatrix}.$$

We will assume that a, b, c, d > 0 in this section.

Let H be the Hilbert space $L^2(R) \oplus L^2(R)$ and S be the subspace $\mathscr{S}(R) \oplus \mathscr{S}(R)$.

LEMMA 3.1. There exists a bounded operator $T: H \to H$ such that $T: S \to S$ is an automorphism and $T^*p^w(x, D)$ $T = q^w(x, D)$, where

$$q(x,\,\xi) = \begin{bmatrix} \beta x^2 + \gamma \xi^2 & \alpha x \xi \\ \alpha x \xi & \gamma x^2 + \beta \xi^2 \end{bmatrix}, \qquad \beta = (ad)^{1/2}, \qquad \gamma = (bc)^{1/2}.$$

Proof. Let $T_1: H \to H$ be defined by

$$T_1 \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} (cd/ab)^{1/8} & u \\ (ab/cd)^{1/8} & v \end{bmatrix}.$$

 T_1 is bounded and $T_1: S \to S$ is an automorphism. $T_1^* p^w(x, D) T_1 = q_1^w(x, D)$, where

$$q_1(x,\xi) = \begin{bmatrix} (a^3cd/b)^{1/4}x^2 + (b^3cd/a)^{1/4}\xi^2 & \alpha x\xi \\ \alpha x\xi & (abc^3/d)^{1/4}x^2 + (abd^3/c)^{1/4}\xi^2 \end{bmatrix}.$$

Let $h = (bd/ac)^{1/4}$. By the symplectic invariance of Weyl operators [1], there exists a unitary operator U on $L^2(R)$ such that $U: \mathcal{S}(R) \to \mathcal{S}(R)$ is an automorphism, $U^*x^2U = hx^2$, $U^*D^2U = (1/h)D^2$ and $U^*(xD + Dx)/2U = (xD + Dx)/2$.

Let $T_2: H \to H$ be defined by $T_2\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} Uu \\ Uv \end{bmatrix}$, then $T_2^*q_1^*(x, D) T_2 = q^*(x, D)$. The proof is completed if we let $T = T_1 T_2$. Q.E.D.

We now introduce a basis for H. Let

$$e_{2k} = \begin{bmatrix} \sigma_k \\ 0 \end{bmatrix}$$
 and $e_{2k+1} = \begin{bmatrix} 0 \\ \sigma_k \end{bmatrix}$,

where σ_k , k = 0, 1, 2,..., are the Hermite functions. $\{e_n\}_{n=0}^{\infty}$ is a basis of H. Let $\omega_n = ((n+1)(n+2)/4)^{1/2}$, n = 0, 1, 2,...

The following lemma is a direct consequence of Lemma 2.1.

LEMMA 3.2. With respect to the basis $\{e_n\}_{n=0}^{\infty}$, $q^w(x, D)$ is represented by the infinite matrix

$$\begin{bmatrix} A_0 & 0 & B_0 & 0 \\ 0 & A_1 & 0 & B_1 \\ B_0^* & 0 & A_2 & 0 \\ 0 & B_1^* & 0 & \ddots \end{bmatrix}.$$

where $A_n = [(2n+1)/2](\beta+\gamma)\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $B_n = \omega_n\begin{bmatrix} \beta-\gamma & -i\alpha \\ -i\alpha & \gamma-\beta \end{bmatrix}$.

LEMMA 3.3. There exists a unitary operator $U: H \to H$ such that $U: S \to S$ is an automorphism and $U^*q^*(x, D)$ U is represented the infinite matrix

$$\begin{bmatrix} A_0 & 0 & C_0 & 0 \\ 0 & A_1 & 0 & C_1 \\ C_0^* & 0 & A_2 & 0 \\ 0 & C_1^* & 0 & \ddots \end{bmatrix},$$

where $A_n = [(2n+1)/2](\beta + \gamma)\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and

$$C_{n} = \begin{cases} \omega_{n} \begin{bmatrix} \beta - \gamma & -\alpha \\ -\alpha & \beta - \gamma \end{bmatrix}, & n \cong 0, 1 \mod 4, \\ \\ \omega_{n} \begin{bmatrix} \beta - \gamma & \alpha \\ \alpha & \beta - \gamma \end{bmatrix}, & n \cong 2, 3 \mod 4. \end{cases}$$

Proof. Let $U: H \rightarrow H$ be defined by the infinite matrix

$$\begin{bmatrix} U_0 & 0 & 0 \\ 0 & U_1 & 0 \\ 0 & 0 & U_2 \\ & & \ddots \end{bmatrix},$$

where

$$U_n = \begin{cases} \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}, & n \cong 0, 1 \mod 4, \\ \begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix}, & n \cong 2, 3 \mod 4. \end{cases}$$

 $U^*q^w(x, D)$ U has the desired representation.

Q.E.D.

LEMMA 3.4. There exists a unitary operator $W: H \to H$ such that $W: S \to S$ is an automorphism and $W^*q^w(x, D)W$ is represented by the infinite matrix

$$\begin{bmatrix} A_0 & 0 & E_0 & 0 \\ 0 & A_1 & 0 & E_1 \\ E_0 & 0 & A_2 & 0 \\ 0 & E_1 & 0 & \ddots \end{bmatrix},$$

where $A_n = [(2n+1)/2](\beta + \gamma)\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and

$$E_n = \begin{cases} \omega_n \begin{bmatrix} \beta - \gamma + \alpha & 0 \\ 0 & \beta - \gamma - \alpha \end{bmatrix}, & n \cong 0, 1 \mod 4, \\ \omega_n \begin{bmatrix} \beta - \gamma - \alpha & 0 \\ 0 & \beta - \gamma + \alpha \end{bmatrix}, & n \cong 2, 3 \mod 4. \end{cases}$$

Proof. Let $V: H \rightarrow H$ be defined by

$$V\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} (u+v)/(2)^{1/2} \\ (v-u)/(2)^{1/2} \end{bmatrix}.$$

If we let W = UV, where U is the unitary operator in Lemma 3.3, then $W^*q^w(x, D)$ W has the desired representation. Q.E.D.

LEMMA 3.5. There exists a bounded operator $Q: H \to H$ such that $Q: S \to S$ is an automorphism and $Q^*q^w(x, D) Q$ is represented by the infinite matrix

$$\begin{bmatrix} F_0 & 0 & G_0 & 0 \\ 0 & F_1 & 0 & G_1 \\ G_0 & 0 & F_2 & 0 \\ 0 & G_1 & 0 & \ddots \end{bmatrix},$$

where $F_n = (2n+1)/2\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$,

$$G_n = \begin{cases} \omega_n \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}, & n \cong 0, 1 \mod 4, \\ \omega_n \begin{bmatrix} \lambda_2 & 0 \\ 0 & \lambda_1 \end{bmatrix}, & n \cong 2, 3 \mod 4, \end{cases}$$

$$\lambda_1 = (\beta - \gamma + \alpha)/(\beta + \gamma)$$
 and $\lambda_2 = (\beta - \gamma - \alpha)/(\beta + \gamma)$.

Proof. Let $Q_1: H \to H$ be defined by $Q_1[{}^u_v] = 1/(\beta + \gamma)^{1/2}[{}^u_v]$. If we let $Q = WQ_1$, where W is the operator in Lemma 3.4, then $Q^*q^w(x, D)$ Q has the desired representation. Q.E.D.

Let $\zeta_n = ((2n+1)(2n+2)/(4n+1)(4n+5))^{1/2}$ and $\eta_n = ((2n+2)(2n+3)/(4n+3)(4n+7))^{1/2}$ for n = 0, 1, 2, ...

LEMMA 3.6. $q''(x, D) \ge 0$ if and only if the following infinite matrices N_1 , N_2 , N_3 , N_4 are positive, where

$$N_{1} = \begin{bmatrix} 1 & \zeta_{0}\lambda_{1} & & & & \\ \zeta_{0}\lambda_{1} & 1 & \zeta_{1}\lambda_{2} & & & \\ & \zeta_{1}\lambda_{2} & 1 & \zeta_{2}\lambda_{1} & & \\ & & & \zeta_{2}\lambda_{1} & 1 & \zeta_{3}\lambda_{2} \\ & & & & & \zeta_{3}\lambda_{2} & \ddots \end{bmatrix},$$

$$N_{2} = \begin{bmatrix} 1 & \zeta_{0}\lambda_{2} & & & & 0 \\ \zeta_{0}\lambda_{2} & 1 & \zeta_{1}\lambda_{1} & & & & \\ & \zeta_{1}\lambda_{1} & 1 & \zeta_{2}\lambda_{2} & & & \\ & & & \zeta_{2}\lambda_{2} & 1 & \zeta_{3}\lambda_{1} & & & \\ & & & & & \zeta_{3}\lambda_{1} & & \ddots \end{bmatrix},$$

$$N_{3} = \begin{bmatrix} 1 & \eta_{0}\lambda_{1} & & & 0 \\ \eta_{0}\lambda_{1} & 1 & \eta_{1}\lambda_{2} & & & 0 \\ & \eta_{1}\lambda_{2} & 1 & \eta_{2}\lambda_{1} & & \\ & 0 & & \eta_{2}\lambda_{1} & 1 & \eta_{3}\lambda_{2} \\ & & & & & \eta_{3}\lambda_{2} & \ddots \end{bmatrix}$$

and

$$N_{4} = \begin{bmatrix} 1 & \eta_{0}\lambda_{2} & & & & \\ \eta_{0}\lambda_{2} & 1 & \eta_{1}\lambda_{1} & & & \\ & \eta_{1}\lambda_{1} & 1 & \eta_{2}\lambda_{2} & & \\ & & \eta_{2}\lambda_{2} & 1 & \eta_{3}\lambda_{1} & \ddots \end{bmatrix}.$$

Proof. By Lemma 3.5, $q^w(x, D) \ge 0$ if and only if the matrices

$$\begin{bmatrix} F_0 & G_0 & & 0 \\ G_0 & F_2 & G_2 \\ & G_2 & F_4 \\ & 0 & & \ddots \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} F_1 & G_1 & 0 \\ G_1 & F_3 & G_3 \\ & G_3 & F_5 \\ & 0 & & \ddots \end{bmatrix}$$

are positive.

If we write out the components of F_0 , G_0 , F_2 , G_2 ,..., we see that the first matrix is equal to the following one:

$$\begin{bmatrix} (1/2) & 0 & \omega_0 \lambda_1 & & & & & \\ 0 & (1/2) & 0 & \omega_0 \lambda_2 & & & \\ \omega_0 \lambda_1 & 0 & (5/2) & 0 & \omega_2 \lambda_2 & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

This matrix is positive if and only if the matrices

$$\begin{bmatrix} (1/2) & \omega_0 \lambda_1 & 0 \\ \omega_0 \lambda_1 & (5/2) & \omega_2 \lambda_2 \\ & \omega_2 \lambda_2 & (9/2) \\ 0 & & \ddots \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} (1/2) & \omega_0 \lambda_2 & 0 \\ \omega_0 \lambda_2 & (5/2) & \omega_2 \lambda_1 \\ & \omega_2 \lambda_1 & (9/2) \\ & 0 & & \ddots \end{bmatrix}$$

are positive. By Lemma 2.4, these matrices are positive if and only if N_1 and N_2 are positive. Similarly, the second matrix at the beginning of the proof is positive if and only if N_3 and N_4 are positive. Q.E.D.

Observe that $N_1, N_2 \ge 0$ implies $N_3, N_4 \ge 0$ by Corollary 2.1. We have therefore proved the following proposition.

PROPOSITION 3.1. $p^w(x, D) \ge 0$ if and only if $N_1, N_2 \ge 0$.

4. The Domain Ω

As in Section 3, let $\zeta_n = ((2n+1)(2n+2)/(4n+1)(4n+5))^{1/2}$ for n = 0, 1, 2, ..., N(x, y) is the following infinite matrix.

$$\begin{bmatrix} 1 & \zeta_0 x & & & & 0 \\ \zeta_0 x & 1 & \zeta_1 y & & & & \\ & \zeta_1 y & 1 & \zeta_2 x & & & \\ & & \zeta_2 x & 1 & \zeta_3 y & & \\ & & & & & & & \\ 0 & & & & & & & \\ \end{bmatrix}.$$

Definition 4.1. $\Omega = \{(x, y): N(x, y) \ge 0\}.$

The following two propositions give some elementary properties of Ω .

Proposition 4.1. (i) Ω is convex.

- (ii) If $(x, y) \in \Omega$, then the rectangle $\{(a, b): |a| \le |x| \text{ and } |b| \le |y|\} \subset \Omega$. In particular, Ω is symmetric with respect to the X and Y axes.
 - (iii) Ω is closed.

Proof. Parts (i) and (iii) are obvious. Part (ii) follows from Corollary 2.1. Q.E.D.

PROPOSITION 4.2. (i) $(0, y) \in \Omega$ if and only if $y^2 \le 15/4$.

- (ii) $(x, 0) \in \Omega$ if and only if $x^2 \le 5/2$.
- (iii) If $(x, y) \in \Omega$, then $2x^2/5 + 4y^2/15 < 1$ unless xy = 0.

Proof. To prove (i) observe that N(0, y) consists of blocks of the form

$$\begin{bmatrix} 1 & \zeta_{2n+1} y \\ \zeta_{2n+1} y & 1 \end{bmatrix}, \quad n = 0, 1, 2, \dots$$

Since ζ_{2n+1} is decreasing in n, $N(0, y) \ge 0$ if and only if

$$\det \begin{bmatrix} 1 & (4/15)^{1/2} y \\ (4/15)^{1/2} y & 1 \end{bmatrix} \ge 0.$$

Part (ii) is proved similarly. Part (iii) follows from writing down the determinant of the first 3 by 3 block in N(x, y) and Lemma 2.3. Q.E.D.

From now on we will assume that $0 < y^2 < 15/4$ and $0 < x^2 < 5/2$. Consequently 1 is strictly greater than $\zeta_{2n}x^2$ and $\zeta_{2n+1}y^2$, for n = 0, 1, 2,.... Let

$$M(x, y) = \begin{bmatrix} 1 & x/2 & & & 0 \\ x/2 & 1 & y/2 & & & \\ & y/2 & 1 & x/2 & & \\ & & x/2 & 1 & y/2 \\ & & & y/2 & \ddots \end{bmatrix}.$$

LEMMA 4.1. $M(x, y) \ge 0$ if and only if $|x| + |y| \le 2$.

Proof. It is obvious that $M(0, y) \ge 0$ iff $y^2 \le 4$ and $M(x, 0) \ge 0$ iff $x^2 \le 4$. Let $a_0 = 1$ and $a_{n+1} = 1 - x^2/4a_n$. When x = y, $M(x, y) \ge 0$ iff $a_n > 0$ for all n. It is elementary to show that $a_n > 0$ for all n iff $x^2 \le 1$. Since the set $\{(x, y): M(x, y) \ge 0\}$ is a convex set, we can deduce from the information above that it is exactly the set $\{(x, y): |x| + |y| \le 2\}$. Q.E.D.

Proposition 4.3. $\Omega \subset \{(x, y): |x| + |y| \le 2\}.$

Proof. If $(x, y) \in \Omega$, then by considering submatrices far away we see that $M(x, y) \ge 0$. Therefore $\Omega \subset \{(x, y): |x| + |y| \le 2\}$ by Lemma 4.1.

Q.E.D.

In order to state a sufficient condition for (x, y) to be an element of Ω , we introduce the following Möbius transforms. $T_n(z) = 1 - \zeta_{2n+1}^2 y^2 / (1 - \zeta_{2n}^2 x^2 / z), n = 0, 1, 2,...$

We introduce the following mostles that t_n , $t_$

Let

$$D_{n} = \begin{bmatrix} 1 & \zeta_{0}x & & & & & \\ \zeta_{0}x & 1 & \zeta_{1}y & & & & 0 & \\ & \zeta_{1}y & 1 & & & & & \\ & & & \ddots & & & & \\ & & & & 1 & \zeta_{2n}x & & \\ & & & & \zeta_{2n}x & 1 & \zeta_{2n+1}y \\ & & & & & \zeta_{2n+1}y & 1 \end{bmatrix}, \quad \text{for } n \geqslant 0.$$

LEMMA 4.2. If $T_0(1) > \gamma_1$, $T_1 T_0(1) > \gamma_2$,..., $T_{n-1} \cdots T_0(1) > \gamma_n$, then det $D_n > 0$.

Proof. We can reduce D_n to the following matrix by row operations.

$$\tilde{D}_{n} = \begin{bmatrix} 1 & \zeta_{0}x & & & & & \\ & a_{0} & \zeta_{1}y & & 0 & & & \\ & & a_{1} & & & & \\ & & & \ddots & & & \\ & & & a_{2n-1} & \zeta_{2n}x & & \\ & & & & a_{2n} & \zeta_{2n+1}y \\ & & & & a_{2n+1} \end{bmatrix},$$

where $a_0 = 1 - \zeta_0^2 x^2$, $a_{2k} = 1 - (\zeta_{2k}^2 x^2 / T_{k-1} \cdots T_0(1))$ for $k \ge 1$ and $a_{2k+1} = T_k \cdots T_0(1)$ for $k \ge 0$.

By the assumption all the diagonal entries of \tilde{D}_n are positive, therefore det $D_n = \det \tilde{D}_n > 0$. Q.E.D.

So far we have found some bounds for Ω , the following proposition gives information about the interior of Ω .

PROPOSITION 4.4. $\{(x, y): x^2 + y^2 \le 2\} \subset \Omega$.

We need one more lemma for the proof of Proposition 4.4.

LEMMA 4.3.
$$(1 - (4k + 5) t/(8k + 9))(1 - (4k + 2) t/(8k + 5)) - (4k + 3)(4k + 4)(2 - t)/(8k + 5)(8k + 9) \ge 0$$
 for $t \in [0, 1]$ and $k = 0, 1, 2,...$

Proof. Define $F_k(t)$ as the left side of the inequality. By direct computation, $F_k < 0$ on [0, 1] and $F_k(1) = 0$. Therefore $F_k \ge 0$ on [0, 1]. Q.E.D.

Proof of Proposition 4.4. By Proposition 4.1, we only have to consider the case where $x, y \ge 0$. The cases x = 0, $0 \le y \le 2^{1/2}$ and $0 \le x \le 2^{1/2}$, y = 0 follow from Proposition 4.2.

If $0 < y \le x$, we are going to prove by induction that $T_n \cdots T_0(1) \ge (4n+5)/(8n+9) \ge \gamma_{n+1}$, for n=0, 1, 2,...

Since $1 - 2x^2/5 - 3y^2/5 = 1 - x^2/2 - y^2/2 + (x^2 - y^2)/10 \ge 0$, $T_0(1) = 1 - (3/5) \cdot (4y^2/9)/(1 - 2x^2/5) \ge 5/9$. Also, $6x^2/13 + 7 \cdot 8 \cdot y^2/13 \cdot 17 \le 6(x^2 + y^2)/13 \le 12/13 < 1$, which implies that $\gamma_1 = (5 \cdot 6x^2/9 \cdot 13)/(1 - 7 \cdot 8y^2/13 \cdot 17) < 5/9$.

Assume that the inequalities hold for n=0, 1, 2, ..., k-1. $T_k \cdots T_0(1)=1$ $-\zeta_{2k+1}^2 y^2/(1-\zeta_{2k}^2 x^2/T_{k-1}\cdots T_0(1))\geqslant 1-\zeta_{2k+1}^2 y^2/(1-\zeta_{2k}^2 x^2/T_{k-1}\cdots T_0(1))\geqslant 1-\zeta_{2k+1}^2 y^2/(1-\zeta_{2k}^2 x^2/(4k+1/8k+1))$, by the induction hypothesis and the fact that T_k is increasing on $[\gamma_k, \infty)$. Since $1-(4k+2)x^2/(8k+5)-(4k+3)y^2/(8k+5)=1-x^2/2-y^2/2+(x^2-y^2)/(2\cdot(8k+5))\geqslant 0$, $T_k\cdots T_0(1)\geqslant (4k+5)/(8k+9)$. Also, $(4k+6)x^2/(8k+13)+(4k+7)(4k+8)y^2/(8k+13)(8k+17)\leqslant (x^2+y^2)(4k+6)/(8k+13)\leqslant (8k+12)/(8k+13)<1$, which implies $\gamma_{k+1}\leqslant (4k+5)/(8k+9)$. Hence the inequalities hold for all n and therefore $(x,y)\in\Omega$ by Lemma 4.2.

We still have to consider the case $0 < x \le y$ (hence $x \le 1$). This time we are going to prove by induction that $T_n \cdots T_0(1) \ge (4n+5) x^2(8n+9) \ge \gamma_{n+1}$.

 $T_0(1) \ge 5x^2/9$ if and only if $(1-5x^2/9)(1-2x^2/5)-3\cdot 4\cdot y^2/(5\cdot 9) \ge 0$. On the other hand, $(1-5x^2/9)(1-2x^2/5)-3\cdot 4\cdot y^2/(5\cdot 9) \ge (1-5x^2/9)(1-2x^2/5)-3\cdot 4\cdot (2-x^2)/(5\cdot 9)$. Therefore $T_0(1) \ge 5x^2/9$ by the case k=0 in Lemma 4.3. Also, $7/13 \ge 7\cdot 8\cdot y^2/(13\cdot 17)$ implies $1-7\cdot 8\cdot y^2/(13\cdot 17) \ge 6/13$, which in turn implies that $\gamma_1 = (5\cdot 6\cdot x^2/9\cdot 13)/(1-7\cdot 8\cdot y^2/13\cdot 17) \le 5x^2/9$.

Assume that the inequalities hold for n=0, 1, ..., k-1. $T_k \cdots T_0(1)=1$ $-\zeta_{2k+1}^2 y^2/(1-\zeta_{2k}^2 x^2/(T_{k-1}\cdots T_0(1))) \ge 1-\zeta_{2k+1}^2 y^2/(1-\zeta_{2k}^2 x^2/((4k+1) x^2/(8k+1)))$, by the induction hypothesis. By Lemma 4.3, $(1-(4k+5) x^2/(8k+9))(1-(4k+2) x^2/(8k+5))-(4k+3)(4k+4) y^2/(8k+5)(8k+9) \ge (1-(4k+5) x^2/(8k+9))(1-(4k+2) x^2/(8k+5))-(4k+3)(4k+4)(2-x^2)/(8k+5)(8k+9) \ge 0$, which implies

that $T_k \cdots T_0(1) \ge (4k+5) \, x^2/(8k+9)$. Also, $(4k+7)/8k+13) \ge (4k+7)(4k+8) \, y^2/(8k+13)(8k+17)$ implies $1-(4k+7)(4k+8) \, y^{22}/(8k+13)(8k+17) \ge (4k+6)/(8k+13)$, which in turn implies that $\gamma_{k+1} \ge (4k+5) \, x^2/(8k+9)$. Hence the inequalities hold for all n and therefore $(x,y) \in \Omega$ by Lemma 4.2. Q.E.D.

From Proposition 4.4 we know that the points (1, 1), (1, -1), (-1, 1) and (-1, -1) belong to $\Omega \cap \{(x, y): |x| + |y| = 2\}$. We want to show that they are the only points in the intersection.

If x + y = 2, we can write N(x, y) = A * A + (1 - x) B, where

$$A = \begin{bmatrix} \rho_0 & \xi_1 & 0 \\ & \rho_1 & \xi_2 \\ & 0 & \rho_2 \\ & & & \ddots \end{bmatrix}, \qquad \rho_k = (2k+1/4k+1)^{1/2}, \quad \xi_k = (2k/4k+1)^{1/2}$$

and

$$B = \begin{bmatrix} 0 & -\zeta_0 \\ -\zeta_0 & 0 & \zeta_1 & 0 \\ & \zeta_1 & 0 & -\zeta_2 \\ & 0 & -\zeta_2 & 0 & \zeta_3 \\ & & \zeta_3 & \ddots \end{bmatrix}.$$

We now define an infinite vector v by the following formulas, where v_k is the kth component of v. The definition of v depends on a large positive integer n.

$$\begin{split} v_1 &= -\rho_0 = -1. \\ v_2 &= \rho_0/\xi_1 = (5/2)^{1/2}. \\ v_3 &= -\rho_0 \rho_1/\xi_1 \xi_2 = -(1 \cdot 3 \cdot 9/2 \cdot 4)^{1/2}. \\ &\vdots & \vdots \\ v_k &= (-1)^k (\rho_0 \rho_1 \cdots \rho_{k-2}/\xi_1 \xi_2 \cdots \xi_{k-1}) \\ &= (-1)^k (1 \cdot 3 \cdots (2k-3)(4k-3)/2 \cdot 4 \cdots (2k-2))^{1/2} \quad \text{for } k \leq n. \\ v_j &= -v_{j-1}(j-1)/j \quad \text{for } j \geq n+1. \end{split}$$

It is obvious that $v \in l^2$ and $(Av)_k = 0$ for $1 \le k \le n-1$. Also, $(Av)_j = (-1)^{j-n} v_n \cdot (n/j)(\rho_j - \xi_j)$ for $j \ge n$.

LEMMA 4.4.
$$||Av||^2 = v_n^2 \cdot O(1/n)$$
.

Proof.

$$(Av)_{j}^{2} = v_{n}^{2} \cdot (n^{2}/j^{2}) \left[(2j-1)^{1/2}/(4j-3)^{1/2} - (j/j+1)(2j)^{1/2}/(4j+1)^{1/2} \right]^{2}$$

$$= v_{n}^{2} \cdot (n^{2}/j^{2})((1/2)^{1/2} \cdot 5/4j + R_{j})^{2}$$

$$= v_{n}^{2}(n^{2}/j^{2})(25/32j^{2} + \tilde{R}_{i}), \quad \text{where} \quad |\tilde{R}_{i}| \leq M/j^{3}$$

with M independent of j.

$$\sum_{j=n}^{\infty} (Av)_{j}^{2} = v_{n}^{2} \cdot n^{2} \cdot \sum_{j=n}^{\infty} (25/32j^{4} + \tilde{R}_{j}/j^{2})$$

$$= v_{n}^{2} \cdot n^{2} \cdot O(1/n^{3})$$

$$= v_{n}^{2} \cdot O(1/n). \qquad Q.E.D.$$

On the other hand, $\langle Bv, v \rangle = 2 \sum_{k=1}^{\infty} (-1)^k \zeta_{k-1} v_k v_{k+1} = 2 \sum_{k=1}^{\infty} (-1)^k \zeta_{k-1} v_k v_{k+1} + 2 \sum_{k=n}^{\infty} (-1)^k \zeta_{k-1} v_k v_{k+1}.$

LEMMA 4.5. $2\sum_{k=1}^{n-1} (-1)^k \zeta_{k-1} v_k v_{k+1} = (-1)^n v_n^2 / 2 + (-1)^n b_n$, where $\{b_n\}$ has a positive limit.

Proof. Let us define $a_n = 2\sum_{k=1}^{n-1} (-1)^k \zeta_{k-1} v_k v_{k+1} + (-1)^{n+1} v_n^2 / 2 = 2 + 2\sum_{k=2}^{n-1} (-1)^{k+1} 3 \cdot 5 \cdots (2k-1) / 2 \cdot 4 \cdots (2k-2) + (-1)^{n+1} 1 \cdot 3 \cdots (2n-3) \cdot (4n-3) / 2 \cdot 4 \cdots (2n-2) \cdot 2$, for $n \ge 2$.

Hence, $a_2 = 0.75$, $a_3 = -0.6875$, $a_4 = 0.71875$, $a_5 = -0.6992187$, etc. It is easy to prove by induction that $a_2 > a_4 > a_6 > \cdots$, $-a_3 < -a_4 < \cdots$, $a_{2n} + a_{2n+1} > 0$ and $a_{2n} + a_{2n+1}$ goes to zero as n goes to infinity.

Therefore $b_n = (-1)^n a_n$ has a positive limit. In fact, $\lim b_n = 0.70 \cdots$.

OED

Lemma 4.6. $2\sum_{k=n}^{\infty} (-1)^k \zeta_{k-1} v_k v_{k+1} = (-1)^{n-k-1} v_n^2 / 2 + (-1)^{n+1} v_n^2 \cdot O(1/n)$.

Proof. $2\sum_{k=n}^{\infty} (-1)^k \zeta_{k-1} v_k v_{k+1} = 2\sum_{k=n}^{\infty} (-1)^{k+1} \zeta_{k-1} v_n^2 \cdot n^2/(k(k+1)) = v_n^2 \cdot n^2 \sum_{k=n}^{\infty} (-1)^{k+1} (1/(k(k+1)+R_k)), \text{ where } R_k = (2\zeta_{k-1}-1)/(k(k+1)) = [2((2k-1)(2k)/(4k-3)(4k+1))^{1/2}-1]/(k(k+1)).$ It is easy to see that there exists a constant C such that $0 \le R_k \le C/k^4$, for $k=n, n+1, \ldots$ Therefore $\sum_{k=n}^{\infty} R_k = O(1/n^3)$.

 $\sum_{k=n}^{\infty} (-1)^{k+1} / (k(k+1)) = (-1)^{n+1} \sum_{j=0}^{\infty} 2/((n+2j)(n+2j)(n+2j) + 1)(n+2j+2)) = (-1)^{n+1} / (2n^2) + O(1/n^3).$ The proof is now complete. Q.E.D.

Combining Lemmas 4.5 and 4.6, we obtain the following corollary.

COROLLARY 4.1.
$$\langle Bv, v \rangle = (-1)^n \delta_n + (-1)^{n+1} v_n^2 \cdot O(1/n)$$
.

Finally, we want to estimate v_n^2 .

LEMMA 4.7.
$$v_n^2 = O(n^{1/2})$$
.

Proof.

$$v_n^2 = 1 \cdot 3 \cdots (2n-3)(4n-3)/(2 \cdot 4 \cdots (2n-2))$$

= $(4n-3)(2n-2)!/(2^{2n-2}((n-1)!)^2).$

The proof is completed by an application of Stirling's formula $n! \sim (2\pi n)^{1/2} \cdot n^n \cdot e^{-n} (1 + 1/12n + \cdots)$. Q.E.D.

We are now in the position to prove the next proposition.

PROPOSITION 4.5.
$$\Omega \cap \{(x, y): |x| + |y| = 2\} = \{(1, 1), (1, -1), (-1, -1), (-1, 1)\}.$$

Proof. By Proposition 4.1, we may assume that x+y=2. From the discussion above, we know that $\langle N(x,y)v,v\rangle = \|Av\|^2 + (1-x)\langle Bv,v\rangle = v_n^2 \cdot O(1/n) + (1-x)((-1)^n b_n + v_n^2 \cdot O(1/n)) = O(n^{-1/2}) + (1-x)(-1)^n b_n$. Therefore N(x,y) cannot be positive unless x=1, in which case we also have y=1.

Q.E.D.

We can also use the vector v to show that Ω is separated from the boundaries of $\{(x, y): |x| + |y| \le 2\}$ by smooth curves with positive curvature. Let

$$E = \begin{bmatrix} 0 & \zeta_0 & & & & 0 \\ \zeta_0 & 0 & 0 & & & & \\ & 0 & 0 & \zeta_2 & & & \\ & & \zeta_2 & 0 & 0 & & \\ & 0 & & 0 & \zeta_4 & & \\ & & & & \zeta_4 & \cdots \end{bmatrix}.$$

LEMMA 4.8. $\langle Ev, v \rangle = O(n^{2/3})$.

Proof. First we assume n = 2m.

$$\langle Ev, v \rangle = 2 \sum_{k=0}^{\infty} \zeta_{2k} v_{2k+1} v_{2k+2}$$

$$= 2 \sum_{k=0}^{m} \zeta_{2k} v_{2k+1} v_{2k+2} + 2 \sum_{k=m+1}^{\infty} \zeta_{2k} v_{2k+1} v_{2k+2}.$$

By the definitions of v and ζ_n , the first sum

$$= -2 \sum_{k=0}^{m} (4k+1)(1 \cdot 3 \cdots (4k+1))/(2 \cdot 4 \cdots (4k+2))$$

$$= O\left(\sum_{k=0}^{m} k^{1/2}\right) \quad \text{(cf. proof of Lemma 4.7)}$$

$$= O(m^{3/2})$$

$$= O(n^{3/2}).$$

For the second sum, we have

$$2 \sum_{k=m+1}^{\infty} \zeta_{2k} v_{2k+1} v_{2k+2}$$

$$= 2n^2 v_n^2 \sum_{k=m+1}^{\infty}$$

$$\times \left[(4k+1)(4k+2)/(8k+1)(8k+5) \right]^{1/2} / \left[(2k+1)(2k+2) \right]$$

$$= 2n^2 v_n^2 \cdot O(1/m)$$

$$= O(n^{3/2}), \quad \text{by Lemma 4.7.}$$

The proof for odd n is similar.

Q.E.D.

PROPOSITION 4.6. Ω can be separated from the boundary of $\{(x, y): |x| + |y| \le 2\}$ by smooth curves of positive curvature.

Proof. It suffices to prove the proposition in a small neighborhood of (1, 1).

The infinite matrix N(x, y) = N(2-y, y) + (x+y-2) E. By the proof of Proposition 4.5, $\langle N(2-y, y) v, v \rangle = (y-1)(-1)^n b_n + O(n^{-1/2})$. Combining this estimate with Lemma 4.8, we have $\langle N(x, y) v, v \rangle = (y-1)(-1)^n b_n + I_1 + (x+y-2) I_2$, where $I_1 = O(n^{-1/2})$ and $I_2 = O(n^{3/2})$. For $y \neq 1$, there exists $C_1 > 0$ independent of y such that $C_1/(1-y)^2 < n$ implies $I_1 < |y-1|/4$. There also exists $C_2 > 0$ independent of x and y such that $C_2(1-y)^4 I_2 < |1-y|/4$, if $n < 2C_1/(1-y)^2$.

Therefore if $x+y-2=C_2(1-y)^4$ and $C_1/(1-y)^2 < n < 2C_1/(1-y)^2$, then $\langle N(x,y)v,v\rangle = \langle (1-y)(-1)^nb_n+|1-y|/2$. When $(1-y)^2$ is small, we can find both odd and even n to satisfy $C_1/(1-y)^2 < n < 2C_1/(1-y)^2$. Since $b_n > \frac{1}{2}$ for all n, by choosing a proper parity for n, we have $\langle N(x,y)v,v\rangle < 0$.

Hence for y close to 1, (1, 1) is the only point on the curve $x+y-2=C_2(1-y)^4$ that also belongs to Ω . By the convexity of Ω , $x+y-2=C_2(1-y)^4$ separates Ω from x+y=2 near (1, 1).

5. Proof of Theorem1.1

We may now prove Theorem 1.1 in two steps. In the first step we assume a, b, c, d > 0. From Proposition 3.1, we know that $p^w(x, D) \ge 0$ if and only if $N(\lambda_1, \lambda_2)$ and $N(\lambda_2, \lambda_1) \ge 0$, which is equivalent to (λ_1, λ_2) and (λ_2, λ_1) belonging to Ω .

In the second step we look at the general case where $a, b, c, d \ge 0$ and ad + bc > 0. Let us assume first that $p^w(x, D) \ge 0$. Given $\varepsilon > 0$, we define $a_{\varepsilon} = a + \varepsilon$, $b_{\varepsilon} = b + \varepsilon$, $c_{\varepsilon} = c + \varepsilon$, $d_{\varepsilon} = d + \varepsilon$ and

$$p_{\varepsilon}(x,\,\xi) = \begin{bmatrix} a_{\varepsilon}x^2 + b_{\varepsilon}\xi^2 & \alpha x\xi \\ \alpha x\xi & c_{\varepsilon}x^2 + d_{\varepsilon}\xi^2 \end{bmatrix}.$$

Also, $\lambda_{1,\varepsilon} = [(a_{\varepsilon}d_{\varepsilon})^{1/2} - (b_{\varepsilon}c_{\varepsilon})^{1/2} + \alpha]/[(a_{\varepsilon}d_{\varepsilon})^{1/2} + (b_{\varepsilon}c_{\varepsilon})^{1/2}]$ and $\lambda_{2,\varepsilon} = [(a_{\varepsilon}d_{\varepsilon})^{1/2} - (b_{\varepsilon}c_{\varepsilon})^{1/2} - \alpha]/[(a_{\varepsilon}d_{\varepsilon})^{1/2} + (b_{\varepsilon}c_{\varepsilon})^{1/2}]$. Obviously, we have $p_{\varepsilon}^{w}(x,D) \geqslant p^{w}(x,D)$. From the first step we know that $(\lambda_{1,\varepsilon},\lambda_{2,\varepsilon})$ and $(\lambda_{2,\varepsilon},\lambda_{1,\varepsilon})$ belong to Ω . Since Ω is obviously a closed set, $(\lambda_{1},\lambda_{2})$ and $(\lambda_{2},\lambda_{1})$ belong to Ω because $\lambda_{1,\varepsilon}$ and $\lambda_{2,\varepsilon}$ tend to λ_{1} and λ_{2} as ε tends to 0.

Conversely, let us assume that (λ_1, λ_2) and (λ_2, λ_1) belong to Ω . We may also assume that at least one of a, b, c, d, say b, equals 0 (hence ad > 0). It follows that $\lambda_1 + \lambda_2 = 2$, which implies that $\lambda_1 = \lambda_2 = 1$ (Proposition 4.5). Therefore $\alpha = 0$ and $p^w(x, D)$ is obviously positive. Q.E.D.

REFERENCES

- L. HÖRMANDER, The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math. 32 (1979), 359-433.
- 2. N. N. LEBEDEV, "Special Functions And Their Applications," Dover, New York, 1972.
- 3. A. Melin, Lower bounds for pseudo-differential operators, Arkiv Mat. 9 (1971), 117-140.