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Optimal Control Theory is used to analyze the laser-heating of plasmas confined in strong solenoidal magnetic fields. 
Heating strategies that minimize a linear combination of heating time and total energy spent by the laser system are found. A 
numerical example is used to illustrate the theory. Results of this example show that by an appropriate modulation of the laser 
intensity, significant savings in the laser energy are possible with only slight increases in the heating time. However, results 
may depend strongly on the initial state of the plasma and on the final ion temperature. 

1. Introduction 

The optimal laser heating of plasma ions from an initial temperature to a desired final temperature 
using Optimal Control Theory has been discussed for a particular case by Vagners et al. [1]. They 
considered the problem of Minimum Heating Time of a plasma confined in a strong solenoidal magnetic 
field, where thermal conductivity and particle diffusion in both radial and axial directions are neglected. 
They neglected bremsstrahlung losses and the work done by the plasma against the magnetic field during 
compression or expansion. In addition they constrained the total energy available from the laser and 
determined the optimal laser intensity profile that minimize the heating time for only one set of initial 
conditions. 

In this paper we generalize their work by including bremsstrahlung losses. We do not constraint the 
total laser energy available since this leads to cases with no solution, instead we minimize a linear 
combination of heating time and total energy spent with appropriate weighting coefficients. By adjusting 
the latter we obtain a set of heating strategies ranging from minimum heating time to minimum heating 
energy. 

The physical model we consider here is of course limited, further extensions like those including 
electron heat conduction and plasma losses out the ends are certainly desirable, however the complexity of 
the dynamical description of the system quickly becomes unmanageable. Thus, a compromise is needed 
between the completeness of the physical model and the complexity of the calculations of the optimization 
problem. 

The solution of our problem requires the use of optimal control theory [2]. This theory yields necessary 
conditions in the form of a two point boundary value problem. In this work we have succeeded in carrying 
out the optimization calculations to the end by developing a "Flooding" technique. This technique permits 
us to obtain the solution for any set of initial conditions, i.e., any initial values of the electron and ion 
temperatures. 

Within the limitations of the plasma model adopted in this paper, it will be shown that considerable 
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savings can be achieved in the total laser energy requirement by resorting to laser intensity optimization. 
The optimization problem arises from the fact that the laser energy initially heats the electrons, causing 

an increase in the electron temperature. Overheating the electrons reduces the electron-ion energy transfer 
rate and the coupling of the laser beam to the electrons while increasing radiation losses. This suggests 
heating strategies for example, in which electron-ion energy transfer rate is maximized in order to 
minimize the heating time, or perhaps one wants to minimize the total energy supplied by the laser system 
that heats the ions to a specified final temperature. 

2. Description of the physical model 

The physical model we consider here is that of a fully ionized neutral plasma, confined in an axially 
uniform magnetic field. Particle diffusion and ohmic heating are neglected under the assumptions of a 
large electrical conductivity and a large solenoidal magnetic field. In addition plasma losses from the ends 
and electron thermal conduction are not included in the model [1,3]. 

The plasma density and temperatures are assumed uniform in space but time varying, due to the 
compression or expansion of the plasma column. The work done by the plasma column during these 
compressions and expansions is also neglected. It is assumed that quasistatic pressure exists at any time 
along the plasma column. 

The plasma is heated uniformly by a laser beam propagating along the direction of the magnetic field 
[4]. The laser energy is mainly absorbed by the electrons by the absorption mechanism known as inverse 
bremsstrahlung [5]. 

As the electrons absorb energy from the radiation field they transfer energy to the ions through 
collisions. Assuming that both electrons and ions have Maxwellians distributions at different temperatures, 
the energy transfer takes place at the classical equipartition rate [6]. 

The energy losses included in the model are those of bremsstrahlung radiation [7]. Although these losses 
are not important at low electron temperatures they play a significant role when higher temperatures are 
attained by electrons during heating. The laser frequency is taken to be greater than the plasma frequency 
so that reflection losses at the vacuum plasma boundary are minimal. When the layers of the plasma 
column are heated, the laser absorption coefficient decreases; hence, the layers become more transparent 
to the incident radiation, allowing it to penetrate deeper in the plasma. This phenomena gives rise to what 
has been called a "bleaching wave" [4], as the laser radiation burns its way along the plasma column. It 
was shown by Yuen et al. [4], that for a constant laser pulse a sharp boundary between the hot and cold 
regions of the plasma is defined. As far as the hot region is concerned the electron and ion temperature 
remain approximately constant in space with values corresponding to their values at the boundary. Thus, it 
is reasonable to expect that the temporal behavior of the electron and ion temperatures at the boundary 
can be extrapolated to the whole heated region of the plasma column. 

The energy balance equations under the above assumptions are: 

3 d  3 T e - T i  
-~ --~ n T  e = K f l (  t ) - -~ n f ln2Te ' /2 ,  (1) 

"r e 

3 d  3 re-  
2 ~ nTi -- ~ n  (2) % 

In a plasma confined in a uniform magnetic field (along, say, the Z-direction) and in the absence of 
electric fields, the following relation is obtained from the equation of conservation of momentum [8] 
(quasistatic pressure assumption): 

B2 (3) 
, , ( r e  + + 
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By assuming non-diffusivity of the magnetic field [3] we also have: 

n n o 

B B 0 (4) 

In the above equations n, T~, Ti, B and B 0, are respectively the actual ion (electron) density, electron 
and ion temperatures (in electron-volts) and the internal and external magnetic fields; n o represents the 
electron and ion densities at negligible temperatures. K~ and % are the absorption coefficient of the laser 
light and the electron-ion equilibration time, given by: 

K.  = ,~,,~/re ~/~, (5) 
We 3 / 2  . 

"re = 7 n ' (6) 

the numerical coefficients a, fl and 3' are explicitly given by: 

87re 6 
ct = K c v 2 ( 2 ~ r m e ) 3 / 2  , (7) 

fl = 32~'g(2~r ) 1/2e6 ' 

33/2m3e/2c3h (8) 

3, - 1 - -  8(2~r )X/2e4mle/2 In A / 3 m  i. (9) 

In eq. (7) K is a constant of order 10, m e and m i are the electron and ion masses, h is the Planck's 
constant, c is the speed of light, e is the electron charge, v is the laser frequency, g is a quantum 
mechanical correction factor [7] and finally In A is the Coulomb logarithm. 

In order to simplify the notation in the above equations, we solve eq. (4) for B and substitute it in (3) to 
obtain 

. T  e + n T  i +  ( n / n o )  2 -  1] = O. (10) 

Now, substituting the expressions for K~ and %, in eqs. (1) and (2), and defining the new variables 

Z x --- n T J n  o ] 

Z z - n T i / n  0 . ~ ,  

U ( t )  = - I ( t ) )  

(11) 

the equations describing the laser heating of a plasma are then reduced to 

d Z A 1 Z 7 / 4 U ( t )  A 2 Z 5 / 4 ( Z 1  - Z 2 )  _ A3Z3/4Z1/2  ' 
d t  1 =  Z~/2  Z~/2  

d A 2 Z 5 / 4 ( Z  1 - Z2) 
z2 = z?/2 

(12) 

(13) 

where 

Z 3 = 1 - A 4 ( Z  1 + Z2), (14) 
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a n d  the  c o e f f i c i e n t s  A 1, A2,  A 3 a n d  A 4 a re  d e f i n e d  as :  

n o 8~rn 0 
A I - ~ a n o ,  A 2-= , A 3 -  ~ p n  o, A , - -  - - ,  ( 15 )  

the system of eqs. (12)-(14) represent our mathematical model of the laser-plasma interaction. The 
variables Z x and Z 2 are referred to as state variables and U(t) as the control variable. 

In order to illustrate the application of optimal control, in this work we will consider the heating of a 
neutral plasma composed by ordinary hydrogen ions by a CO/ laser beam of maximum intensity 
I o = 2.25 × 10 30 eV/cm 2 s, where the density n o is 2 × 1017/cm 3. Under these circumstances, the 
numerical values of the coefficients in (15) are 

A 1 = 2.667 × 10 -17 eV 3/2 c m  2, A 2 = 6.349 × 10 9 e V 3 / 2 / s ,  A 3 = 1.404 × 10 4 e V / s .  (16) 

The value of the coefficient A 4 (in units eV - t )  will depend on the magnitude of the external magnetic 
field used. 

Since our problem is concerned with the heating of the plasma ions from an initial state, which is 
assumed to be known, to a final state which corresponds to the desired final ion temperature, it is of 
interest to know the analytical form of what is called the "Target Curve", i.e. the set of states in the phase 
plane Zz - Z 2 that have the same final ions temperature. By using the definition of state variables in eq. 
(11), the set of states corresponding to a fixed final ion temperature, Tit, is obtained from 

z3x/2z2 = ~ .  (17) 

7 0 0 0  

6000 

> 

5000 
C"q 
I",,J 

d 
40OO 

0 

0 
> 30o0 

O 
( f )  2 o o 0  

C 
0 

Iooo 

I I I I I 1 

T, = 6 0 0 0  ev 

• T, = 5 0 0 0  ev  

" i~  o I I I I I 

0 5000 I00OO 15000 20000 25000 30000 

Electron Sfote VGrioble, Z1 (ev) 
Fig. 1. Target curves for several f inal ion temperatures when the external magnetic f ield is 500 kG. 

3 5 0 0 0  



J. Vitela E., A.Z. Akcasu / Optimal laser heating of plasmas 1 6 9  

6 0 0 O  
I I I I I I I I I I I I 

Ion Tempero~ure = 5000 ev 

~oo ~--~-~--,~---6- .-__ -_ _- -_ _- -__ _- __- _- _. ._ -_ 

m B = 300KG 

> 
® 4ooo - ~  ~ e B = 500K G 

v 

C~ x( B = 700KG 
1"4 

(1) 3000  . S. 

-,0-- 
t o  

t -  2O0O 
o 

o I 
0 I0000  2OOOO 5OOOO 40O0O 50(X)O 60OO0 70000  

Electron Slate, Z l (ev) 
Fig. 2. Target curves corresponding to a final ion temperature of 5 keV, for several values of the external magnetic field. 

Substituting the expression of  Z 3 from eq. (14) in the above equation, one obtains:  

z + ~, (18) z, = ~ + A,rg 

this is the equation of the target curve in thc phase plane. It represents a parabola whose shapc depends on 
the magnitude of the external magnetic ficld, as well as on the final ion temperature. In the special case of 
constant density, Z 3 -- 1, i.e. A 4 = 0, the target curve degenerates into a straight line parallel to the Z1-axis. 

In fig. I arc shown target curves corresponding to different final ion temperature for a fixed value of the 
external magnetic ficld; and fig. 2 shows the behavior of the targct curves for a fixcd final ion temperature 
for several values of the external magnetic field. 

3. Optimal control formulation 

3.1. Hamilton's equations 

The opt imal  control  problem can be formulated as follows [2]: 
F rom all the control  values that satisfy Um~ _< U(t)<_ Um~, where 

control  strategy U°P(t) which minimize: 

J = f T [ c ,  + c2u(t)] dt, cl > o, c ,  >~ o, 
Jo 

Umi . - - 0  and /./max = I0, find the 

(19) 
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where C 1 
specified initial state 

Z~ (0) = Zxo, Z 2 (0) = Z2o, 

to a final state with specified ion temperature T~f, represented by the terminal condition 

M(Z1,  Z 2 ) I T = 0 ,  

where 

and C 2 are weighting parameters, and brings the system, through the eqs. (12)-(14), from a 

(20) 

(21) 

M ( Z 1  ' Z2 ) m Tit _ Zfa /2Z2 .  (22) 

The heating time T is not specified. 
The necessary conditions for optimality require the use of the Hamiltonian H: 

. h 2 Z  5/4(Z1 -- Z 2) [ A1Z7/4U Z~/4( Z1 - Z2)  - A s Z ] / 4 Z I / 2  + h 2 (23) 

where Z1, Z 2 are the state variables and X 1, X2 are the adjoint variables. The optimal solution should 
satisfy the Hamilton equations [2]: 

d A x Z 7 / 4 U ( t )  
77 Z~ = Z~/2 A 2 

d Z53/4 ( Z 1 - Z 2) 

77 Z 2 = A 2 Z3/2 , 

z /'(zx - z 2 )  

z~/2 

d 
~ 1  = 

- A3Z~/4Z~/2,  (24) 

~1 [6AIZ]U  + 7 A , A 4 Z s Z ,  U - 2 A 2 Z ] / 2 Z ,  + 6A2ZSs/2Z2 + 2 A s Z s Z  2 4Z] /4ZS/2  

- 5A2A4Z1/2( Z 1 - Z 2 ) Z  1 - 3A3A4Z31] 

X2Z]/4 [2A2Z3(  Z 1 - 3Z2) + 5A2A4(  Z 1 - Z2)Z1] 
+ 4Z~/------" S 

d XlZ1/n[7A1A4Z]/2U_4A2Z 3 5A2A4(Z1 Z2) ]  + 
- ~  h 2 - -  4Z?/-------- S - - 

~k2A2 ZI/4 

4Z31/2 

(25) 

(26) 

[4Z 3 + 5 A 4 ( Z  1 - Z2)]; 

(27) 

the optimal control is given by 

m R x  

u ° p ( t )  = o 

A I ~ x Z  7/4 
if C2+ <0 

z~/2 

AlklZ~/4 
if C2+ > 0 ,  

Z 31/2 

A l h x Z  7/4 
if C2+ = 0  Z3/2 

(28) 
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where Us is called the singular control [9,10]. The transversality and final conditions [2] lead to: 

H ( Z ,  X) l r=  0, (29a) 

X(r)=~(aM/* 
3Z ] IT' (29b) 

M(Z1, Z 2) I r = 0, (29c) 

where ~ is a constant Lagrange multiplier to be determined. 
Since the Hamiltonian H, is not explicit function of time, we also have: 

H ( Z ,  ~ , ) = 0  for O<_t<_T. (30) 

In order to isolate those candidates that satisfy the above conditions, it is necessary to analyze the 
existence and optimality of singular arcs [10]. 

3.2. Singular subarcs candidates 

Following Gabasov and Kirillova [9], we divide the Hamiltonian in two parts: 

t/=/~o(Z, x) + I4~(z, x)v,  

where, 

X 1Z~/4 Ho=C~ + [A~ZV~Z~-Z,)-A~z?] + 
Z~/2 

and 

(31) 

~I, = G + A,x,z;/'/z~/~. 

A2~2~'~/4 ( Z 1 7 5  - Z2) , (32) 
Z 31/2 

(33) 

The singular subarc exists if the switching function H 1 is equal to zero during an interval of time of 
positive length. If the phase space trajectory defined by eqs. (24)-(27) satisfies this condition, it is then 
required that higher order total time derivatives of H t, should also vanish. It can be shown that the total 
time derivatives of/-/1 can be written as: 

dm 
dt , ,H1 = a m ( Z ,  h ) + t i m ( Z ,  X)U, m = 0 ,  1 . . . . .  2q, (34) 

this process of derivation continues until for some integer number "q" ,  the coefficient fl2q is not 
identically zero. Then the singular control problem is said to be of order " q "  [10]. 

In this problem, q = 1 and the coefficients a,~ and tim are given by: 

a o = C 2 + A l X t Z 7 / ' / Z ? / 2 ,  (35a) 

flo - 0, (35b) 

A l z U  { xl[4A2zUzl + 8A3z3z?- 5A2a,zV2(zl- z ~ ) z l -  10A3A,Z?] 
cq = 4 Z----(x 

+ ?~212A2Z] /2(Z , -  3Z2) + 5A2A,ZX3/2(Z 1 - Z2)Zx] }, (35c) 
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(35d) 

4o¢ 1 z~/2 (-A2Z~/'Zl + A2z~/4z~- A3zy'z? ) 

A 1 Z~/4 
+ h 116Z~1/---------- ~ ( -32A]Z33Z1 + 64A]Z~Z 2 - 88A2A3Z~/2Z? + 20A]AaZ]( Z 1 - Z2) 2 

+ l12A2A3Z53/2Z1Z2- 48A]Z]Z31 + 166A2A3A4Z3/2Z3 - 150A2A3A4Z3/2Z2Z ? 

+ 156A~A,Z~Z~ + 25&A~A~,Z~/2(Zl- Z2)Z?- 30a~a~4z? ) 

A 1 Z ] / 4  
+X2 8Zp/------ ~ { -8,4~Z~"~(Z~ - Z2 )  - 10A~,qz~/E(zx - Z2) ~ + 2,~,~3A4ZsZ ? 

-- 16A2A3A4Z3Z2Z21 + 4 A 2 A 3 Z ~ Z  ~ - 5A2A3A24(Z1 - Z 2 ) Z  3 - 2 4 A 2 A 3 Z 2 Z 2 Z 1  }, (35e) 

4~,A~z]" "qz9/4 ( Xl[20A2z~'- 38A~A,Z~2Z~ + 4A2 ,4 ,Z~ 'Z2  + 56A3Z~Z, 
B~ = z~ /2  + 8zp/---5 

- 102A~A,Z~Z? - 5A~A~,Zt + 20A~A~,Z]/~( Z ~ -  z ~ ) z d  

+X214A2Z53/2 + 8A2A4Z33/2Z1 + 26A2A,Z33/2Z2 - 20A2A24Z]/2( Z I -  Z2)Z1] ). (35f) 

Since/35 does not vanish identically we have a singular arc of order 1. 
The singular subarc is specified by: 

0 = C 2 -4- A1)klZT/4/Z31/2 , (36) 

0 = x , [4A~z? /~z l  + aA~z3z? - 5A~A,z~/2(z~ - z = ) z l  - loA~,4,zt] 
+X 2 [2A2ZSs/2(Z,- 3Z2) + 5A2A4Z]/2(Z1- Z2)Z,].  (37) 

In order to obtain the singular control as a function of Z~ and Z 2 we solve first the above equations for 
X 1 and X 2, to obtain: 

x ,  = - G z ? / V z l z ] / ' ,  

= [ C2Z5/2 I 4A2Z~/2 + 8A3Z'Z3 - 5A2A4Zl/2( z l  -- Z2) -- IOA3A4Z? 

~k2 I axh2Z9-~/4 ] 2 Z 3 ( Z '  - 3Z2) -4- 5 Z , Z a ( Z  1 - Z2) 

(38) 

(39) 

Substituting these expressions in the equations for a 2 and /32 and requiring the second order time 
derivative of H 1 to vanish, we obtain for the singular control: 

N(Zx' Z2) (40) 
Us- z)(z~, z~) '  

where N(Zp Z2) and D(Zp Z2) are given by: 

N ( Z  1, Z2) = 24A]Z~(Z 1 - Z2)Z 2 + A2A3Z7/2(67Z2Z1 - 5Z~ - 4 2 Z] )  Z 1 

+A~ZS(42Z2 - IOZa)Z1 s -  15A~A,ZS[Z 3 -  Z2Z ? - Z]Z1 + Z3]/2 

+ A2AsA4Z~/2[-  21Z? - 232Z2Z , + 185Z 2 ] Z2/4 " + A2A3A]Z 3/2 

X [185Zx 5 - 400Z 2 Z 4 + 215Z]Z13 ] / 4  + A2A4 Z2 [15Z, - l15Z 2 ] Z ~ / 2  

+A32A~Z3 [105Z 1 - 125Z 2 ] Z5/2 + 75A2AsA3Z1/2[Z1 - Z 2 ]2Z4/16 

- 125AEA 3 (Z1 - Z2) Z~/8, (41) 
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D(  Z 1 , Z2) = A1Z3{ A2Z7/2(15Z2 - 3Z1) + ABZB3(42Z2 - 10Z1)Z 1 

+A2A4ZS3/2(6Z 2 -  3Z,  Z 2 - 3 Z 2 ) / 2  

-A3A4Z2(13Zx + 31Z2)Z2/2 + 15A2A24Z3/2( Z1 - Z2)2Z1/4 

+ A 3 A ~ Z s (35 Z 1 - 80 Z 2 ) Z~ s + 225A 3 A s 4 ( Z a - Z 2 ) Z ~ / 8  },  (42) 

where we should keep in mind that Z s = 1 -A4(Z 1 + Z2). 
The above expression for the singular control i s independent  of C 1 and C 2, and it reduces to the 

corresponding equation for the singular control in the particular case of constant plasma density, i.e. when 
A 4 = 0 .  

3. 3. Optimality of  singular subarcs 

Singular arcs are optimal candidates if they satisfy the Generalized Legendre-Clebsh condition (GLC) 
[11]. In the case of singular control problems of order 1, this condition is 

a d2H1 <0 ) 
i.e., 3U d/2 (43) 

B (z, x) _< o. 

In order to determine if the singular arc satisfies this condition, we will use the fact that the 
Hamiltonian is a constant of motion along those trajectories that satisfy the necessary conditions for 
optimality. Thus, using eqs. (23), (30) and (38), we obtain an alternative expression for X2 along singular 
arcs, which is 

[ AsZ2 AIC1Z1/2 ] 
x2 = xl 1 + A2z /2( z l  _ z2)  + (44) 

Substituting the above expression together with (37) and (38) in the equation for f12 in (350, the GLC 
condition becomes 

C2[ A2ZSs/2(3Zs - ~-A4( Z 1 - Z2)  ) + A s Z I ( 7 Z  ] - ~ A 4 Z s Z  1 - ~ A 2 Z  2 )] 

~A1A4Z3Z1C 1 + 2--~l-~-Z---~ ( Z s + 2 A 4 Z I + ~ A 4 Z 2 )  5 2 > 0 .  (45) 

In the region of the phase plane where the ion heating takes place ( Z  1 > Z:),  the GLC condition will be 
satisfied if the parameter A 4 is small, or if the electron and ion states values are not very large. In our 
subsequent discussions we will assume that the magnetic field is strong enough, i.e. A 4 is small, such that 
the GLC condition is always satisfied. 

3. 4. Equation of  the singular arcs 

The algebraic equation specifying the singular subarcs is obtained by equating the expressions for ?~2 
given in (39) and (44). We obtain: 

0 = 6A2C2ZS/2Z21 - 12A2C2ZSs/2Z2Z1 + 6A2C2Z]/2Z22 + IOAsC2ZsZ 3 - 14AsC2ZsZ2 Z2 

+ 2AaC 1Z]Z1 - 6A1C1Z]Z2 + 5A1A4C1Z 3 Z 1 ( Z  x - Z 2 ) - 5A s A4C 2 ( Z 1 - Z 2 ) Z31, (46) 

where Z s =  1 - A 4 ( Z  1 +Z2) .  The above expression for the singular subarc depends on the relative 



"174 J. Vitela E., A.Z. Akcasu / Optimal laser heating of plasmas 

magnitude of C1//C 2 and on the magnitude of the magnetic field, through the parameter A 4. Note that this 
expression reduces to that corresponding to the constant density case [12,13] when A 4 = 0 (i.e. Z 3 = 1). 

From the general equation for the singular arc in (46) the corresponding equations for the limiting cases 
of minimum time subarcs (C 1 = 0, C 2 4= 0) can be easily obtained as: 

0 = 2Z3(Z  1 - 3Z2) + 5 A 4 Z x ( Z  1 - Z2) (minimum time), 

0 = 6 A 2 Z ~ / 2 ( Z ,  - Z2)2+ I O A s Z s Z  • - 14AaZaZ2  Z2  - 5 A 3 A 4 ( Z  1 - -  Z2)Z31 

(47) 

(minimum energy). 

(48) 
The eq. (47) corresponding to singular arcs for the case of minimum time trajectories has the physical 

meaning that, when the laser intensity profile is shaped according to eq. (40) to keep the electron and ion 
temperatures satisfying (47), the energy transfer rate between electrons and ions represented by the term 
A2 Z5/4 ( Z  1 - 2 2 ) / / 2 ? / 2  , is maximized. 

Due to the constraint in the maximum laser intensity available (recall Umi n _~< U(t) <_~ Umax, with Umi, = 0 
and Um~ , = I0), two different possibilities exist: 
(a) It may happen that the singular control along the singular arc, reaches the upper limit; thus singular 

subarcs will contain an upper bound that depends on the maximum laser intensity, as well as on the 
ratio C1//C 2, that will be called "Laser  Saturation State". 

(b) On the other hand, it may be possible that the singular control increases along the singular arc until a 
local maximum is reached and then it starts to decrease. This behavior is expected when the density of 
the plasma decreases to a point in which optimal absorption of the laser energy is obtained decreasing 
its intensity. 
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Fig. 3. Behavior of  singular subarcs for several ratios of the weighting parameters,  when the external magnetic field is 500 kG. 
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Fig. 4. Behavior of singular arcs corresponding to minimun time trajectories for several values of the external magnetic field. 

Fig. 3 shows the behavior of singular arcs for several values of  the ratio C 1 / C 2 ,  corresponding to an 
external magnetic field of 500 kiloGauss. The behavior of  Minimum Time and Minimum Energy singular 
arcs for several values of  the external magnetic field are shown  in figs. 4 and 5. And in fig. 6 the singular 
arcs corresponding to C 1 / C  2 = I o are plotted for several values of  the external magnetic field. Figs. 4 and 6 
show the appearance of local maximums in the laser intensity when the external magnetic field decreases. 

It has to be pointed out, that, Minimum Energy singular arcs (C 1 = 0), degenerate into the Z 1 - - Z  2 
straight line if no radiation losses are included (A 3 = 0). This is expected since this trajectory maximize the 
laser-electrons coupling; we will return to this point later. 

3.5. Termina l  and  control  swi tching  condit ions 

Analyzing the transversality and final conditions (29) it is possible to separate the final state and 
switching points conditions for three different cases [12]: 

3.5.1. M i n i m u m  t ime  trajectories C 1 = 1, C 2 = 0 
At the final time T, the state and adjoint variables should satisfy the following conditions, 

Z I ( T )  > Tif[1 ---1- A2'T'211/2"'4"if J - - A 4 T i  2, i . e .  ZI(T ) > Z 2 ( T  ) .  ( 4 9 )  

- A ,  Z a l / 2 Z ;  3/'Tie (51) 

x l ( r )  = 2A2Z3(  Za - Z2) - A 3 A , Z ? r i ,  + A A,Um xTi,Z3 ' 
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and 

h z ( r  ) = -Z3]/2Z;3/412Z]/2 + A,Ti¢] 
2 A 2 Z 3 (  Z 1 - Z 2 )  - . 43A4Z?r i f  + alA4UmaxZifZ 3 " 

The optimal control at the final states is always 

U°p= Um. x. 
If an optimal control switching exists, say at time t s, the following conditions should hold: 

h i ( / s )  = 0 ,  

x 2 ( t s )  = - z?/---~ , 
A 2 Z5/4  ( Z l  -- Z2 ) 

Together with a control switching of the form: 

Um~,~ Umi . if S < 0 ,  

Umin -'~' Uma x i f S > O ,  

Um~,'-' Us} 
or if S -- 0, 

(52)  

(53)  

(54) 

(55) 

(56)  
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where S, the singular function is given by: 

S = 2 Z 3 ( Z  1 - 3Z2) + 5 A 4 Z I ( Z  1 -- Z2), 

where as always, Z 3 = 1 -- A4(Z 1 + Z2). 

(57) 

and 

X2(T ) _- -Z~/2Z33/4Umax[2Z]/2+A4Tir] ," (61) 
2A2Z3(Z1 - Z2) - A3AaZ2Tif + AiA4UmaxTirZ3 

3.5.2. Minimum energy trajectories, C 1 = O, C 2 = 1 
At the final states minimum energy trajectories should satisfy the following terminal conditions: 

+A,Tir  ] -A4Ti  2, i.e., Z l ( T  ) > Z2(T ), (58) Z I (T  ) > Tif[ 1 2 2 1 / 2  

Tif 
Z2(T ) = ~ -  {[ A~Ti~ + 4(1 - A 4 Z I ( T ) ) ]  ' / 2 -  A4Tif }. (59) 

For the adjoint variables three cases may occur: 
• (i) If the final state, Z l ( T  ) and Z2(T), satisfies, 2 A 2 Z 3 ( Z  1 - Z2) < A3A4Z2Tif, then: 

h 1 ( T )  = -A4Z31/2Z;  3/4 Um~' Ti' (60) 

2A2Z3 ( Zx - Z2) - A3A,Z?ri ,  + A I A , U m J i ,  Z~ 
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and the optimal control in this region is: 

U°P(T) ~-- Uma x (62) 

and this control remains optimal along the whole state space trajectory. 
• (ii) If the final state Z I ( T  ) and Z 2 ( T  ), satisfies, 2 A z Z 3 ( Z  1 - Z2) > A3AaZ21Tif then the final values of 
the adjoint variables in this region are: 

XI(T ) = 0 ,  (63) 

Xz(T ) = 0 ,  (64) 

and the optimal control in this region is: 

U°P(T) --- 0, (65) 

and this control remains optimal along the whole state space trajectory. 
• (iii) If the final state Z I ( T )  and Z2(T ), satisfies, 2 A 2 Z 3 ( Z  1 - Z2) = A3AaZ~Tif  then the final values of 
the adjoint variables, XI(T ) and X2(T), can hold any value. Switching points in these cases, may 
correspond to any state on the Um~ n - trajectory that crosses the point on the target curves that satisfy the 
above condition, and lies above the singular arc defined by S = 0, S being the singular function. 

At the switching time t s, the adjoint variables X 1, and X2, should hold the following values: 

X1 (ls) AzSl-------~-21Z] 14 ,, ' (66) 

XZ(/s) = Z~/2 [ A3Z? , .  (67) 
A1Z]/-~4 1 + A 2 Z ] / 2 ( Z  1 _ Z2) 

The values of the adjoint variables at the final time T are chosen such that the conditions (66) and (67) 
are satisfied. The optimal control switching in this case should be of the form: 

Um~x--'Umi n if S < 0 .  

Umin---,Um~x if S > 0 .  

(68) Um x--, 
or if S = 0. 
Umin '--' U~ 

In this case the singular function is given by: 

S = 6A2ZSs/2(Z1 - Z2)  ~ + IOAsZsZSl - laAsZsZ2Z2x - 5 A s A 4 ( Z  1 - Z 2 ) Z  3. (69) 

3.5.3. General cases, C 1 > O, C 2 > 0 
At the final time T, the state and adjoint variables should satisfy the following conditions: 

Z I ( T  ) > Tit[1 +A24Ti~] 1 / 2 - a 4 T i ~ ,  i.e. Z , ( T )  > Z : ( T ) ,  (70) 

rif 
Z 2 ( T  ) = -~- {[A~Ti~ + 4(1 - A 4 Z ~ ( T ) ) ]  1 / 2 -  A4Tif }. (71) 

For the final values of the adjoint variables, we have two cases: 
• (i) If the final state satisfies the inequality: 

A, zsx/2cx z ;  s/'~t G z?/~ 
> - -  ( 7 2 )  

2A2Z3(  Z 1 - Z2) -A3A4Z?Tif - A1ZT/4 , 
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then: 

x , ( r ) =  
- A , Z ? : (  C, + Gv.,~.)z;3/4T, f 

2A2Z3 ( Z1 - Z 2 ) - A 3 A 4 Z 2 T i f  + A1A,,Um~,TitZ 3 ' 
(73) 

and 

X2(T ) = - Z 3 / 2 (  C, + C2Umax)Z33/412Z] /2  + AaTit] 

2A2 ZB ( Z1 -- Z 2 ) -- A 3 A4Z?Tif  "{- AIA4Um~,TifZ3 
(74) 

and the final optimal control along this section of the target curve is: 

U°P(T)  = Uma x. (75) 

• (ii) When the final state satisfies the inequality: 

,4, z 3 : G  z f  3/4 ri, G z 3 :  

2 A z Z 3 (  Z , - Z2) - A s A 4 Z 2 T ,  f - A t Z 7 / ,  , 
(76) 

then: 

x ~ ( r )  = 
-- A 4 Z?/2C1 Z 3  3/4 Ti f 

2A;Z3 ( z ,  - z2) - A3A, Z?r,, ' 
(77) 

and 

x ~ ( r )  = 
- z? /~qz ;3 / ' [2 z~ /2  + A,rif] 
2 A 2 Z 3  (Z l  - Z 2 ) - A 3 A 4 Z 2 T i t  ' 

(78) 

and the final optimal control along this section of the target curve is: 

U°P ( T )  m-O. 

At the switching time t s, if any, the following conditions on the adjoint variables should hold: 

C2Z3/2 ,, 

~ l ( t s )  = - A~ZF---- ~ , 

c2z?/2 [ A3z? a , c , z ] /2  
A2(ts) A 1 z T / 4  [1 + A 2 Z 1 / 2 ( Z  1 _ Z2) + A2C2(Z  1 _ Z2 ) 

ts" 

(79) 

(80) 

(81) 

The optimal control switching in this case should be of the form: 

Um~ x ---' Umi . if S < 0. 

U ~ .  ---" Um~ , if S > 0 .  

Um~'~Us~ 

Umin ¢'-~ Us / if S = O .  

(82) 
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The singular function S, is given by: 

S ( Z 1 ,  Z2,  C1, (?2) = 6A2C2Z3/2Z 2 - 12A2C2Z~/2Z2Z1 + 6A2C2Z3/2Z 2 -I- lOA3C2Z3Z31 

- 1 4 A 3 c 2 z 3 z 2 z ?  + 2 A l c l z ~ z l  - 6A lc l z~z2  + 5 ,4 .4 ,c ,  z3z~(  z~ - z2)  

- SA3A,C:( Zl - Z : )Z? .  

In the next section this set of conditions are implemented in order to obtain the switching curves. 

(83) 

3.6. Switching curves 

In this section the necessary conditions that any optimal trajectory should satisfy at the final skate are 
used to generate optimal backward trajectories that start on the target curve, in order to find the switching 
curves, i.e. the set of points in the phase plane where optimal control switchings occur. The switching point 
for each optimal backward trajectory is located where the optimal switching conditions summarized in the 
last section are satisfied. 

Each backward trajectory was obtained by numerical integration of eqs. (24) through (27), using a 
simple corrector-predictor method. 
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The top graph in fig. 7 shows optimal trajectories for several initial states, final ion temperature of 5 
keY and external magnetic field of 500 kG, that minimize the functional (19) with a ratio C 1 / C  2 = 7Um~ ,. 
The set of points in the phase plane where the optimal control switchings occur, form the "switching 
curve". These curves are shown in fig. 7 (bottom). 

A fixed final ion temperature of 5 keV and an arbitrary strong magnetic field of 500 kG were chosen to 
illustrate the behavior of the switching curves when the weighting parameters C x and C 2 vary between the 
limiting cases of Minimum Energy Trajectories, (C 1 = 0, C 2 = 1), and Minimum Time Trajectories (C 1 = 
1, C 2 = 0). This behavior is shown in fig. 8. 

The objective of the switching curves is to separate the phase plane in regions in which a well defined 
optimal control is associated with each point of the phase plane. 

In fig. 8 we can observe the transition between a switching curve corresponding to Um~ ~ Umi n 
transitions (which is located at the left hand side of the singular arc, and is (referred to as the "upper  
switching curve") and a switching curve located at the right hand side of the singular arc, which 
corresponds to transitions of the type Umi n --, /./max, (referred to as "lower switching curve"). 

The optimal control associated with each state of the phase plane when only the upper switching curve 
or the lower switching curve exists, is shown in fig. 9. 

When the intersection point between the upper switching curve and the singular arc, lies above the laser 
saturation state, then a lower switching curve exists, which ends below the laser saturation state, 
unfortunately these curves are not observed in fig. 8, due to the set of weighting parameters used in the 
calculations. 

It is observed from figs. 8 and 9, that in the region Z~ < Z 2, the optimal control is always Um~,; this is 
reasonable since in this region there is no ion heating. On the other hand if the electron state variable is 
larger that the ions ta te  variable in some cases the optimal control strategy is just to leave the electron and 
the ion temperatures to relax, i.e with U °p = O. 

In the next section the implementation of the optimal control strategies described in this section, using 
the optimal switching curves obtained are illustrated. 

4. Optimal trajectories 

In this section typical optimal trajectories are obtained for several ratios C 1 / C  2 of the weighting 
parameters, following the optimal control strategy presented in the last section. 

An initial state corresponding to a temperature of 10 eV for both ions and electrons and a final ion 
temperature of 5 keV were used in all the following cases in order to compare the total energy spent and 
the heating time in the process, when different sets of weighting parameters are used. We should keep in 
mind, however, that once the switching curves have been determined, the optimal control for any state is 
available. 

The sets of weighting parameters that were used correspond to those utilized to obtain the switching 
curves in fig. 8. 

When the optimal control strategies discussed in the last section were implemented, the optimal 
trajectories in the phase plane shown in fig. 10 were obtained. Due to the initial state used, all the 
trajectories contain a singular subarc. 

As it was mentioned before in section 3.4, the Minimum Energy trajectories keep the electron state 
variable, as small as possible, increasing the coupling between the laser beam and the electrons and 
reducing the bremsstrahlung radiation. As we can deduce from eq. (48), if no bremsstrahlung radiation 
were included (A 3 = 0) the singular arc for the case of Minimum Energy Trajectories, reduces to the 
straight line Z 1 = Z2; the reason is that, since no energy losses exist, the heating time may grow 
indefinitely without affecting the penalty function; thus reducing the electron temperature increases the 
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efficiency in the absorption of the laser energy by the electrons, however the energy transfer rate between 
electrons and ions in the plasma becomes infinitesimally small. 

Minimum Time Trajectories, on the other hand, keep the electron temperature and the ion temperature 
along the singular subarc satisfying the relation (47); this maximizes the energy transfer rate between ions 
and electrons; in the same way as in the constant density case [12], the exit point from the singular arc 
appears below the laser saturation state. 

The other trajectories constitute a compromise between the energy spent and the heating time, with 
different weighting coefficients. 

The optimal laser intensity profiles that drove the plasma from the initial state to the final state along 
the optimal trajectories in fig. 10 are plotted as a function of time in figs. 11 through 13. 

Table 1, shows the control switching times, the heating time and the total energy spent in the heating 
process for the different ratios C1/C 2 used in the calculations. 

Fig. 14 shows the behavior of the logarithm of the heating time in microseconds and the fraction of the 
energy spent in the heating process compared with that used when a constant laser pulse is utilized, both 
plotted against the ratio Cx/ (C 2 x I0). A possible use of these figures can be illustrated as follows: 
Suppose the initial state of the plasma is 10 eV, for both ions and electrons, and the maximum energy 
available and maximum laser intensity 10 have been determined for the laser system being used, the 
maximum value of the ratio C1/C 2 can then be determined from fig. 14 (top); given this value of C1/C 2, 
the minimum heating time available, with the given the total energy constraint, can be determined, fig. 14 
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(bottom). If smaller values of C]/C 2 are chosen, then, the heating time will be larger, however, the energy 
necessary in the heating process will be smaller. 

Comparing our results with those obtained by Vagners et al. [1] for a maximum total energy of 
14.37 x 1 0  25 e V / c m  2, they got a heating time of 128.3 its, as compared with that of - 113 its, deduced 
from table 1. Also, the optimal shape of the laser pulse is different, the reason lies in part, in the inclusion 
of bremsstrahlung losses in the electron energy conservation equations; so that, energy transfer rate from 
electrons to ions have to be accelerated in order to minimize these losses; and on the other hand, they used 
~n dTJdt instead of ~d/dt (nTe) in eq. (1). 

T a b l e  1 

H e a t i n g  d a t a  c o r r e s p o n d i n g  to o p t i m a l  t ra jec tor ies  in fig. 10 

C l Switch.  t ime Switch.  t ime Switch.  t ime  Switch.  t ime H e a t i n g  Hea t .  e n e r g y  

C2 io Umax ~ U s U s ~ Uma x US ~ Umi n Urea x --0 Umi . time ( × 10 2s eV/cm 2) 

0 0.02 ps  - 698.03/~s  - 780.53 

1 / 5  28.3 ps  - 105.85 F s  - 155.25 

1 / 2  29.3 ps  - 90.78 Fs  - 131.75 

1 30.6 ps  - 85.91/~s - 120.78 

2 29.6 ps  - 86 .70/~s  - 113.10 

5 31.1 ps  37,89 # s  - - 104.30 

7 31.1 ps  24,43/Ls - - 103.88 

inf in i te  31,2 ps  10.34/~s  - - 103.35 

Cons t .  pu lse  . . . .  105.79 

~s 5 .686 

ss 8 .204 

~s 9.883 

~s 11.67 

• s 14.14 

~s 20.43 

~s 20.97 

~s 21 .94  

~s 23.80 
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5. Conclusions 

We have considered the laser-heating of plasmas confined in strong solenoidal magnetic fields. Optimal 
laser heating strategies where obtained using optimal control theory; the optimization calculations where 
carried out to the end by developing a "Flooding" technique. 

We have shown, within the limitations of the plasma model used here, that considerable savings can be 
achieved in the laser energy requirement by resorting to laser intensity optimization. For example, by 
appropriately shaping the laser pulse, the energy required in the heating process may be reduced to around 
25% of the energy necessary when a square pulse is used; however in this case the heating times may grow 
as high as 700% yielding relatively large heating times. Similarly to the constant density case [12,13], 
minimum time trajectories may not yield a significant reduction in heating time as compared with the use 
of a square pulse. 

Extensions to more ambitious plasma models are certainly desirable, we hope this work will stimulate 
further applications of the optimization theory in this direction. 

Acknowledgments 

One of the authors (J.V.E.) wishes to express his gratitude to the members of the Nuclear Engineering 
Depar tment  at the University of Michigan for their hospitality and assistance during the course of this 
research. He also wishes to gratefully acknowledge the financial support provided by Consejo Nacional de 
Ciencia y Tecnologla (CONACyT),  the National Science Foundation and the Michigan Memorial Phoenix 
Project, 

References 

[I] J. Vagners, R.D. Neal and G.C. Vlases, Phys. Fluids 18 (1975) 1374. 
[2] A.E. Bryson Jr. and Y,C. Ho, Applied Optimal Control (Hemisphere Publ. Co., New York, 1975). 
[3] L.C. Steinhauer and H.C. Ahlstrorn, Phys. Fluids 18 (1975) 541. 
[4] S.Y. Yuen, B. Lax and D.R. Cohn, Phys. Fluids 5 (1975) 829. 
[5] J. Dawson and C. Oberman, Phys. Fluids 5 (1962) 517. 
[6] E.H. Holt and R.E. Haskell, Foundations of Plasma Dynamics (MacMillan Co., New York, 1965). 
[7] S. Glasstone and R.H. Lovberg, Controlled Thermonuclear Reactions (Krierger Publ. Co., New York, 1975). 
[8] S. Chandrasekhar, Plasma Physics (Univ. of Chicago Press, 1962). 
[9] R. Gabasov and F.M. Kirillova, SIAM J. of Control 10 (1972) 127. 

[10] C.D. Johnson, Adv. in Control Systems, Vol. 2 (Academic Press, New York, 1965). 
[11] H.J. Kelley, R.E. Kopp and A.G. Moyer, Topics in Optimization, Vol. 2 (Academic Press, New York, 1966). 
[12] J, Vitela, Ph.D. Thesis, University of Michigan (1984). 
[13] J. Vitela E. and A.Z. Akcasu, J. Optimization, Theory and Applications, Vol. 52, No. 1 (1987). 


