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1. INTRODUCTION 

In the study of the initial value problem for linear hyperbolic partial dif- 
ferential equations it is usually possible to extend the solution operator 
from classical to distribution initial data. This extension is useful for several 
reasons. First, the existence of fundamental solutions allows one to con- 
struct other solutions by the superposition principle. Second, distribution 
data are idealizations of certain kinds of classical initial data: The delta 
functon is an idealization of a high localized peak, the derivative of a delta 
function is an idealization of a single sharp localized oscillation, and so 
forth. If one can understand how the idealized data are propagated, then, 
with suitable continuity, one has understood some of the essential features 
of the classical solutions with data which are close to the distribution data. 
In the linear theory there are many theorems which give precise analytical 
content to this idea. 

In the nonlinear case the first reason for studying distribution data is not 
operative since there is no general superposition principal for nonlinear 
equations. The second reason is certainly appropriate, however, since one 
is very interested in the propagation of high peaks, sharp jumps, and 
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oscillations. And, because of the second reason, the natural question to ask 
is how the nonlinear solutions behave for classical data which get closer 
and closer to certain kinds of distribution data. In this paper we study the 
behavior of solutions, u&, to the strictly hyperbolic semilinear system 

(a, + ~(4 t) a, + qx, t)) d =f(x, t, ~6) 

uCIt=()=g+hE, 
(1.1) 

where g is “classical” and h” is smooth and converges to a distribution as 
E -+ 0. Surprisingly, in some quite general circumstances one can prove the 
convergence of U’ and several interesting phenomena emerge. 

In Section 2 we study this problem whenf is Lipschitz and sublinear. We 
take g E L’ and let h” be a sequence of C” functions which approach .D~, a 
singular measure, in the sense of distributions. We suppose that {h”} is 
uniformly bounded in L’ and converges to zero in measure (imagine a 
sequence of approximations to the delta function). For simplicity we will 
state the result in the case where A = /i is diagonal and B s 0. Let U, 8, 
and c be the solutions of the following problems: 

(a,+nb, t) a,) ~~=f(~,t,u) 

fil,,,=g 
(1.2) 

(a,+A(x, t)a,p=o 

aEI,=O=hE 
(1.3) 

(a,+/i(~, t) a.,) a=0 (1.4) 

Then the first Theorem in Section 2 states 

THEOREM. lj‘” f is sublinear, uc - U- C-P converges to zero in 
C( [0, T] : L’), Further, since cf goes to zero in measure and aE -+ a in the 
sense of distributions, we have that uE converges to U + o in measure and in 
the sense of distributions. 

It is natural to call U + 0 the “solution” of (a, + Aa,) u =f(x, t, U) with 
initial data g + ,D~. We call these solutions delta waves. This theorem 
expresses a striking superposition principle. The singular part of the 
solution propagates linearly. The classical part propagates by the nonlinear 
equation. And, the limit of the nonlinear solution U& as the data becomes 
more singular is the sum of the two parts. The intuitive reason for this 
result is that the peaking part of the solution makes less and less difference 
in the nonlinear term since f is sublinear. 
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If B & 0, a similar splitting takes place. Again the singular part of the 
limit satisfies a linear equation. The L’ part satisfies a nonlinear equation 
where the off-diagonal part of Bu,,,~ appears linearly as a forcing term. As 
above the limit solution is the superposition of the two. 

It is natural to ask whether the limit of ZP and the superposition result 
hold for even more singular sequences {h”}. We investigate this question in 
Section 3 where we assume that f is bounded. Suppose that {h”} is a 
sequence of C” functions of smaller and smaller support which converge to 
a distribution v which has support on a set, S, of Lebesgue measure zero. 
There will exist such a sequence (h”), for example, if v is a finite sum of 
derivatives of the delta function at finitely many points. For simplicity we 
state the result in the case where B = 0 and S is closed. Let 9’ denote the 
flow out of the initial singular points under the vector fields a, + ;li8,. 

THEOREM. Suppose that f is bounded. Then uE - z.i - oE converges to zero 
in C( [0, T] : L’) and un$ormly on compact subsets of the complement of Y. 
oE converges to zero in measure and converges to o (the solution of (1.4) with 
v replacing p,) in the sense of distributions, so, u’ -+ ii + o in the sense qf 
distributions. 

There is a similar generalization of the results of Section 2 in the case 
B & 0. 

There is a relation between the growth of f and the permissible 
singularities in lim {h”}. In Section 2, f is only required to be sublinear, but 
the {h”} are uniformly bounded in L’ so the most singular limits possible 
were measures, In Section 3, f is bounded, and v of any order can be per- 
mitted. It is clear that there is a family of theorems between these extreme 
cases which assume some growth in f and corresponding restrictions on v 
and conclude that linear superposition of the singular part occurs. 

The next phenomenon we investigate is best illustrated by an example. 
The solution of the problem 

u; = -(Q 

uCI,=o =J’F.(x)2 
(1.5) 

where jE(x) =j(x/s)/s, the usual mollifier, is given by 

u&( t, x) =jJx)( 1 + 2&(x)2) ~ I’*. 

Thus, for each t > 0, u’(t, x) -+ 0 in L’ as E -+ 0. More generally, if uE 
satisfies (1.5) and ~“I,=~=g+j,(x) with gEL”, then uE(t)-+L’ z?(t) for 
t > 0, where U satisfies (1.5) with 1( ) (= 0 =g. This illustrates the dis- 
appearance of singular data and the reason is not hard to understand. jE(x) 
perturbs the data only on a set of small measure and on this set the dis- 
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sipation in the nonlinear term damps any large disturbances to moderate 
size. The net effect is a small change as measured in L’. This is the 
phenomenon investigated in Section 4. Let g E L” and {h”} be uniformly 
bounded in L’ and converge to zero in measure. Suppose that the com- 
ponents off satisfy the two conditions 

and 

lim 
b,l - a! 

f;( t, x, u)/u,~ = - co, 

(1.6) 

(1.7) 

where the limit is uniform for (t, x, u1 ,..., uj-, , uj+ 1 ,..., uk) in compact sub- 
sets of R* x RkP I. Condition (1.6) guarantees that solutions do not blow 
up in finite time and the condition (1.7) expresses superlinear dissipation. 

THEOREM. Assume that A = A is a diagonal, (1.6) and (1.7) hold, and 
suppose uE satisfies (1.1). Then for each t > 0, uE( t) +L’ G(t), where ii(t) 
satisfies 

(a, + Aa, + B) U =f( t, x, ii), 4,=,=g. 

We have seen that delta waves exist but behave linearly in the sublinear 
case and that they are immediately absorbed in the superlinear dissipative 
case. It is natural to ask whether delta waves exist and whether they 
interact non-linearly in some superlinear non-dissipative situations? To see 
that the answer is yes we need just return to the canonical example [3]: 

(a, + a,) v = 0 v(O,x)=&x+l) 

(a, - a,) w = 0 w(0, x)=6(x- 1) 

a,Z=Uw z( 0, x) = 0. 

The solution of this initial value problem is 

(1.8) 

u(x, t)=6(x-rtl) 

w(x, t)=h(x+t- 1) (1.9) 

z(x, t) = pf(t - 1) 6(x), 

where H is the Heavyside function. Each term in the equations is 
meaningful in the sense of distributions and the three equalities hold. Tak- 
ing the point of view of this paper, one can define v’, w’, zE as the solutions 
of (1.8) with ~(0, x) =js(x + l), ~(0, x) =jE(x - 1). Then uE, wE, zE converge 
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FIGURE I 

in the sense of distributions to the u, W, P in (1.9) and this convergence is 
uniform on compact subsets of the complement of the singular set S. (See 
Fig. 1.) 

Thus we have the standard picture of two singularities traveling on 
characteristics producing a new singularity at the point of intersection 
which travels on the other forward characteristic(s) from the point of inter- 
section. In this case, both the incoming singularities and the outgoing 
anomalous singularity are delta waves. This is completely consistent with 
the formulas derived in [4]. There we showed that if a singularity of order 
n, interacts with a singularity of order n,, then the anomalous singularities 
will (in general) have order n, + n2 + 2. (Saying that a singularity has order 
ni means that nj derivatives are continuous across the singularity bearing 
characteristic but the (n, + 1)th derivative jumps.) In [4] we treated the 
cases ni 2 - 1, where nj = - 1 means a jump discontinuity since one trans- 
verse integral will produce continuity. For (l.S), the incoming singularities 
are delta waves, i.e., n, = -2 = n2, so the formula n, + n, + 2 = - 2 predicts 
that the outgoing anomalous singularity should also be a delta wave which 
is exactly what we observed above. If one sends in more singular dis- 
tributions in (1.8), say 6’ singularities where n, = -3 = n,, then the for- 
mula n, + n, + 2 = -4 predicts that the anomalous singularity will be even 
worse! If one does the approximation procedure described above and takes 
the limit then one can check directly that, indeed, z is a scalar multiple of 
H(r - 1) S”(X). 

It is clear that in the superlinear non-dissipative case the existence of 
delta wave solutions requires restrictions on the nonlinear terms in f(u). 
Here we do not pursue the existence and interaction of these waves. 

It is a pleasure to thank Russ Caflisch, Cathleen Morawetz, and John 
Sylvester whose questions about previous work stimulated the author’s 
interest in highly singular solutions. The authors are grateful for the 
hospitality of the Mittag-Leffler Institute where parts of this work were 
completed. Some results in the same direction as this paper have been 
obtained independently by Michael Oberguggenberger [2]. 
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2. NONLINEAR SUPERPOSITION: DELTA WAVES 

This section is devoted to the study of delta-function-like solutions in the 
presence of sublinear nonlinear terms. The governing equation is the k x k 
strictly hyperbolic system 

[a,+A(t,x)d,+B(t,x)]u=f(t,x,u). (2.1) 

Because of the strict hyperbolicity we can, without loss, investigate this 
problem locally in x. So, given a time interval [0, T] and a space interval 
C-N, N] we denote by R the domain of determinacy of (t = T, 
-N < x < N} and by R, the set of x such that (x, t) E R. We will often 
make assertions like u E C( [0, T]: L’(R,)). By a change of variables which 
leaves each line t = constant fixed, we can make R rectangular and, in these 
variables, it is clear what the assertion means. We will always assume that 
the initial data has compact support in the interval R,, and restrict our 
attention to the behavior of the solution in R. For p E R, the backward ,j 
characteristic from p to (t = 0} will be denoted by GZj( p) or sometimes by 
%$( p, q) or q,(q), where q is the intersection point with the x-axis. Con- 
stants which depend on A, B, R, and the hypotheses onf(but not on E) will 
all be denoted by c. Dependence on E will always be explicit. 

Hypotheses on A, B, f 

We assume that A is in C’(R) and B is in C(R). Since we are assuming 
strict hyperbolicity, A has k distinct real eigenvalues E, I < . . < Ak with the 
same smoothness properties as A. Concerning f we suppose that 
f E Lg=( R x Rk), that f is Lipschitz in U, i.e., V, f E L” (R x II@). In addition, 
we assume that f is sublinear 

(2.2) 

the limit being uniform for (t, x) E R. 
Because of the sublinearity there cannot be blowup and one has the 

following L p existence theorem: 

PROPOSITION. For any g E LP(R,), p < co, there is a unique solution 
UE C([O, T]: LP(R,)) to (2.1) such that ~(0, .) = g. In addition, there is a 
constant cp such that if u, and u2 are the solutions corresponding to g, and 
g2, then 
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Hypotheses on the data 

We are interested in studying solutions U’ of (2.1) with Cauchy data, 

u&(0, .) = g+ h”, (2.3) 

with support in R,, which becomes singular as E + 0. We assume 

gel’ (2.4) 

{h&l O<Ec, is bounded in L’(R,) (2.5) 

{h”} converges to zero in measure, that is, if P = {x E R,: 
Ih”(x)l > s} then lim,,, m(P”) = 0 for each q > 0, where m is 
Lebesgue measure. (2.6) 

Sometimes we will assume the following additional hypothesis. 

There is a nested family of closed measurable sets ( T’ }, 
P E TE2 if E, GE*, with lim,,, m( T”) = 0, which satisfy: For 
each fixed s2 > 0 and q > 0, there exists an E, so that Pq c T2 if 
&GE,. (2.7) 

When we assume (2.7), we will refer to SE n, T’ as the singular set. For 
any of these sets, for example, S, we will denote the outflow in R under the 
vector field dI + Ai a, by cy, the time slice by q(t), and .Y = U, cy, 
Y(t)= ui.qt). 

EXAMPLE 1. Let p, be a finite signed Bore1 measure with support in the 
interior of R, which is singular with respect to Lebesgue measure. Let 
j~Cr(R),j>O,jjdx=l andj,(x)=E~~‘j(x/s).Thenforcsmallh”-j,:*p,, 
has support in R, and {h” ) is b ounded in L’(R,). Furthermore, Lebesgue’s 
density theorem [6] implies that h” converges to zero almost everywhere 
with respect to Lebesgue measure. Since R, is compact this implies h” -+ 0 
in measure. In fact, that stronger hypothesis (2.7) holds too. 

EXAMPLE 2. Let p be any finite signed Bore1 measure with support in 
the interior of R, and let p = p,,,. + p, = gdm + p,, be its Lebesgue decom- 
position. Then j, * p = g + h”, where h” E j, * pL, + (j, * g - g), satisfies the 
above hypotheses since j, * g- g converges to zero in L’(R,), pointwise 
a.e. and therefore almost uniformly since m(R,) < cc. 

The above hypotheses and the proposition imply that for each E there is 
a unique solution, u’, of (2.1) with initial data (2.3) which is in 
C( [0, T]: L’(R,)). Furthermore, the family u’, 0 <E < 1, is bounded in 
C( [0, T]: L’(R,)). We will study the limit of U& as E -+ 0. Note that a 
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Lipschitz change of dependent variable brings the system to characteristic 
form; that is, A is replaced by the diagonal matrix 

n= [“‘:” . . . OJ 

and B is replaced by a possibly different element of C(R). For our first 
result we assume that A is in characteristic form and that there are no 
lower order linear terms, i.e., B = 0. 

THEOREM 2.1. Suppose that f is sublinear. Define uE, 8, U by 

(a,+na,)UE+f(t,X,UE)=O u&(0, .) = g + h” (2.8) 

(a, + Ad,) ff = 0 ~~(0, .) = h” (2.9) 

(a,+Aa,)ii+f(t,x,U)=O U”(0, .) = g. (2.10) 

Suppose g E L’(R,) and that {h”} satisfies (2.5) and (2.6). Then uE - zi - oE 
converges to zero in C([O, T]: L’(R,)) and 

i 
Iu”-17) <qm(R)+o(l). (2.11) 

R\.YJ 

Furthermore, if h” converges in the weak star topology on &(RO) to a 
singular measure ,uL,, then u”(t) - ii(t) + o(t) weak star in A’(R,) unzformly 
for 0 Q t < T where a(t) solves 

(d,+Ad,)cT=O a(0, .) = ps. (2.12) 

I’ in addition, {h”} satisfies (2.7), then uE -+ U in L’ on R\S’ for each E. 

The proof of the theorem depends on the following: 

LEMMA. Suppose that X, u is a finite measure space and that 
F: XX [Wk -+ [w is unzformly Lipschitz with respect to the second variable: 

JF(x, w)-F(x, w’)j <llw-w’l vx, w, W’E xx Rk x [Wk. 

In addition, suppose that F is measurable in X for each w and is sublinear: 

,nfiyw Ft.% w)llwl = 0 almost uniformly on X. 

Suppose uc is a bounded family in L’(X), v E L’(X), and vE + v in measure. 
Then F(x, 0’) converges to F(x, o) in L’(X). 

580/73/l- I I 
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Proof. Given an q > 0 we will show that 

lim 
I 

(F(x, U&(X)) - F(x, u(x))1 d/i(x) < tJ. 
c-r0 x 

Let 

GE= (xEX: IO’-VI >421/.4X)}. 

Then, from the Lipschitz bound on F, 

s 
(F(x, uE)-F(x, o)l d/&l! Iu”--1 dp 

X\G’ x\Gf 

< q/2. 

Since uc -+ v in measure, p(G”) + 0 as E -+ 0. And, since F is sublinear, 
F(x, u) E L’, SO SG’ IF( x, u)l dp = o( 1) as E -+ 0. Thus, it suffices to show that 

IF( x, u”)l dp < r//2. 

Choose M > sup J (~‘1 dp and r > 0 so that 

IF(x> w)l/lwl d v/244 for IwI > Y and a.e. x. 

Let E” = {x: lu”(x)l > r}. Then 

On the other hand, 

i IF(x,v”)l dM<( esssup IFJ)p(G”)=o(l), 
G’ n (x\F:) xx (lwI<r} 

so the proof is complete. 1 

Proof of Theorem 2.1. Let uE = U’ - U - 8 and L = 8, + /ia,. Then, sup- 
pressing the t, x dependence off, we have 

-Lu”=f(u”)-f(ii)=f(u”+fi+a”)-f(C) 

= (f(u”+zi+o”)-f(z7+cq)+ (f(ii+a”)-f(C)). 

Thus uE E C( [0, T]: L’(R,)) and satisfies 

lLv”l <ClUEI + If(u+cr”)-f(ii)l 

uyo, -) = 0. 
(2.13) 
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Now, & solves Lo” =0 so the components of ~9 are constant on the 
corresponding characteristics. Thus, since h” + 0 in measure we conclude 
that 8 -+ 0 in measure in R. Rurther, since {h”} is bounded in L’(R,), 
{U + a’} is bounded in L’(R,), uniformly for t E [O, r]. Thus, U and ii + 8 
satisfy the hypotheses of the lemma and we conclude that 

I R, If(ll+a”)-f(C)1 dx=o(l) (2.14) 

uniformly for t E [O, T]. (2.13), (2.14) and Gronwall’s inequality imply 
that vE is o(l) in C( [0, T]: L’(R,)). Since IeEl Q q on the complement of 
SE.“, the estimate (2.11) holds. 

Suppose now that h” converges in the weak star sense to a singular 
measure p,. The characteristic form of (8, +/id,) makes it easy to define 
the singular measure-valued solution a(t) of (2.12) and to check that 
o”(t) + c(t) in the weak star sense. Finally, if (2.7) holds and E* > 0, then 8 
is small in sup norm outside of J rE2 for E small enough. Since {F} is 
nested, so is {P} so U& -+ ” u on the complement of each F-“. i 

We now turn to the case where B # 0. Here it is clear that a singularity 
traveling in one component ui will affect all the other components uj in 
whose equation ui appears as a linear lower order term. Nevertheless, there 
is a natural linear splitting of the solution into a singular part and an L’ 
part. Write B = D + E, where D and E are the diagonal and off-diagonal 
part, respectively. Then if h” + pA we will see that zP -+ U + (T, where U and e 
satisfy 

(a,+M,+D)o=O, 40, -I= PL, (2.15) 

(8, + A8, + B)ii +f(t, x, U) + Eo = 0, $0, .) = g. (2.16) 

Note that the first linear system determines IJ which is then fed into the 
second system. The second is nonlinear with a singular forcing term Ea. 
That the solution, U, is absolutely continuous (with respect to Lebesgue 
measure on R) depends on the fact that thejth component of Ea is a sum 
of terms moving with velocities Ai, i #j, since E has vanishing diagonal 
components. To see that U is absolutely continuous write the equation for u 
as 

(c?,+Aa,+D)ii+Ec= -f(t,x,U)-EC 

and let w be the solution of the linear system 

(a, + Aa, + D)w + Eo = 0, w(O;)=g. 
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Then WE C([O, T]: L’(R)), since in each component one integrates trans- 
verse to the singularities in the forcing term. Setting z z ii - W, we have 

(a,+Aa,+B)z+f(t,x, w+z)+Ew=O, z(0, .) = 0, 

hence z E C( [0, r]: L,QR)), too. Thus, U E C( [0, r]: L,&(R)). 
The next theorem asserts that (2.15), (2.16) give the correct limiting 

behavior. 

THEOREM 2.2. Suppose that f is sublinear. Define uc, 8, and aE by 

(a,+na.+B)u”+f(t,x,u”)=o, u&(0, .) = g + h” (2.17) 

(c?,+M,+D)a”=O, cf(0, .) = h” (2.18) 

(a, + Ad, + B) a”+.f(t, x, a’) + Eo”= 0, a&(0, .) = g. (2.19) 

Suppose gE L’(R,) and {h”} satisfies (2.5) and (2.6). Then uE- a’- a’ con- 
verges to zero in C([O, T]: L’(T,)) as e -+ 0. Furthermore, if h” + uL,, a 
singular measure in the weak star sense, then a’ -+ U in C( [O, T] : L’(R,)) and 
u”(t) + u(t) + a(t) is weak star in A, unzformly on [0, T], where a and U are 
the solutions of (2.15) and (2.16). 

Proof: Let L = a, + Aa, + B and vE = uE - a’ - (T”. Then, suppressing the 
t, x dependence in f, we have 

Lv” = f( a’) - f( u’) + Ea” - Lo”. 

Since La” = Eo”, 

Lv”=f(a”)-f(v”+aC+oC) 

= (f(ae+~E)-f(aE+aE+vE))+ (f(a”)-f(a”+d)), 

hence 
lLvcl Q Clv”l + If(a”+ 0’) -f(ac)l 

v&(0, ‘) = 0. 
(2.20) 

As in the proof of Theorem 2.1, (2.20) and Gronwall’s inequality suffice 
to prove that v&-f0 in C([O, T]: L’(R,)) once we know that 
If(a’+&)--f(a’)l is o(l) in L’(R). In that proof this was shown with a’ 
replaced by a fixed element of L’(R) by using the lemma and the sub- 
linearity off: Using this and the fact that f is uniformly Lipschitz we see 
that it suffices to show that the family (a”) is totally bounded in L’(R). In 
fact, we will prove the stronger assertion that (a’} is precompact in 
C(CO, Tl: L’(R)). 
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Define W’ and [ as solutions of the linear initial value problems 

(d,+AiY,+D)w"+Eo"=O W&(0, .) = g 

(a,+na,+D)i=o w, .) = g. 

Then 5 E C( [IO, r]: L'(R,)) and the difference satisfies 

(d,+Ad,+D)(w'-c)+EcY=O 

(2.21) 

with vanishing initial data. Thus, the ith component w: - ii is expressed as 
an integral of cjz i elia; over a backward i characteristic. At each point p of 
this characteristic, a;(p) = a,( p) h,“(q,(p)), where for each p and j, qj( p) 
denotes the intersection of the backward j characteristic from p with 
{t = 0 ), and uj satisfies 

(a,+ i,aj+ d,) uj= 0, a(0, .) = 1. 

Since A and B are continuous, {E.,}, (e,j}, {vi}, and {a,} are continuous 
too. Thus, for each i, wf-[ can be written 

(w; - lJ( t, x) = 1 ?‘““““ G,( t, x, y) h,“(y) dy, 
j+[ q,(r,r) 

where the kernels, G,, are continuous on R x R,. Using the continuity and 
Fubini’s theorem it is easy to check that, for each t, {WY- [} satisfy the 
condition of Riesz for precompactness in L'(R,) [ 11. The same calculation 
shows that (w’ - i)(t) are uniformly bounded and equicontinuous on 
[0, T] to {L'(R,)}. Thus the set {w” -[} is precompact in C([O, T]: 
L'(R,)). Since i is fixed, {w”} is precompact in C( [0, T]: L'(R,)), too. 

Set zE = a’ - w’. Then 

LzE+f(wE+zC)+ Ew" =O, zyo, .) = 0. 

If we denote by 9 the map which takes w’ to zE by solving this equation 
then 9 is continuous on C( [0, r]: L'(R,)). So, {z”} = (P(w”)} is precom- 
pact in C([O, T]: L'(R,)). Thus (c(“} is precompact which, as indicated 
above, completes the proof that uE --t 0 in C( [0, r]: L'(R,)). 

FIGURE 2 
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Now suppose that h” - pu, weak star. Since D is diagonal and con- 
tinuous, the method of characteristics yields a simple proof that a’ - e in 
the weak star sense. To complete the proof we must show that LX’ -+ U 
in C([O, T]: L*(R,)). We define w’, zE as above and w by (2.21) with [T 
replacing &. Thus 

(a, + /id., + D)( we - w) + E(o’ - c) = 0, (w”-w)(O, .)=O. 

Since oE - (T in I’(R), it follows that wE - w in 6’(R). The precom- 
pactness of (w”) in C( [O, T]: L*(R,)) implies that we + w in 
C([O, T]: L’(R,)). Since 9 is continuous, zE=L?P(w6) converges to a 
z E C( [0, r]: L’(R,)). Thus CI& = zE + wE converges to z + w in 
C(CO, Tl: Jm,)). 

Finally, 

Lcr” = -f(z” + w’) - Ea”, qo, .) = g. 

The three terms converge respectively to L(z + w), -f(z + w), and - Ea in 
the sense of distributions. By uniqueness of solutions of (2.16) in 
C( [0, T]: L’(R,)) we must have z + w = U. 1 

For a strictly hyperbolic system 

[a,+A(t,x)a.+B(t,x)]u+f(t,x,U)=0, (2.22) 

where A is not in diagonal form we can choose a C’ linear change of 
dependent variables U’ = V( t, x)u so that V( t, x) A V( t, x) - ’ E A is 
diagonal. The matrix for the linear terms in the equation for u’ is 
B’ E VBV’ + V(a, V- ’ ). We can now apply Theorem 2.2, splitting B’ into 
diagonal and off-diagonal parts D’ and E’. Transforming back we get the 
same statement for the general case (2.22) as we did in the diagonal case 
(Theorem 2.2) except that E is given by V-‘E’V’ rather than as the off- 
diagonal part of B. The hypothesis that A E C’(R) is used here to guarantee 
that B’ is continuous. 

3. NONLINEAR SUPERPOSITION: ULTRASINGULARITIES 

In this section we allow the approximations h" to converge to dis- 
tributions more singular than measures, so llh”l\ Lo --f co as E + 0. However, 
we still require h” E L’ for each E to ensure the existence of solutions. We 
shall show that ifSis uniformly bounded and h” tends to zero in measure, 
then nonlinear superposition holds as in Section 2. The following 
hypotheses are in force throughout this section: 
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Hypotheses on A, B, f, g, h” 

We suppose that AE C”(R), BE C(R), f is measurable on Rx I@, 
uniformly Lipschitzian in u and uniformly bounded, that is, 

sup IfI< oc 
R x Rk 

supf( w)-ff(wJ)=l<CO 
lu-U’J 

the second sup being taken over all t, x, U, U’ in R x R“ x Rk with u # u’. We 
suppose that g and h” are in L’( R,) for each E and h” + 0 in measure, i.e., 
(2.6) is satisfied. 

For diagonal systems we have the following analog of Theorem 2.1. 

THEOREM 3.1. Zf u’, 8, U are defined by (2.8), (2.9), and (2.10), resp,ec- 
tively, then uE - ii - 8 + 0 in C( [0, T]: L’( R,)). In addition, for any r] > 0, 

(3.1) 

for E sufficiently small. Two special cases are worthy of note: 

(i) IfhE-v in d’(R,), then u”-ti+a in b’(R), where a satisfies 

(a, + Aa,)0 = 0 a(0) = v. 

(ii) Zfh” ti f h sa s res t e nested hypothesis (2.7) then uE - ii - 0’ converges 
uniformly to zero on R\F’l for any E, > 0. 

EXAMPLE. If v is a distribution supported at finitely many points 
interior to R,, then h” = j, * v satisfies all the hypotheses. 

The following simple lemma is the analog of the lemma in Section 2. 

LEMMA. Let X, p be a finite measure space. Suppose that f(x, v) is 
measurable on Xx [Wk, uniformly bounded, and uniformly Lipschitzian in v 
for x E X. Let 8 and tlE be [Wk valued measurable functions on X such that 8 
goes to zero in measure as E -+ 0. Then 

f(x, d + a&) - f(x, cc) -+ 0 in L’(X, p). 

ProoJ: Let I be the Lipschitz constant for f and let ye > 0 be given. 
Choose Q,, so that for E <E,,, we have p(G,) < q/4 llfll m, where 

G, E {x: la”(x)1 > q/2/p(X)}. 
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s X\G If(~,a&+o~)-f(x,~~)l d&j flo':(x)l d/idq/2, 
r X\G? 

which proves the lemma. i 

Proof of Theorem 3.1. Let u”= uc- G-a”. Then, as in the proof of 
Theorem 2.1, 

ILv”J d Ilu”l + If(t, x, u + d) -f(t, x, ii)/ 

uC(O, .) = 0. 
(3.2) 

The lemma shows that the second term on the right tends to zero in L’(R) 
so v”+Oin C([O, T]:L’(R,)). Ifh”-v in &‘(R,) then (T’--cr in &‘(R) and 
therefore uc - U + r~ in E’(R). 

To prove (3.1) observe that I&/ < q on R\Y”,” so the second term on 
the right of (3.2) is dominated by 

For each t E [0, T], define 

(3.3) 

If p $ Y;v, then V,(p) A 9;” = @ and, by strict hyperbolicity, Vj( p) inter- 
sects 9’Pg,‘J in a set of length d cm{ ) h&l > 7 >. For such p we have 

b,“(P)I G j 
i %,( p) n .Y’.‘l + j If;(v”+u+u”)-fi(u)I 

“,( p)\.‘/“.q 

<cm(Ih”l >v) +Ij 10’1 
Vf,\.SPr.o 

+ js,,c,n If;@ + 4 -.tJfw 
I I 

The last integrand is <cy and the other integrand is dominated by y. Thus, 
taking the sum on j we find 

y(t)dcm{ Ih”l >q> + jr y(s) ds+cg. 
0 
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As E -+ 0 the first term goes to zero so Gronwall’s inequality yields (3.1). 
Case (ii) follows immediately from (2.7) and (3.1). 1 

When B # 0 we divide the analog of Theorem 2.2 into two parts. 

THEOREM 3.2a. Suppose that u&, &, and c? satisfy (2.17), (2.18), and 
(2.19), respectively. Then zP-- a’- aE converges to zero in C( [0, T]: L’(R,)) 
and for E sufficiently small 

The proof of this result is a straightforward combination of the proofs of 
Theorems 2.2 and 3.1 and is therefore omitted. 

To obtain a more precise description of uE we must study c? more closely. 
The difficulty is that tx’ will, in general, be quite singular because of the 
forcing term Eo” in the defining equation. We separate out a singular term 
p”, defined by 

(d,+Ad,+ @/I”+ E&=0, j?“(O) = 0 

This leaves a good term 7’ = ~1’ - B” which satisfies 

(a, + na, + B) YE + f( t, x, p + y&) = 0, Y”(O) = g. 

In addition to the hypotheses at the beginning of the section, we assume 

(a) BE P(R) 

(b) hC+v in IP(R,) for some s0 E ( - co, cc ). 

(c) There is a closed set To c R, of Lebesgue measure zero and s1 > 0 
so that: 

h” -+ 0 in H;;,(R,\T,), uniformly on compact subsets of R,\T,. 

We will use the notation L = a, + /id,, ai s 3, + ,Ii a,, and denote by F the 
union of the flowouts of T, under the vector fields aj. 

THEOREM 3.2b. Under the above assumptions: 

(i ) oE -+ 0 and j?” + /I in HSo( R), where G and fi are defined by 

(L+D)a=O o(0) = v 

(L+B)B+Eo=O B(O) = 0 

(ii) (T’ + u in H&(R\F), and uniformly on compact subsets of R\F-, 
and p” --, B in H;;,’ ‘(R\F) 
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(iii) y” + y in C( [0, T]: L’(R,)), where y satzkfies 

(L + WY +A4 x3 Y + XR\&) = 05 Y(O) = g, 

where x/3 means the function equal to j3 on R\F and zero elsewhere. 

(iv) yE -+ y uniformly on compact subsets of R\F. 

In particular, if ii = j3 + y, then uE -+ ii + CJ in H”O(R), uE + ii + o uniformly on 
compact subsets of R/F-, ii is continuous on R\.F and satisfies 

(L+B)u+f(t,x,X.,,u)+Ea=o, U(0) = g. 

Remark. Note that s0 may be very negative and U may be very singular 
on F. 

Proof. (i) and the IT part of (ii) are elementary. The study of p” is more 
delicate and, for this purpose, we construct approximations C,“=, w”,‘, 
where 

(L + D) ~‘3’ + EC” = 0, wO,“(O) = 0 

(L + D) wn,’ + Ew” ~ ‘J = 0, w”,“(O) = 0, n 2 1 

with analogous definitions when E = 0. Then 

(L+B) i 
( ) 

~“3~ + Ea” = EwN-= 
II=0 

p = f w”‘c 
(3.5) 

- (L + B)-‘EwN%“. 
n=O 

By iterative arguments we shall show that for N large enough, wNsE con- 
verges uniformly on R and that each wn,E converges uniformly on compact 
subsets of R\f. 

Since a; - ci + 0 in H”O, the microlocal elliptic regularity theorem applied 
to the equation (Ji + d;;)(o; - a,) = 0 implies that 

a:-a-0 in H”( T* R\char a,), Vs E Iw. (3.6) 

Now w?,” - WY satisfies 2 I 

( ai + dii)( wp,E - WY) = - c E&a,” - aj) 
j#i 

w?(O) - WY(O) = 0. 
(3.7) 

Sincej # i on the right-hand side and our system is strictly hyperbolic, (3.6) 
implies that the forcing term in (3.7) goes to zero in I?( T*R n char ai) for 
all SE [w. Thus, Hiirmander’s theorem implies 

w?3” - * wp+o in H”( T*R n char ai) (3.8) 
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for all s E IR. Since fY --) 0 in ZP, 

pp - WO-+O in PO+ l(R). 

Now, the ith component of wl,‘- w1 satisfies 

(ai + dii)(W;+- wi’) = -c E,(WiO,&- w;, 
/#i 

w;qo) - wf(0) = 0; 
so by elliptic regularity and Hormander’s theorem 

w!.” - I w;+o in Hso+‘(T*Rncharai) 

w&” - 1 wf+O in WO+ *( T*R\char ai) 

for each i. From these statements and the equation for w*,& - w2, it follows 
that 

w2.& - w*-+o in We+*(R). 

Continuing inductively we find that for N even, 

WN.~ - wN+O in PO+ 1 +(N/*)(R). (3.9) 

Now, suppose that p 4 z; then %Yi( p) n z = 4 and 5$(p) intersects {t = 0} 
at a point p. such that h” - v + 0 in H$,(p,). Thus, by Hiirmander’s 
theorem, 

6;-fJi+o in ZP(r, char a,), r E W;( p). 

Therefore, by elliptic regularity, 

w?.” - 
/ w,” + 0 inH”‘+‘(r,chara,),rE~i(p),j#i. 

Combined with (3.8), this implies that 

w0.E - w”+o in P+‘(r, char a,), r~%?~(p). (3.10) 

If p# Y = U q then (3.10) holds for each i. The elliptic directions are 
handled easily from the equation for ~‘7~ - w”, so we conclude 

wo8 - w”+0 in H”‘+‘(R\Y). 

Suppose again that p$~&. Then the equations for the components of 
wl,’ - w’ and (3.10) imply 

Wl.E - wl+0 in P+*(r, char a,), r~$(p) 
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by elliptic regularity and Hiirmander’s theorem. For p $ lJ 5, this implies, 
as above, 

wI.E _ wl+o in H”’ + ‘( R\F). 

Continuing by induction, we find 

),$w _ wn-+o in Hsl+n+1(R\3). (3.11) 

If we choose N even so that s0 + 1 + N/2 > S, + 1, then (3.9) and (3.11) give 
the conclusion of part (ii) using formula (3.5). 

Proof of Part (iii). The existence of a unique y E C( [0, r]: L’(R,)) 
satisfying the initial value problem in (iii) is not hard to prove. Then 

I(L+~)(f-y)l= If(Y”+B”)-f(y+XR‘,.~~)l 

~clr"-rl+If(Y+8")-f(~+XR\.~~B)I. (3.12) 

By the Lebesgue dominated convergence theorem the second term tends to 
zero in L’(R), since f E L” and 5 has measure zero. (iii) follows by the 
usual application of Gronwall’s inequality. 

Proof of Part (iv). Let U be an open set satisfying T c U c R, and let @ 
denote the union of the flowouts of U under the vector fields ai. The second 
term in (3.12) is estimated by c I/I” - PI on R\%! and by 2 11 f I( Z on @. Thus 

The first and last terms converge uniformly to zero. If p E %‘, then, for each 
i, Vj( p) intersects @ in a set of length dominated by cm(U). If we define 

M(t)=C suP lYe(t)-Yi(t)l 
i R,\* 

then the method of characteristics yields 

M(t)<c ‘M(s)ds+cm(U)+o(l); i 0 

hence, 

lim sup Iy’- yl <cm(U). 
e-0 R\& 
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Given any compact KC R\F we can choose an open U =) T with measure 
as small as we like so that KC R\@. Thus (iv) is proved. 

4. SUPERLINEAR DISSIPATION 

Before studying general systems we note that the lemma of Section 2 
yields results for the scalar equation 

u, =f(u). (4.1) 

Let cp(t, s) be the flow of the corresponding ordinary differential equation, 

(4.2) 

where, as usual, f is assumed Lipschitz. The hypothesis of superlinear 
dissipation in the scalar case is 

lim f(u)/u= -co. (4.3) I4 + a 

It follows that the initial value problem for (4.2) is globally solvable in 
t > 0. In addition cp is sublinear in s, that is, 

lim cp(t, s)/s = 0 (4.4) (SI 4 cc 

uniformly in t > i for any i> 0. As we prove more general results later, the 
proof of (4.4) is omitted. Thus the initial value problem (4.1) with L’ data 
has a global solution in t > 0 and we have an easy proof of the following 
proposition which shows the effect of superlinear dissipation in the scalar 
case. 

PROPOSITION. Suppose that f is Lipschitz and satisfies (4.3). Let 
ge L’(R) and {h”) satisfy hypotheses (2.5) and (2.6). Zf uE is the solution of 
(4.1) with data u&(0, .) = g + h” and ii is the solution of (4.1) with G(O, .) = g, 
then for any compact subset K of the open half plane {t > 0) we have 

28 -+ ii in L’(K) as E+O. 

Proof. The difference U’ - u is equal to cp(t, g(x) + h”(x)) - q(t, g(x)). 
Since cp is sublinear in the second variable the lemma in Section 2 applies 
and gives the result. 1 
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We turn now to systems which we assume are in the characteristic form 

(a,+na,)u=f(t,x, u). (4.5) 

We have lumped the linear terms with f because the hypotheses on f (see 
below) are insensitive to their presence. We assume /1, D,,,n EL”(R). 

Hypotheses on f 

We assume that f(t, x, U) is measurable on R x Rk and that 

$ L”(K) for any compact Kc R x [Wk. (4.6) 

In order to prevent blowup we assume that there is a constant c so that 

holds for all t, x, U, j. One then has the differential inequality 

(4.7) 

(~,+~~~a,)(l”jl)~C(l +zluil)’ (4.8) 

It follows that 

I~,(~~ XII 6 c’ (1 + i sup l&(0, XII) (4.9) 
, ;=, raR,, 

for all 0 < t < T, so if the data are in L”(R,) the solution is in L”(R). 
Actually, slightly more is true. The solution is in C( [0, T]: L”(R,)), con- 
tinuity being in the weak star sense on L”. We refer to (4.7) as the non- 
explosive hypothesis. 

The hypothesis of superlinear dissipation is 

lim 
b,l - OE 

f;( t, x, u)/u, = -cc (4.10) 

the limit holding uniformly for (t, X, u1 ,..., ujp ,, uj+ 1 ,..., uk) in each set 
R x K where K is compact in [Wk ~ ‘. 

Notice that the Lipschitz hypothesis (4.6) is only required to hold on 
compact subsets of u and the dissipative hypothesis for each j is only 
required to hold for compact subsets of ui, i # j. A sample f satisfying these 
hypotheses is 

h(U)= i O,iUi-Uj (l + ,t, Uf)- 
,=I 
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THEOREM 4.1. Suppose that A and f satisfy the above hypotheses, that 
gEL”(R,), and that h” satisfies (2.5), (2.6), and (2.7). Define uE and ii by 

(~,+&)%=f(t,X, u&1, ~‘(0, x) = g + h” 

(a, + Aa,)u=f(t, x, U), U(0, x) = g. 

Then u”(t)-+ii(t) in L’(R,) f or each 0 < t 6 T, un$ormly for t E [i, T] for 
any i>O, and if K is a compact set in R\F and q >O is given, then for E 
small enough: 

IUYf, xl - 46 XII <VT (t, X)EK. (4.16) 

Remark. This theorem recovers in the case of systems, the two 
phenomena which we saw in the simple explicit example in the Introduc- 
tion, namely, L’ convergence for t > 0 and uniform convergence away from 
the flow out of the singular set. 

Proof of the Theorem. Let vE = uE - ii and L = a, + Aa,. Then 

Lv”=f(t,x,u+v”)-f(t,x,ii)rf(t,x,v”) 

~‘(0, x) = h”. 

Since ii is bounded in R, f satisfies the non-explosive hypothesis (4.7) and 
the superlinear dissipative condition (4.10). Furthermore f satisfies (4.6) 
and T(r, x, 0) = 0. We have thus reduced to the case where g = 0 and 
f (t, x, 0) = 0. Let a small q > 0 and a small time i> 0 be given and let SE,“, 
,4pJJ, YJJ(t), 5Pq be as defined in (2.6), (2.7). Then for E small: 

m(.4PYt)) < of, m(Y;“) < cfj (4.17) 

where c is independent of q. Through a series of estimates we will show that 
(4.16) and 

I Iu’(x, t)l dx 6 cg if t>t (4.18) 
9z.q t) 

hold for E small enough. This immediately implies the first part of the 
theorem. For the second part we simply note that for each fixed .si and q 
we have YES” c Y-“’ for E small enough, so (4.16) gives the result. 

Throughout the following arguments it is useful to think of the special 
case where SE.” is a small interval (see Fig. 3). We already know from the 
non-explosive hypothesis that IvJ < CM,, where M, is the sup of the initial 
data. The proof proceeds by improving this estimate, using the hypotheses 
on fh”}, the superlinear dissipation, and the geometry of the charac- 
teristics. Since q is fixed, we write simply S” instead of S’,q. In the 
arguments that follow the constants c do not depend on q or E. 
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First, we note that from the non-explosive hypothesis (4.7) it follows that 
V&E C([O, T]: L’(R,)) and ((v~((~I~~,) ,< ce”‘. Thus, 

llVell L’(R) 6 c. (4.19) 

If we multiply the ith equation by sgn(u,), we have by (4.7), 

(3, + 4 8,) Ml = sgn(v;).K(v”) 
< ClUEI, (4.20) 

since Ti(0) = 0. Integrating this relation over the triangular region bounded 
by the axis {t = 0) and the backward i and j characteristics yields (see 
Fig. 4) 

Thus, 

Ilvfll L’(Y,) - lbfll L’(l(j) 6 II VFll L’ d c. (4.21) 

5 Ml 6 c for all i # j, s 

where %‘/ is a j characteristic in R. 

(4.22) 

FIGURE 4 



SUPERPOSITION AND ABSORPTION OF DELTA WAVES 175 

Second, using (4.20) and (4.7), 

Iv,"(P)1 = If$(q)l + i; %n(~j)jj(o") 

< Iqq)l +c+c s L6’ b,“l (4.23) 
I 

because of (4.22). If p 4 9’; then Iv;(q)1 < q, so by Gronwall’s inequality 

b,“( PM G c for all p $9,” for each j. (4.24) 

Now we use the superlinear dissipation to control the values of II,” in 9;. 
Let qESE. There are two cases. First, suppose that there is a point r on 
q.(q) so that 

Then, applying Gronwall’s inequality to (4.23) (with Y replacing q), we see 
that 

bi”(P)l G+)c+c VP E cc,(q). (4.25) 

The other case is where 

bj”(r)l a rlh(U for all r E S$(q). (4.26) 

We will assume u; is large and positive. The other case is handled similarly. 
Let B=UizjY;. Then m(Bnej)+O as ~-0 and for PEV~\B, the other 
components u;(p) take values in a compact set (by (4.24) for i # j). Choose 
L so that e-L12<q. Then choose E small enough that (4.26) implies 

7jct, 4 07 P)) < -L 
u;(P) 

(4.27) 

by the superlinear dissipation hypothesis (4.10). Thus, 

580/73/l-12 
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d Iv”(q)/ + c + c I s(y)“B w -L 1 lo3 %j(Y)\B 

G Iv,“(q)1 + c + s ~(,,) (exe- LX%,(q,\B) lu,“l 
0, . 

For E small, m( B n %$) d i//2. This implies 

i E,( P.4 ) 
cxB - Lx%,\B G -L/2 

if m(gj( p, 4)) > i. SO, by Gronwall’s inequality, 

b$P)I < (Iv;(q)1 + c) e-L’2 (4.28) 

for such p. Now choose E, small enough so that m(Tc’) <q, s1 < r~, 
maxi:,{ m( B n Vi(q))} < i/2, and (4.26) implies (4.27) by the superlinear dis- 
sipation hypothesis for all E d E, . Then for all E small enough so that 
s’: c T’:’ and all p E s” such that the time at p is 3 t we have either I 

or 
Iu,“(p)l dLc+c 

m(F) 

b)‘(P)I G 4vgq) + c). 

Since the L' norms of h” are uniformly bounded, this proves (4.18). In fact 
it proves a little more; namely, if gi is any piece of a characteristic curve of 
another family in the region t > i then 

(4.30) 

Now, suppose Kc R\.F is compact. Let Kj denote the intersection of the 
flowbacks of K under a, + Izj d, with the line (t = 0). Since U K, and T are 
compact and U Kjn T= @, hypothesis (2.7) implies that we can choose E 
so that IJ K, n T” = @. Choose an open set 0 3 T" so that U Kj n 0 = @ 
and m(O\P) < rl and set K" = I,\O. Let X0 be the intersection of the flow 
forwards of X0 in R. Then X0 3 K and R = X0 v 0, where 0 is the union 
of the flow forwards of 0. Define y(t) by 

Y(f) = 1 sup lu,(& x)l. 
/ &\O 
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If p 4: oj and q E {t = 0}, then %$(p, q) can intersect Q for i #j but not C$. 
The non-explosive hypothesis yields 

Now, choose i> 0 so that the forward characteristics from K” do not meet 
Y” until after i Since the {T,} are nested, this will also be true for all E < E. 
Thus if E is sufficiently small 

by (4.30) and 

since m( Vj n (O,\S 
(4.24). Thus 

‘;))<cu] and I ;I ut IS uniformly bounded outside of 5; by 

Y(f)G’?(l +c)+c jfY(S)dS, 0 
which implies y(t) 6 cq for t E [0, T] by Gronwall’s inequality. This proves 
(4.16). To conclude the proof of L’ convergence we note 

For E small, the first term is less than crl by (4.16), the second term is less 
than cq for r > i by (4.30), and the third term is less than cq by (4.24) and 
the fact that the measure of 0,\,\s; is small. i 

It may seem at first that in the presence of the condition of superlinear 
dissipation one should not need the non-explosive hypothesis (4.10) at all. 
But actually (4.10) is not a strong hypothesis since it is only required to 
hold for large ui if the other ui are in a compact set. Nothing is said in the 
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hypothesis about what happens if all the variables are big. The following 
example ( q u + 82.4: = 0 written as a system) makes this situation clear: 

(d,+d,)w= --(w+uy 

(i3-3,)u= --(w+uy. 

The non-linearity is easily seen to satisfy the superlinear dissipation 
hypotheses but it does not satisfy the non-explosive condition. Note that 
d,(w-o)+d,(u+w)=O so j(w-u)d x is a conserved quantity. Therefore 
if ~‘(0, X) = 0 and w&(0, x) = jE(x) we will have j w’(t, x) - u’(t, x) dx = 1, so 
we cannot have (w’, u’) + 0 in L’ for t > 0. This shows that superlinear 
dissipation alone is not sufficient to imply the conclusion U’ --+ U in 
Theorem 4.1. 

Unfortunately, for a strictly hyperbolic system not in the characteristic 
form, the invariant form of our hypotheses is somewhat awkward. If 
ni(t, X) are the spectral projections of A(t, x), then the non-explosive 
hypothesis becomes 

sgn(xju)(njf) G 41 + IUI 1 

and the superlinear dissipation hypothesis is 

lim n,f(t, x, z.f)/7r,u = -co, 
IV - 0 

when (I- nj)u remains in a compact set. Note that by strict hyperbolicity 
the ni have rank one so these conditions make sense. 
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