
Comput. Math. Applic. Vol. 13, No. 5/6, pp. 555-566, 1987 0097-4943/87 $3.00+0.00
Printed in Great Britain. All rights reserved Copyright © 1987 Pergamon Journals Ltd

T E C H N I Q U E S F O R E F F I C I E N T L Y I M P L E M E N T I N G

T O T A L L Y S E L F - C H E C K I N G C H E C K E R S

I N M O S T E C H N O L O G Y ?

N. K. JHA t and J. A. ABRAHAM 2

~Department of EECS, University of Michigan, Ann Arbor, MI 48109, U.S.A.
2CSL, University of Illinois, Urbana, IL 61801, U.S.A.

Abstract--This paper presents some new techniques for reducing the transistor count of MOS imple-
mentations of totally self-checking (TSC) checkers. The techniques are (1) transfer of fanouts, (2) removal
of inverters and (3) use of multi-level realizations of functions. These techniques also increase the speed
of the circuit and may reduce the number of required tests. Their effectiveness has been demonstrated by
applying them to m-out-of-n and Berger code checkers. Impressive reductions of up to 90% in the
transistor count in some cases have been obtained for the MOS implementation of these checkers. This
directly translates into saving of chip area.

1. I N T R O D U C T I O N

MOS technology has found extensive use in the area o f very large scale integration (VLSI). In order
to pack as many circuits on a single chip as possible, it is essential to reduce the area requirement
o f each circuit. One way to do this is to implement them with as few transistors as possible. This
has spurred interest in finding efficient techniques for reducing the transistor count o f MOS circuits.
In this paper we will be concerned with a special class o f circuits, called totally self-checking (TSC)
circuits.

TSC circuits are used to detect errors concurrent ly with normal operation. These circuits operate
on encoded inputs to produce encoded outputs. TSC checkers are used to moni tor the outputs to
indicate error when a non-code word is detected. The concept o f TSC circuits was first proposed
in [4], and then generalised in [3], as follows:

Definition I. A circuit is fault-secure for a set o f faults F, if for every fault in F, the circuit never
produces an incorrect code output for code inputs.

Definition 2. A circuit is self-testing for a set o f faults F, if for every fault in F, the circuit produces
a non-code output for at least one code input.

Definition 3. A circuit is totally self-checking if it is fault-secure and self-testing.
Definition 4. A circuit is code-disjoint if it maps non-code inputs to non-code ouputs.
Definition 5. A circuit is a totally self-checking checker if it is self-testing and code-disjoint.

The correct operat ion o f TSC circuits rests on following two assumptions:

(1) Faults occur one at a time.
(2) Sufficient time elapses between any two faults so that all the required code inputs can be

applied to the circuit.

With these assumptions, the first erroneous output due to a fault in the TSC circuit must be a
non-code word. This is referred to as the TSC goal.

Most existing realizations o f TSC circuits are at the logic gate level, and assume a stuck-at fault
model. It has been pointed out in [5] that an MOS implementat ion cannot be TSC with respect
to unidirectional stuck-at faults (multiple lines stuck-at-1 or stuck-at-0, but not both). This is owing
to a theorem in [16], which says that a circuit is TSC with respect to unidirectional stuck-at faults
only if its realization is inverter-free. This is not possible in any MOS technology since every MOS
gate is inverting. However , MOS implementat ions o f TSC circuits can be made TSC with respect
to single stuck-at faults. So for the purpose o f this paper the fault-set will consist o f all single

tThis research was supported by the Semiconductor Research Corporation under contract SRC RSCH 84-06-049.

555

556 N.K. JHA and J. A. ABRAHAM

stuck-at faults. Another paper [8] shows how the MOS implementations can be made TSC with
respect to realistic physical failures observed in the field, if certain layout rules are followed.

A direct implementation of existing TSC designs in MOS technology requires a high transistor
count and, therefore, a large silicon area. We will present some techniques in this paper to reduce
the transistor count, with the added advantages of speed-up of the circuit and possible reduction
in the number of tests required. Note that reducing transistor count reduces area even further
because of fewer interconnections. In [5] the technological cost (in case of nMOS technology) of
different coding and checking circuits has been evaluated. We will show that by using our
techniques one can obtain marked improvements over the results given in [5]. Although our
techniques can be used, wherever applicable, for any MOS circuit, we will show their usefulness
by applying them to TSC m-out-of-n [3, 6, 7, 10, 12-14] and Berger code [1, 11] checkers. Both these
codes detect unidirectional errors. It should be kept in mind that even single stuck-at faults can
produce unidirectional errors.

It is possible to realize a function which requires a multi-level logic gate realization by a single
complex MOS gate. The achievable integration under a single complex MOS gate is limited by the
following constraints.

(1) AND fan-in: maximum number of control transistors in any series path between the output
node and ground.

(2) OR fan-in: the number of all possible conduction paths between the output node and ground.
(3) Presence of inverting functions.
(4) Presence of fanouts.

For simplicity, we will not consider the constraints due to the AND fan-in and OR fan-in in
this paper. The techniques that we will present below can be shown to be easily extensible, if these
constraints are considered.

2. T E C H N I Q U E S FOR R E D U C I N G THE COST OF TSC C H E C K E R S

2.1. Transfer of fanouts
If a function is shared by more than one MOS gate (i.e. when there is fanout), it becomes

necessary to implement the function with a complex MOS gate. So fanouts do not allow us to take
full advantage of the integration capability of MOS technology. In Example 1 below we will show
how transfer of fanouts can help achieve greater integration. The techniques we develop in this
paper are first applied to existing gate-level designs of TSC checkers,,thereby obtaining modified
gate-level designs. These modified designs can then be implemented in MOS technology, resulting
in a considerable decrease in their technological cost. Hence, most of the examples we present here
will be of gate-level circuits, rather than their MOS implementations. We assume that an AND
(OR) gate in a gate-level realization is implemented as a series (parallel) connection of transistors
in a complex MOS gate. This complex MOS gate is followed by an inverter to get the non-inverting
function. This will be clear from Example 1.

Example I. The fanout in the circuit in Fig. l a has been transferred in the circuit in Fig. l b to
the primary inputs. In this gate-level circuit the transfer of fanout increases the gate-count. But
now let us look at the corresponding MOS implementations in Figs 2a and 2b. While the circuit
in Fig. 2a requires 6 pull-up transistors and 9 control transistors for its MOS realization, the circuit

x, ,

x,
xa

(o)

xl Y~
xz

x2 Y2

(b)
Fig. 1. (a) A gate-level circuit with fanout; (b) the circuit with fanout transferred to primary inputs.

MOS implementation of checkers 557

,qlt
I

(a)

I
"'--II t_]

I" IF.3 -

IF'

-I -IffJ _J ~ [, I x4 x2
_ , . , L _-z--

Fig. 2. (a) MOS implementation of the circuit in Fig. la; (b) MOS implementation of the circuit in Fig. lb.

in Fig. 2b requires only 4 pull-up transistors and 8 control transistors. Thus transfer of this fanout
helps reduce the transistor count of the circuit.

The transfer of fanouts can sometimes make the circuit redundant. Fortunately this is not true
in general, and impressive reductions in transistor count can be achieved by judicious transfer of
fanout. The transfer can also result in the loss of the self-testing property of a TSC circuit. So some
conditions need to be developed to ensure that the self-testing property is maintained even after
the transfer of fanouts. We will develop these conditions for m-out-of-n checkers. The same concept
can be employed for other circuits as well. But before we do SO, let us familiarize ourselves with
some definitions and notation.

An r-input network is said to have 2 r vertices of the r-cube as possible input combinations. A
particular vertex of the r-cube is written as

A = (a l , a 2 at) where ai~{0,1}, fo ra l l i.

A vertex with exactly k ones is called a k-vertex.
Definition 6. The partial ordering on the vertices is defined as

For example,

A ~<B if ag~<b~ for all i.

(1, 1,0, 0)~< (1, 1,0, l)

(1, 0, 0, l)~ ' (1 , l, 0, 0).

We will say that B covers A if A ~< B.

558 N, K. JHA and J. A. ABRAHAM

Definition 7. A universal test set is a set of tests which detects single stuck-at faults in any
irredundant A N D / O R logic gate-level realization of a given function [2].

The procedure for finding the universal test set is given in [2]. We will describe it in brief here.

Procedure 1

(i) Construct a truth table having one column for each literal that is present in the functional
expression o f / .

(2) Let Xj and Xz denote any two input vertices for which f is 1 and Yk and Ym denote any two
input vertices for which f is 0. I f

remove Xt and Ym from the table.
(3) Repeat Step 2 until no more covering Xs or covered Ys remain. The set of input vertices

left in the table is the universal test set for that function.
Theorem 1 below gives sufficient conditions for a set of m-out-of-n code words to be a universal

test set. It should be kept in mind that an m-out-of-n codeword is nothing but an m-vertex.

THEOREM 1

In a mapping of an m-out-of-n code onto a 1-out-of-2 code (realized by functions y~ and Y2)
for a checker, if (1) each (m + l)-vertex covers some m-vertex mapping to (1,0) and some m-vertex
mapping to (0, 1) and (2) each (m - 1)-vertex is covered by some m-vertex mapping to (1,0) and
some m-vertex mapping to (0, 1), then the set of m-out-of-n codewords is the universal test set for
both y~ and 3'2-

Proof From the monotone property of the circuit constructed with only A N D / O R gates, and
the code-disjoint property of the checker, all (m + 1) and higher vertices will map to (1, 1) and all
(m - 1) and lower vertices will map to (0, 0). Since Condition (1) ensures that every (m + l)-vertex
covers some m-vertex mapping to (l , 0), from Procedure 1, we see that the (m + 1)-vertices cannot
belong to the universal test set for the function y~; and since every (m + l)-vertex covers some
m-vertex mapping to (0, 1), the same is true for the function Y2. Similarly, from Condition (2), since
every (m - 1)-vertex is covered by some m-vertex mapping to (1,0), the (m - 1)-vertices cannot
belong to the universal test set for the function Y2; and since every (m - l)-vertex is also covered
by some m-vertex mapping to (0, 1) the same is true for the function y~.

We have proved above that, given Conditions (1) and (2), any (m + 1)-vertex or (m - 1)-vertex
cannot belong to the universal test set of either function y~ or Y2. Now we will consider the (m - 2)
and lower vertices. All such vertices map to (0, 0). Due to the transitivity of the covering relation,
for every (m - 2) or lower vertex Xi there exists an (m - l)-vertex ~ such that X,~ ~< ~ . But from
Condition (2), we have, ~ ~< Xk and Xj ~ Xt, where Xk is some m-vertex mapping to (1,0) and XI
is some m-vertex mapping to (0, 1). This implies that Xi ~< X k and X, ~ Xt. So, from Procedure 1,
any (m - 2) or lower vertex also cannot belong to the universal test set of either y~ or Y2. A similar
argument can be used to show that any (m + 2) or higher vertex cannot belong to the universal
test set of either y~ or Y2.

Since every m-vertex has the property that it does not cover any other m-vertex, only these
m-vertices remain after executing Procedure 1 to find the universal test set for both Yt and Y2.
Q.E.D.

An alternative proof of Theorem 1 can be obtained by observing that the m-vertices are either
minimal true-vertices or maximal false-vertices for y~ and y:, and hence, constitute the complete
test set [15].

Theorem 1 is applicable to Smith's m-out-of-2m checkers [16] since they are based precisely on
the two conditions given in this theorem.

We will now focus our attention on Reddy's m-out-of-2m checkers [14]. Reddy gave multi-level

MOS implementation of checkers 559

Table I. Classes of (m + I)-vertices and m-vertices
they cover

Table 2. Classes of (m - 1)-vertices and the m-
vertices that cover them

Possible classes Covered m-vertices Possible classes Covering m-vertices
of (m + 1)-vertices belong to of (m - l)-vertices belong to

(m, 1) (m, 0), (m - I, I) (m -- 1,0) (m, 0), (m -- I, 1)
(m -- 1,2) (m -- I, I), (m - - 2 , 2) (m - 2 , 1) (m - I, I), (m - - 2 , 2)
(m - - 2 , 3) (m - - 2 , 2) , (m - - 3 , 3) (m - - 3 , 2) (m - 2 , 2) , (m - 3 , 3)

(2, m -- I) (2, m - 2) , (1 ,m -- 1) (l , m - 2) (2, m --2) , (l , m - 1)
(1 ,m) (I , m - 1), (0, m) (0, m - 1) (I , m I). (0, m)

cellular realizations for the checker functions y~ and Y2 for an m-out-of-2m checker as follows:

y~= ~ T(m,>~i) .T(m~>lm-i) , iodd
i = 0

Y2 = ~ T(ma >1 i)" T(mb >1 m -- i), i even.
i = 0

Here the input bits are divided into two groups A and B, each consisting of m bits. The number
of ones occurring in the two groups is referred to as m~ and mb respectively. For code inputs
m a q - m b = m .

We will say that a k-vertex belongs to a class represented by a 2-tuple (k,, kb) if it has k,, ones
in group A and kb ones in group B. Obviously, k~ + kb = k.

Tm~OREM 2
The set of m-out-of-2m codewords is a universal test set for y~ and Y2 functions of Reddy's

checkers.
Proof If we prove that Conditions (1) and (2) of Theorem 1 are satisfied by Reddy's checkers,

then this theorem will follow.
We will first consider the (m + l)-vertices. In the first column of Table 1 we give all the different

classes of 2-tuples to whch any (m + 1)-vertex can possibly belong. The entries in the second
column give the classes to which the m-vertices covered by that class of (m + 1)-vertices belong.

It can easily be verified that the m-vertices belong to the two different 2-tuples appearing in the
second column of Table 1, for any given class of (m + 1)-vertices, map to the two different outputs
(0, 1) and (1, 0). Hence, Condition (1) of Theorem 1 is satisfied.

Similarly, Table 2 can be formed for (m - l)-vertices.
Following the same arguments as above, Condition (2) of Theorem 1 is seen to be satisfied.

Hence, Theorem 2 follows from Theorem 1. Q.E.D.
The important implication of Theorem 2 is that any fanout in Reddy's m-out-of-2m checkers

can be transferred to some intermediate levels in the circuit. This does not make the circuit
redundant, and allows us a lot of flexibility in the MOS implementation of these checkers. Since
the set of m-out-of-2m codewords forms a universal test set, we are assured that the circuit will
remain self-testing even after the fanout transfer. It can be easily seen that the code-disjoint
property is not affected by fanout transfer because the functions being implemented are still the
same.

Example 2. If we transfer all the fanouts in Reddy's 5-out-of-10 checker to the primary inputs,
its nMOS implementation requires 4 pull-up transistors and 116 control transistors. But another
nMOS implementation, which leaves four of the fanouts untransferred, requires only 12 pull-up
transistors and 80 control transistors. If we had implemented this checker without modification,
it would require 40 pull-up transistors and 88 control transistors. So the savings in the transistor
count is evident, as is the flexibility that this technique allows.

Another advantage of this technique is that it reduces the MOS gate levels (the number of
complex or primitive MOS gates connected in series) from primary inputs to circuit outputs, and,
hence, increases the speed of the circuit. On the other hand the disadvantage is that more tests are
required to make the circuit self-testing. For example, for Reddy's checkers the number of required
tests goes up from 2m to 2% if all fanouts are transferred to primary inputs. If all the fanouts are

560 N.K. JHA and J. A. ABRAHAM

not transferred then the number of tests lies between these two limits. The 2" tests, in case of full
fanout, transfer, are the same as those required for Anderson's m-out-of-2m checkers[3].
Anderson's m-out-of-2m checkers do not have fanouts, hence this technique is not applicable to
them.

Although this technique increases the number of required tests, when it is combined with the
other two techniques given ahead, in most cases there is a considerable reduction in the number
of tests. Now we go on to our second technique.

2.2. Removal of inverters

A function, which is shared by more than one MOS gate, is realised by a complex MOS gate
followed by an inverter. We will show that these inverters can be eliminated in most cases, thereby
reducing the transitor count and increasing the speed of the MOS implementation of the checker.
In [5] it is mentioned that such inverters can be eliminated if the function realized at a fanout node
can be replaced by its dual function without modifying the function realized by the circuit. We will
not restrict ourselves to such functions.

Let G(f) be an AND/OR realization of a function f and let Gdm(f) be the corresponding
realization of f after using De Morgan's theorem. For example, if G (f) realizes f = x~x2 + x3x4,
then G0m(f) realizes f = (.21 + -~2) (23 + -~4).

THEOREM 3
For any function f, G(f) and G~m(f) have the same single stuck-at fault test set.
Proof. Let the realization obtained by placing two inverters on every line of G(f) be Gi(f). The

stuck-at fault test set for Gi(f) is the same as that for G(f) , because the path sensitization of the
stuck-at faults by their corresponding tests remains unaffected. Furthermore, we can see that the
corresponding lines in the two gates in Figs 3a and 3b require the same test set for detecting the
presence of stuck-at faults.

The two gates in Figs 3a and 3b can therefore be interchangeably used in the circuit Gi(f)
without changing its test set. It can easily be seen that Gdm(f) can be obtained from Gi(f) by
these interchanges of the two gates. But since Gi(f) has the same test set as G(f) , Gdm(f) and
G(f) will also have the same test set. Q.E.D.

This theorem implies that by converting G (f) to Gam(f) we do not affect the self-testing property
of the circuit.

Example 3. Consider Marouf-Fr iedman's design of a 2-out-of-5 checker [10] given in Fig. 4. This
circuit can be converted to the circuit in Fig. 5 without affecting its TSC property with respect to
single stuck-at faults, with the resultant saving of ten inverters in the MOS implementation. It is
clear that the two inverters at the circuit outputs can also be done away with since the pair (y~, Yz)
would also form a I-out-of-2 code, if the pair (y~, Y2) forms a 1-out-of-2 code.

This technique also has the added advantage that it speeds up the MOS implementation by
reducing the MOS gate levels from circuit inputs to outputs. In Example 3, the number of MOS
gate levels in the MOS implementation of the circuit in Fig. 4 is six, while for the MOS
implementation of the circuit in Fig. 5 it is three. Hence, the speed is roughly doubled by using
this technique for this example. This technique is applicable to designs in [6, 7, 10, 13, 16].

Now we continue on to our third technique.

2.3. Increasing the logic gate levels of a circuit before its MOS implementation

It is possible to reduce the transistor count of an MOS implementation by modifying the
expression of the function it implements. This has been discussed in [8]. It was shown in that paper
that it is desirable to first reduce the number of literals in the expression of a function before
implementing it in an MOS technology. This basically corresponds to increasing the number of

X 2 X2 X2 X2

Xn X n X,~ X n

(a) (b)
Fig. 3. (a) A NAND gate and its equivalent; (b) A NOR gate and its equivalent.

MOS implementation of checkers

X 3
X4
X 5

X 2

X 5

X 5

ta

- -gz

561

Fig. 4. Marou~Friedman's 2-out-of-5 checker.

logic gate levels in the gate-level design of that function. In case of gate-level designs this would
have amounted to reducing the speed of the circuit. But, as was explained in [8], the speed of the
MOS implementation is not degraded by using this technique (if at all, the circuit becomes slightly
faster). This is because the number of MOS gate levels from circuit inputs to outputs remains
unchanged. Also, the diffusion area required on the chip for implementing the control transistors
is reduced because fewer control transistors are required if this technique is used. Since the speed
of the complex MOS gate primarily depends on the capacitive load generated at the output node
by the diffusion conduction paths, we actually have a speed enhancement for the MOS
implementations. Another advantage is that the number of tests required to test the circuit is
considerably reduced.

We will show the usefulness of this technique by applying it to MOS implementations of majority
functions. Majority functions (defined below) are extensively used in the design of m-out-of-n code
checkers.

Maximum level realizations of majority functions. We will first define a majority function. Let
A be the set of input bits, and let n, and ka represent the number of bits and the number of ones
in the set respectively. The majority function T(ka >t i), defined on set A, has a value 1 iff the
condition inside the parentheses is true. For example, if A = (al, a2, a3, a4), then a functional

_C---N_f2
~ - q _ _ _ , e - -

X 5

xs

71

7,

:C) ' -

,, :C3"-

I 1

3

4

Fig. 5. Marouf-Friedman's 2-out-of-5 checker after using our technique.

562 N.K. JHA and J. A. ABRAHAM

expression of the majority function T(k, >1 2) can be given as

T(k a >/2) = ala2 + ala3 + ata4 + a2a3 + a2a4 + a3a 4. (1)
This is a two level realization of T(k, >1 2). Usually the m-out-of-n code checker designs employ

majority function realizations with minimum number of levels due to speed considerations. But
as was mentioned above, this thinking is no longer valid for MOS circuits, and one should use
minimum literal or maximum level realizations to reduce the transistor count. An efficient method
of obtaining maximum level majority function realization is given in [9, 13]. Using this method an
alternate functional expression can be obtained for T(k, >~ 2) as follows:

T(k, >1 2) = a,a2 + (aL + a2) (a3 + a4) + a~a4. (2)

This equation gives the maximum level, minimum literal realization of T(k,,>~ 2). Since the
number of control transistors in the MOS implementation has one-to-one correspondence with the
number of literals in the functional expression, we see that the transistor count, from (I) to (2),
has been reduced by four.

One question still remains, however; that is, will the stuck-at fault test set of a two-level
realization of any function (not just the majority function) still be valid for its multi-level
realization. We given a theorem below to show that this indeed is the case.

T H E O R E M 4

The stuck-at fault test set S of a two-level realization suffices as a test set for any multi-level
realization of that function.

Proof. We will prove the theorem for the A N D - O R realization. Dual arguments can be applied
to the O R - A N D realization.

Let E , (f) and E2(f) denote the functional expressions of the two-level A N D - O R realization
and the multi-level realization of a function f respectively. E, (f) is basically an irredundant sum
of products expression of the function f.

If we expand E2(f) by removing the parentheses, we arrive at El(./'). Conversely, we can factor
out common literals or sub-expressions from the terms of El(f) and the other intermediate
expressions to arrive at E2(f) . The process of conversion repeatedly applied, going from E~(f) to
E2(f) , is illustrated by Figs 6a and 6b.

xi, i e { l , 2, 3}, in the circuits in Figs 6a and 6b can be a literal or a sub-expression. It can easily
be seen that the stuck-at fault test set for the circuit in Fig. 6a suffices as a stuck-at fault test set
for the circuit in Fig. 6b. Since E2(f) is obtained by repeatedly applying the above conversion at
different levels, the theorem follows as a straightforward generalization. Q.E.D.

The test set S is sufficient, but not necessary, for making the multi-level realization self-testing.
Usually a subset of S is required for this purpose. Hence, this technique reduces the number of
tests as well as the transistor count when the circuit is implemented in MOS technology.
Additionally, it also slightly increases the speed of the circuit, as explained before. We can apply
this technique to designs in [3, 6, 7, 9, 10, 13, 16].

3. E F F I C I E N T MOS I M P L E M E N T A T I O N OF
BERGER CODE C H E C K E R S

The Berger code is a separable code used to detect unidirectional errors. Designs of gate level
Berger checkers are given in [1, 11]. These designs basically employ a combinational circuit which

x 1
X2

x l

x 3

(a)

i

6

r xl

X2
X 3

(b)
Fig. 6. (a) Two-level realization of a function f; (b) multi-level realization of.,(

x 3

MOS implementation of checkers 563

x 3

x 1

Z>

xa
x 3

x3

Fig. 7. An efficient realization of a two-bit adder.

generates the complement of the checkbits. This circuit is realized with full adders and half-adders.
The outputs of this combinational circuit, together with the checkbit lines from the primary inputs,
are fed to a two-rail code checker. The two outputs of the two-rail code checker indicate error when
a fault occurs.

In [5] an efficient way of implementing full adders and half-adders in MOS technology is given.
The transistor count nx (for nMOS technology) for the Berger code checker, on the basis of these
implementations, is given as

nv = 2 3 (n j - nk)+ 10(nk- 1)= 23n I - 13nk- 10 (3)

where n~ = number of information bits and nk = number of checkbits.
The number 23(n I - nk) refers to the transistor count of the checkbit complement generator and

10(nk - 1) to the transistor count of the two-rail code checker.
We will now present a more efficient way of implementing Berger code checkers. Figure 7 shows

a gate level realization of the two-bit adder (with outputs complemented), whose MOS imple-
mentation requires only 14 transistors (12 control and 2 load transistors). Figure 8 shows a gate
level realization of a two-bit adder for obtaining uncomplemented outputs when complemented
inputs are available. This also requires 14 transistors for its MOS implementation. These are more
efficient MOS implementations than the one given in [5], which requires 23 transistors for a two-bit
adder with uncomplemented inputs and outputs.

x 3

X 3

Fig. 8. An alternative realization of a two-bit adder.

$I

564 N . K . JHA a n d J. A. ABRAHAM

x 1

x 3

x 4

x 5

X6

x 7

f .a. 2

t f'°4

Fig. 9. A n efficient checkb i t c o m p l e m e n t g e n e r a t o r for n~ = 7.

s4

Let us consider a Berger code with/21 = 7. We know that for this code, n, = 3. Figure 9 shows
the combinational circuit for generating the complement of the three checkbits when the technique
for removal of inverters is used, and efficient realizations given in Fig. 7 and 8 are used for the
two-bit adders. This circuit is combined with a two-rail code checker to obtain a Berger code
checker when n I = 7. We get the following equation for the transistor count of the Berger code
checker for the general case:

r / T = 14(nl -- nk) + 10(nk -- 1) + m = 14n I -- 4nk -- 10 + m (4)

where m is a constant required to account for some inverters that remain in the circuit. For the
circuit in Fig. 9, m = 4, because two inverters are still present in it.

For the Berger code checker considered above, for nl = 7 and nk = 3, we get n-r = 112 from (3).
I f our techniques are used, however, we get nx = 80, from (4). Hence, we have reduced the transistor
count by about 29%. This is roughly the reduction to be expected for most Berger code checkers.

Of course, the added advantage of speed-up of the circuit due to the removal of the inverters
is also obtained by using our technique.

4. MOS C H E C K E R COST FOR r n - O U T - O F - n CODES

In Section 2 we presented three techniques which are individually or collectively applicable to
all the known designs of m-out-of-n code checkers. We present some tables to show the reduction
in the transistor count of the nMOS realizations of some of these checkers. L 1 and C1 refer to
the number of load and control transistors respectively if the m-out-of-n code checker designs are
implemented directly in nMOS technology. L2 and C2 refer to the number of load and control
transistors respectively if the techniques in Section 2 are used.

(L1 + C 1 - L 2 - C2)
% reduction in transistor count = x 100

(L I + C l)

For simplicity the A N D fan-in and the OR fan-in restrictions have not been taken into account.
Looking at Tables 3-8, we can conclude that for m-out-of-2m codes for small m, Anderson's

design [3] is the best f rom the point of view of minimum chip area requirement; while for

Table 3. Transistor counts for Smith's m-out-of-2m code checkers

%

Code LI CI L2 C2 Reduction

3/6 16 32 2 24 46
4/8 36 66 10 48 43
5/10 64 112 12 80 48

10/20 324 522 82 360 48

M O S i m p l e m e n t a t i o n o f checkers 565

Table 4. Transistor counts for Reddy's m-out-of-2m code checkers

%
Code L 1 C 1 L 2 C2 Reduction

3/6 12 28 2 22 40
4/8 24 54 2 52 31
5/10 40 88 I 0 90 22

10/20 180 378 74 364 22

Table 5. Transistor counts for Anderson's m-out-of-2m code checkers

%
Code L 1 C 1 L2 C2 Reduction

3/6 4 26 2 22 2O
4/8 4 66 2 48 29
5/I 0 4 162 2 98 40

10/20 4 10242 2 1176 89

Table 6. Transistor counts for Marouf~Friedman's m-out-of-n code
checkers

%
Code L 1 C I L2 C2 Reduction

2/5 20 38 10 28 34
3/7 20 63 10 48 30
3/8 24 84 12 64 29
3/10 24 116 12 86 30
4/9 20 126 10 84 31
5/11 20 240 10 137 43

10/21 20 16346 10 1464 91

Table 7. Transistor counts for Piestrak's m-out-o~n code checkers

%
Code L 1 C I L2 C2 Reduction

3/7 26 52 15 40 30
3/8 30 62 16 46 33
3/10 42 84 26 66 27
4/9 38 83 25 67 24
5/11 52 116 35 94 23

10/21 132 383 95 326 18

Table 8. Transistor counts for Gaitanis Halatsis ' m-out-ogn code
checkers

%
Code L1 C1 L2 C2 Reduction

2/5 24 42 15 33 27
3/7 32 67 17 48 34
3/8 32 75 18 56 31
3/10 36 102 20 76 30
4/9 38 98 19 73 32
5/11 42 151 21 107 34

10/21 62 1020 31 625 40

m-out-of-2m codes for large m, one could choose either Smith's [16] or Reddy's [14] design. It is
difficult to say which design is better until the actual layout is done for each individual case.

For smaller m-out-of-n (n :~ 2m) codes there is not much of a difference among the three designs
considered in Tables 6-8. For larger m-out-of-n codes Piestrak's [13] design seems to be the best
from the chip area considerations. We have not given tables for the other two known designs for
m-out-of-n codes, namely Nanya-Tohma's design [12] and Efstathiou-Halatsis' design [6], because
these designs require much higher transistor counts compared to the three designs for which tables
were presented here. Hence, they are not of practical interest from the point of view of MOS
implementation.

5. C O N C L U S I O N

In this paper we presented some techniques to reduce the transistor count of MOS imple-
mentations of TSC checkers. The reduction ranges from about 20 to over 90%. The resultant

C.A M.W.A 13/5-6~K

566 N.K. JHA and J. A. ABRAHAM

decrease in s i l icon a r e a will be even m o r e due to r educed rou t ing . O t h e r a d v a n t a g e s o f us ing these

t e c h n i q u e s are the s p e e d - u p o f the c i rcu i t due to a r e d u c t i o n in the M O S ga te levels and a poss ib le

r e d u c t i o n in the n u m b e r o f tests r e q u i r e d to m a k e the c i rcu i t self- test ing. I t shou ld be n o t e d tha t

the a p p l i c a t i o n o f these t e c h n i q u e s is no t l imi ted to T S C checkers , bu t they can be app l i ed to any

gene ra l c i rcu i t w h o s e M O S i m p l e m e n t a t i o n is r equ i red . In this p a p e r they were app l i ed to T S C

checke r s to es tab l i sh the i r effect iveness .

R E F E R E N C E S

1. M. J. Ashajee and S. M. Reddy, On totally self-checking checkers for separable codes. IEEE Trans. Comput. C26,
737-744 (1977).

2. S. B. Akers, Universal test sets for logic networks. IEEE Trans. Comput. C22, 835 839 (1973).
3. D. A. Anderson and G. Metze, Design of totally self-checking check circuits for m-out-of-n codes. IEEE Trans. Comput.

C22, 263 269 (1973).
4. W. C. Carter and P. R. Schneider, Design of dynamically checked computers. 1F1P "68. Edinburgh, Scotland, Vol. 2,

pp. 878-883 (1968).
5. Y. Crouzet and C. Landrault, Design of self-checking MOS-LSI circuits: application to a four-bit microprocessor.

IEEE Trans. Comput. C29, (1980).
6. C. Efstathiou and C. Halatsis, Modular realization of totally self-checking checkers for m-out-of-n codes. 13th Int.

Syrup. Fault-Tolerant Computing, pp. 154161 (1983).
7. N. Gaitanis and C. Halatsis, A new design method for m-out-of-n TSC checkers. 1EEE Trans. Comput. C32, 273 283

(1983).
8. N. K. Jha and J. A. Abraham, Totally self-checking MOS circuits under realistic physical failures. Int. Con[~ Computer

Design, Port Chester, New York (1984).
9. G. P. Mak, The design of programmable logic arrays with concurrent error detection. Ph.D. Thesis, Univ. of Illinois,

Urbana, Illinois (1982).
I0. M. A. Marouf and A. D. Friedman, Efficient design of self-checking checker for any m-out-of-n code. IEEE Trans.

'Comput. C27, 482~,90 (1978).
11. M. A. Marouf and A. D. Friedman, Design of self-checking checkers for Berger codes. 8th Int. Syrup. Fault-Tolerant

Computing, pp. I79 184 (1978).
12. T. Nanya and Y. Thoma, A 3-level realization of totally self-checking checkers for m-out-of-n codes. 13th Int. Symp.

Fault-Tolerant Computing, pp. 173 176 (1983).
13. S. Piestrak, Design method of totally self-checking checkers for m-out-of-n codes. 13th Int. Symp. Fault-Tolerant

Computing, pp. 162-168 (1983).
14. S. M. Reddy, A note on self-checking checkers. IEEE Trans. Comput. C23, 110(~1102 (1974).
15. S. M. Reddy, Complete test sets for logic functions. IEEE Trans. Comput. C22, 1016-1020 (1973).
16. J. E. Smith, The design of totally self-checking check circuits for a class of unordered codes. J. Des. Automn

Fault-Tolerant Comput. 2, 321 342 (1977).

