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We report on polarization dependent optical absorption for excitonic and interband 
transitions in lattice matched (GaAs/AlGaAs) and strained (biaxial tensile strain 

GaAsP/AlGaAs; biaxial compressive strain - InGaAs/AlGaAs) multiquantum well 
structures in the presence of transverse electric fields. The hole states are solved by 

using the Kohn-Luttinger Hamiltonian and using an eigenvalue technique. The effect 
of heavy-hole and light-hole mixing due to the strain, electric field and quantization 

is studied. Under biaxial tensile strain the heavy-hole and light-hole transition can 
coincide,leading to interesting polarization dependent effects. Results are presented 

for excitonic and interband transitions. 

I INTRODUCTION 
Optical absorption in multiquantum well (MQW) 

structures has become an important area of research due 
to potential applications in optical devices as well as 
a probe to study new physics in reduced dimensions.* 
Exciton transitions in MQW structures in particular 
are acquiring special importance due to the fact that 
the enhanced exciton binding energy and presence of 
the barrier region allows excitonic transitions to per- 
sist upto high temperatures and at high transverse elec- 
tric fields.‘13 This has led to a number of structures 
which have applications as optical modulators, optical 
switches, optical couplers etc.4*5 Devices based on both 

vertical light incidence and wave guide geometries have 
been proposed and demonstrated.‘~” In the wave guide 
geometry (light incident parallel to the interfaces of the 
quantum well) strong polarization dependences of the 
absorption and emission processes are observed. This 
polarization dependence has potential applications in 
optical processing technology and also as a probe to 
study important band structure properties. 

In this paper we will discuss the theoretical basis 
for the polarization dependence of optical absorption in 
lattice matched and strained MQW structures. The in- 

terest in strained layer systems arises because by appro- 

priate choice of strain sign(i.e. biaxial tensile or com- 

pressive) in the well region, the heavy-hole(HH) and 
light-hole(LH) transitions can be merged or separated 
in energy. The strain can thus control the HH-LH band 
mixing and lead to interesting polarization dependences 
of the absorption. This study is carried out by using the 
Kohn-Luttinger Hamiltonian to describe the HH and LH 
states and their interaction in both lattice matched and 
strained systems. Polarization dependences of both ex- 

citonic and band-to-band transitions are then calculated 

in the absence and presence of a transverse electric field. 
In the next section we describe the formalism used for 
the calculations. In section III,the results are presented. 

Discussion and conclusions are presented in section IV. 

II THEORETICAL FORMALISMS 
In this section we will discuss the theoretical tech- 

niques used by us to obtain the results presented in this 
paper. The optical absorption problem in a strained 
quantum well can be divided into several key compo- 
nents viz. i) the electron(e) and hole (h) problem in a 
quantum well, ii) the effect of strain on the e, h problem 
in a quantum well, iii) effect of transverse electric field, 
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iv) the excitonic problem and finally, v) the optical ab- 
sorption and its polarization dependence. We will now 
discuss each of these components. 

i) Electron and hole problem in quantum 

wells: 
To solve the exciton problem in quantum wells one 

needs to understand the in-plane (perpendicular to the 
growth direction taken as the (001) direction for the 
cases studied here) band dispersion relations for the elec- 
tron and the hole problem. The solution of this prob- 
lem is simplied if we assume that the electron states 
are nondegenerate (except for spin) and originate from 
1 s > like atomic functions while the hole states are 

1 p > type and are 4-fold degenerate (including the spin 
degeneracy). Such an approximation is quite valid for 

most III-V compound semiconductors. In presence of 
an arbitrary quantum well the electron problem can be 
simply written as: 

- &V’l(k.z) + V(z)Q(k,z) = EQ(k, z) (1) 

where V(z) represents the potential barrier seen by the 
electrons. In the direction parallel to the z-axis, the 
momentum vector k is a good quantum number and the 

solution has a general form 

Q:,(k, z) = f”(z)Uo(r)e Jq ‘P 

where f”(z) are the electron envelope functions for the 
l-dimensional potential well problem and Us(r) is the 
zone-center conduction band Bloch function for the bulk 

well material. The electron envelope function can be 
solved by variational techniques or other standard nu- 

merical techniques for solving differential equations. 
The hole states are much more complicated to solve 

because of the four-fold degeneracy at the zone center. 

We use the Kohn-Luttinger Hamiltonian, as given in 
equation (3), for the lattice matched system:7 

HQ= 

i 

Hhh f $ C b 0 
C* Hit, - g 0 -b 
b 0 Hlh-- 5 C 
0 -b’ C* Hhh •k $ 

where 6 is the separation of HH and LH states in a bulk 
material due to the strain.’ 

Treating the z-component of the momentum as an 

operator (k2 = -i-$ ) we get the following new expres- 
sions for the matrix elements : 

Hhh = -& 1% + ‘$(r, + 72) - (7, - 27z)& 
0 1 +w- (4) 

H lh = 

where yr, -ys, ys are the Kohn-Luttinger parameters. As 
shown in eq.3, HH and LH band are degenerate at zone 
center in bulk material with out strain, but with quan- 
tum well potential they are no longer degenerate because 
of their different effective masses. The strain provides 
an increase or decrease in the splitting of HH and LH 
bands which is depend on the direction of strain. 

The general hole solutions can be written as 

(8) 

where g& (z) is the z-dependent function arising from the 

confinement of the potential, v is the index representing 
the total angular mommentum of the state, m is the 
index for the each subband in the well and U{(r) is 

the zone-center valance-band Bloch state for the v spin 

component in the bulk material. 
In the absence of the off-diagonal mixing terms in 

the Kohn-Luttinger Hamiltonian, (the so called diago- 

nal approximation) the hole problem is as simple to solve 
as the electron problem. However, in real semiconduc- 

tors the off diagonal mixing is quite strong and must be 
included for quantitative comparison with experiments. 
The off-diagonal terms are also responsible for occurence 

of the normally “forbidden” transitions’. 
The Schrodinger equation, using the Kohn Lut- 

tinger Hamiltonian, is written as a finite difference equa- 
tion which can then be solved by standard eigenvalue 

methods. This yields the hole dispersion relations in 
the quantum well.The dispersion relations in strained 
quantum wells can also be accurately determined using 
the modified Kohn-Luttinger Hamiltonian as discussed 

next. 

ii) Effect of strain on the bandstructure in a 
quantum well: 

The nature of the strain in a quantum well is biaxial. 
In order for the strain to be accommodated coherently 
(no dislocations), the lattice constant of the well and 
barrier, in the direction parallel to the interface, must 
be equal i.e. 

alli = a112 (9) 

where the al and as are the lattice constants in the 
type 1 and 2 materials respectively. The perpendicu- 
lar lattice constants are of course in general unequal. 



Superlattices and Microstructures, Vol. 3, No. 6, 1987 647 

Growth of a material on a lattice mis-matched substrate 
will directly strain the parallel directions to match the 

substrate. The perpendicular direction however, is not 

directly strained and, therefore, is altered only by the 
Poisson effect. Thus for each material if 

(10) 

then we have 

alstratncd = (1 -UC) ao (111 

where (T is the appropriate Poisson constant and 6 is the 
strain in the direction parallel to the interfaces. 

The well material will then take on the lattice con- 

stant of the barrier material in the parallel directions, 

and its perpendicular lattice constant will be determined 

by equation (11). We emphasize that it is not certain 
that this simple picture of strain absorption is actually 

realized in nature. More experimental work on strained 
quantum wells, when compared with theory, may shed 

light on this issue. 
For the calculations in this paper, we have 

used the thick barrier approximation to study the 

bandstructure of GaAs/AlGaAs, InGaAs/AlGaAs and 
GaAsP/AlGaAs systems. The thick barrier approxima- 
tion predicts that in the second of these three systems, 
the well is under a compressive biaxial strain. In the 
last one, the well region is under tensile biaxial strain. 

The effect of a biaxial strain (to first order) is to 
cause a splitting between the heavy-hole (3/2, 3/2) and 

light-hole (3/2. l/2) states. The effects on the heavy 
and light-hole bandgaps are” 

E 9312 = E, + 1/26&t, - 6&, 

E 9112 = 6 - 1/26&h - 6&q, (12) 

where. 

DEsh = -2b [(c,, + 2C12) /C,,] e 

SEhy = -2a [(CH - CL) /c,,] c (13) 

Here Cii, Cis are force constants for the well material, 
a and b are the deformation potentials. For GaAs the 
shifts for the heavy and light-hole gaps are -5.96c and 
-12.4c.i’ Thus in presence of a biaxial tensile strain the 
light-hole is expected to be above the heavy-hole state 
while for compressive strain the reverse is expected. 

To solve the electron and hole problems in the pres- 

ence of biaxial strain one simply includes the splitting 
between the heavy and light-hole states in the diagonal 
terms of the Kohn Luttinger Hamiltonian. In presence 
of strain, since the bandgap changes, it is not evident if 
the discontinuity distribution will change. However, the 
changes are not found to have significant effects on the 
electron or hole problem. 

iii) Effect of Transverse Electric Field 

An electric field transverse to the quantum well in- 

terfaces alters the general potential profile, V(z). The 

new form which the profile takes on is V(z) + eEz. The 

effect of this, in general, is that the bound states be 
come quasi-bound states which have a finite lifetime for 
tunneling out of the potential barrier. As long as the 

assumption that the envelope function decays rapidly in 
the barrier is valid, the method described above can be 

readily applied to study the electron or hole problem. A 
simple criteria to establish whether or not this assump- 
tion is valid is to increase the total region L in which 
the problem is solved. A quasi-bound state should give 
eigenvalues and eigenfunctions that remain unaffected 
due to the variations in L. 

Note that there is a splitting of the hole states which 

arise due to the lack of symmetry in the (001) direction 
which lifts the Kramer’s degeneracy. These splittings, 
away from the zone center have been experimentally ob- 

served for a GaAs/AlGaAs modulation doped structure 
since they cause a variation of the hole masses. The 
change in the masses causes the exciton binding energy 
to change as the electric field is increased and c.auses a 

broadening of the exciton transitions. 
The dominant effect of the electric field is to squeeze 

the electron and hole states in opposite sides of the well. 
This reduces the overlap in the two states which affects 
the absorption coefficient. The intersubband separation 
is also effected. 

iv) The Exciton Problem 
The electron-hole pairs produced due to the photon 

absorption can form an exciton state due to the Coulom- 
bit interaction. The exciton problem can be expressed 
=13,14 

ii2 8 e2 
---- 

2mh Lk~ 15 ( Te - rh 1 
+ VW(G) 

+ Vhur(%h) + eEz, - eEzh (14) 

where m, and m,+ are the effective mass of the conduc- 

tion band electron and the valance band hole respec- 
tively. ~1 is the reduced mass corresponding to each 
electron and hole subband combination so that the first 

term describes the exciton internal kinetic energy in the 

plane perpendicular to the z axis. We have assumed the 
same values for the static dielectric constant in the two 
semiconductors. The appropriate dielectric constant is 

taken to be n = ,_,&JZ& where n, , nb are the dielec- 
tric constants of the well and barrier respectively. The 
potentials such as Vew(z.) for electrons and vj,w(%h) for 

holes can be arbitrary confining potentials, which give 
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rise to bound or quasi- bound states. The quantities 
eEz, and eEzh are the additional potential energy terms 
for electrons and holes due to the electric field. 

To solve the exciton problem one essentially has to 
adjust the exciton envelop function to minimize the sum 
of the kinetic energy and the Coulombic potential energy 
terms. Unfortunately at present, there is no analytical 
or numerical technique to solve the exciton problem ex- 
actly and one has to rely on the variational approach. 

The equation for the exciton system can be written in 
the p-space or k-space representation depending upon 

whether the variational approach is to be applied in the 
real or k-space. From the variety of dispersion relations 
discussed for the hole states, it is clear that while some 

of the bands appear to be fairly parabolic (with an ef- 
fective mass to be obtained by a numerical fit not the 
original Kohn-Luttinger bulk parameters), some of the 
states become highly non-parabolic. A clear example 
of this situation is the light-hole ground states (LHl) 
which display a negative effective mass at the zone cen- 
ter due to the very strong mixing with the heavy-hole 
states. For such states it is clear that one either has to 
solve the exciton problem explicitly in k-space or a fit 
for the exciton kinetic energy of the form 

J%,.(~II) = EC(h) + Eh(W (15) 

with 

Ee(4t) = gzki 
e 

(16) 

must be made. Here the parameters cy and p are to 

be determined numerically by fitting the hole dispersion 
relation. The hole dispersion relation is assumed to be 
isotropic to simplify the calculations. 

A number of envelope function forms have been as- 

sumed by different workers”-‘4. These include expo- 

nentially falling functions (as for the hydrogen atom 
problem), gaussian functions, etc. A simple exponen- 
tial envelope function is found to work quite well when 

the exciton energy is parabolic (p = 0). However, a 

Gaussian works better for non-parabolic bands. The 
variational calculation involves minimizing the energy 

as a function of the variables involved in the envelope 
function. 

Once the excitons are formed in the quantum well 
due to photon absorption, and the electric field pulse 
causing the absorption is back to normal, it is important 

for Electra-Optical modulators that the space charge in 
the well be removed quickly. This is possible eit,her by 

exciton recombination or the electron and hole t,unneimg 
out at high electric fields. 

An important issue for optical modulators and de- 

tectors based on quantum wells is the inhomogeneous 
broadening caused by structural fluctuations in the 
quantum well system. These fluctations can be loosely 
categorized as interface roughness effects and alloy disor- 
der effects. The effect of these fluctuations is to broaden 
the exciton transitions and since broadening can seri- 
ously reduce the on/off intensity ratio, i.e.the modula- 
tion depth, it is important to understand the extent of 

the broadening caused by structural fluctuations. 
The general method used to treat the inhomogeneous 

line broadening is discussed in reference 15, 16, and 17 so 
we will only briefly discuss the main broadening mech- 

anisms. 
The dominant exciton broadening mechanisms are 

due to: 
i) phonon broadening, which has the form’s 

%J:=a,+aT+ 
ezp (A, - 1 

(18) 

where u,, Q and /? are temperature-independent and W, 

is the polar optical phonon frequency. The phonon con- 

tribution to the exciton linewidth is less than 0.5 meV 
at 77 K and N 3 meV at 300 K. 

ii) tunneling of electrons and holes and the conse- 

quent broadening due to finite lifetime. This mecha- 
nism does not contribute much to the exciton linewidth 
except at very high electric fields (E > 75 kV/cm).‘” 

iii) lifting of Kramer’s degeneracy. This is due to the 

splitting of the doubly degenerate hole states in presence 

of an electric field. This causes a broadening since the 
exciton binding energy splits slightly (- 1 meV at E = 
50 kVjcm). 

iv) interface quality and well-to- 
well size fluctuations.16 This can be a very important 
source of broadening and is controlled by the quantity 

=,,/aW I wo, which is the variation of the exciton 
transition energy due to well width fluctuation at well 
width W,. This quantity increases rapidly with applied 
electric field so that this mechanism becomes extremely 
important at high fields. In addition, alloy broadening 
can also be an important broadening mechanism, par- 
ticularly for systems where the well region is an alloy. 

In this paper, we will use the low temperature ex- 
citon linewidth to estimate the quality of the material 
and to fit the data. The theoretical results presented 
for systems where we do not currently have experimen- 
tal results are for a one monolayer well size fluctuation. 
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v) Polarization Dependence of Optical Ab- 

sorption in Quantum Wells 

Once the exciton wavefunction, energy and the elec- 
tron and hole dispersion relations have been determined 
in the quantum well, it is straightforward to determine 
the absorption coefficients for the excitonic and band-to- 
band transitions. Using first order perturbation theory 
ttle absorption coefficients for band-to-band transition 
is given from the Fermi’s golden rule as” 

where ‘7 is the refractive index of the semiconductor, w 

the photon frequency, i polarization vector of the radi- 
ation, m.n the hole and electron subband indices. The 

optical matrix is given by, 

Pnrn($,) = < Q:(k,,) I p I yJk,,) > (20) 

where @i( k/l) and U:(k),) are the hole and electron wave 
functions determined previously. A broadening function 
is usually introduced to replace the Dirac 6 function to 
introduce the broadening due to various mechanisms. 

The optical matrix elements are given by 

(21) 
The first part of the matrix elements is determined from 
the Bloch functions of the s-type spin f conduction band 
states and p-type angular momentum f valence band 
states. We have already discussed the relations between 
the hole angular momentum states and the p,,p,,p, 
<tates. The relevant matrix elements then become, 

The matrix element < .r ( pz 1 p > between the atomic 

like states is dependent on the semiconductor mate- 
rial under consideration. Values for some semiconduc- 
tors are tabulated by Lawaetz”. The matrix elements 
p,,,,,(b(() vary with k and also have strong polarization 
dependences as will be shown later. The band-to-band 
absorption is then proportional to 

n( hw: i) x ,c, Ji. P.&,,)pLPnm~hw) 1231 

where p”,,,(h~) is the joint density of the states of the 

electron-hole system. Factor Ii p,m(k~~)/2 is a weighted 
matrix element for electron n band and hole m band 

transition, which has anistropic nature with respect to 

polarization. For simple parabolic bands 

where pnm is the reduced mass of electron subband n 

and hole subband m, and O,,(hw) is a step function but 
for non-parabolic bands one has to explicitly calculate 

the density of states. For example, for LHI transitions 
it is clear from earlier discussions that the step density 
function is not valid. Here, to include the band-to-band 
transition broadening effect we made a convolution of 

broadening function and O,,( hw). 

For the calculation of the excitonic absorption coef- 
ficient one cannot treat p,m(klt) to be independent of k,(. 
However, it is found to be reasonable to take pnm(ki,) to 

independent of the direction of p,,,,(kll)lo. The exciton 
absorption coefficent is given by 

%m 

(2.5) 
Here the G,,(ki() are the Fourier components of the 
exciton envelope function and are determined by the so- 

lution of the exciton problem. W is effective well width 

of QW structure. Once again the Dirac &function has 

to be replaced by the broadening function since there is 
always a certain amount of linewidth in the exciton tran- 

sition. If the width is due to inhomogeneous broadening 
as discussed in the previous section, the appropriate re- 
placement is 

Here o is the linewidth (corresponding to the half-width 
at half-maximum). The inhomogeneous broadening is 
a sensitive function of the transverse electric field and 
must be incorporated in the calculation for correct re- 
sults. 

The polarization dependence of the absorption be- 
comes apparent once the nature of the heavy-hole and 
light-hole states is expressed in terms of the p-type or- 
bitals. This relationship is given by the following set of 
equations: 
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Figure 1: Hole dispersion of 100 AGaAs /Als,sGao.rAs 
multi-quantum well a) 0 KV/cm case, b) 70 KV/cm 
case. 

Figure 2: The weighted matrix elements of the heavy 
and light-hole band for each polarized light of 100 
AGaAs /Alo.sGas,rAs multi-quantum well (solid line is 
for x-y polarized light and dotted line for z polarized 
light) a) 0 KV/cm case, b) 70 KV/cm case. 

Here 4i.j are the orbital angular momentum eigen- 
functions with angular momentum ‘i’ and projection ‘j’ 
and are related to the p orbitals by: 

pure only at the zone center in the Kohn- Luttinger for- 
malism and there is a strong mixing of states away from 
k=O. These effects are examined in the next section. 

I&f> = 5 (411+ 41-I) t III RESULTS 
The room temperature excitonic resonance in lattice 
matched GaAs/AlGaAs MQW structure has been ex- 
ploited for high speed electro - optical modulators and 
optical switches. An additional interesting effect which 
can be used for optical modulation and switching devices 
is the highly anisotropic absorption for light propagat- 
ing parallel to the plane of the layers. Recently, efforts 
are also being directed towards controlling the absorp- 
tion profile by introducing strain in the well region. In 
this section we will show the polarization effect in lattice 

IPub = $JwJ*-1, t 

I P* I> = 410 1 

(28) 

It is clear for example that a pure 1 t,zt$ > state is 
made up of pz and pi, components and therefore if i is 
along the z - axis (growth direction), the absorption will 
vanish. However, it must be pointed out that states are 
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b) 

Figure 3: x-y polarized light absorption of GaAs 

/Als.aGas,~As multi quantum well structure in wave 

guide type application a) 0 KV/cm case, b) 70 KV/cm 
case. 

matched and strained systems with and without electric 
field. To explain this anisotropic nature, we show the 
band structures, the matrix elements of heavy-hole and 

light-hole transitions and absorption profiles for both 
parallel and perpendicular polarized light. 

Figure 1 a) shows the hole dispersion relation in a 100 
AGaAs/Al G A 0s aor s multi-quantum well without elec- 

tric field. The results show strong nonparabolic band 
structures due to heavy-hole and light-hole band mix- 
ing. Figure 1 b) shows the band structure in presence of 

a 70 kV/cm transverse electric field. Note that due to 
the lifting of Kramer’s degeneracy each hole band is no 
longer doublely degenerate. We investigate the weighted 

matrix elements (6. P(k~~)/* for heavy hole and light-hole 
bands beacuse this factor is directly related to excitonic 
absorption as well as interband absorption. Figure 2 a) 
shows the weighted matrix elements oi the heavy and 

E = 0 KVlcm 

Z20 L,.IOO A 

[I L//_/ I_- 0, 

fn ! 
so0 1500 0 1525.0 1550 0 1575 3 St 

PHOTON ENERGY (meV) 

W 

)C 0 

Figure 4: z polarized light absorption of GaAs 

/Als.sG~.,As multi quantum well structure in wave 
guide type application a) 0 KV/cm case, b) 70 KV/cm 
case. 

light-hole band for the two polarizations (solid line is 
for x-y polarized light and dotted line for z polarized 
light). Note that the states are pure only at zone center 

and the weighted matrix elements change with respect 

to energy. These weighted matrix elements shown in 

the figures are nomalized by the factor I< z / p, 1 1 >I*. 
This complex variation of these factors is due to hole 

band mixing near the zone center. Note that if there is 
no hole band mixing, excitonic and interband absorp- 
tion of heavy-hole for the z polarized light should be 

absolutely zero. But actually, away from the zone cen- 
ter, light hole nature exist even in the heavy-hole band 
because of hole band mixing. Thus we see a small heavy- 
hole transition even in z polarized light absorption spec- 
tra. Figure 2 b) gives the variation of these factors at 
70 kV/cm. Comparing figure 2 a) and figure 2 b), we 
observe that band mixing is reduced by applying electric 
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/Al,,sGa,,~iis multi-quantum well a) 0 N/cm case, b) 
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Figure 6: The weighted matrix elements of the heavy 
and light-hole band for each polarized light of 100 
AIno.ozGan.ssAs /Als.sGan.:As multi-quantum well (solid 
line is for x-y polarized light and dotted line for z polar- 

ized light) a) 0 KV/cm case, b) 70 I<V/cm case. 

field, and thus we expect not only differences in inter- 

band absorption with respect to the polarization of the 
incident light, but also that this difference is reduced by 
applying transverse electric field. In figure 3 and 4 we 
have shown the polarization dependence of the absorp- 
tion of a GaAs/Ale,sGasrAs multi quantum well struc- 
ture in wave guide type application. Figure 3 shows the 
absorption modulation for the x-y polarized light due 
to a transverse electric field. Figure 3 a) and Figure 3 
b) are absorption profiles for the zero electric field case 
and the 70 IN/cm case, respectively. Figure 4 shows 

the absorption coefficient of this quantum well with and 
without electric field for z polarized light case. Here we 
have introduced the line broadening effect by assuming a 
1 monolayer well-to-well size fluctuation and constant 3 
meV broadening corresponding to homogeneous broad- 
ening at room temperature. The results of figure 3 and 
4 compare quite well with the published experimental 
results of Wiener et. al.” 

In figure 5 we show the hole dispersions of 100 

.4Ins.ssGas.ssAs/Aln.sGas.~As quantum well structure, 
which have compressive strain in the well region. Heavy 
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Figure 7: x-y polarized light absorption of Ine.ozGae.ssAs 

/Alo.sGa,.rAs multi quantum well structure in wave 
guide type application a) 0 W/cm case, b) 70 W/cm 
c-ase. 

hole and lightthole band are seperated to some extent by 

t,he strain in the well. Figure 6 shows the weighted ma- 
trix elements of the heavy and light-hole band for each 
polarized light with and without electric field. Once 
again from comparision of figure 6 a) and b), we observe 

that the band mixing is reduced with electric field. .Uso 
from the comparision of figure 6 a) and figure 2 a) we 
find that compressive strain also reduce the band mix- 
ing by separating the HH and LH states. Figure 7 and 
8 are the absorption coefficients of this quantum well, 
with and without electric field, for each light polariza- 
tion direction. 

Figure 8: z polarized light absorption of Ina.&ao.~s.\s 
/Al,,sGac.:As multi quantum well structure in wave 
guide type application a) 0 XV/cm case. h) i0 li\‘/~rn 

case. 

Figure 9 shows the band structure of 1L’O 
~GaAs~.94~P~.~ss/Al~,sGa~.~As with and without electric 
field. Figure 9 b) is for an electric field of 70 KV/crn. 
This system has a tensile strain in the well region. In 
this system we have obtained a coincidence of heavy-hole 

and light-hole peak by careful choice of Indium compo- 
sition. Figure 10 shows the weighted matrix elements 
of the heavy and light hole band for each light poiar~ 

ization direction. and shows the strong band mixing at 
zone center when HH and LH are merged at zero electric 
field. If electric field is applied to this system the heavy- 
hole and light-hole band are no longer merged and band 
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Figure 9: Hole dispersion of 100 AGaAs0.s4rP0,n5s 

/Alu.sGa~,,As multi-quantum well a) 0 KV/cm case, b) 

70 KV/ cm case. 

mixing is reduced as shown in Figure 10 b). Here we 
point out that as the HH and LH bands come closer the 
band mixing increases. The hole band seperation can be 
tailored by both applying electric field and introducing 
strain. In figure 11 a) and 11 b) we show the absorp- 
tion spectra for this system in absence and presence of 
the electric field for the x-y polarization. In figure 12 a) 
and 12 b) the same are plotted for the z-polarization. 
In this case the HH and LH peaks are the same energy 
at zero electric field and the effect of the strong band 
mixing is evident in the polarization dependence of the 
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. 
u) 

0 

TRANSITION ENERGY (eV) 

b) 

Figure 10: The weighted matrix elements of the 
heavy and light-hole band for each polarized light of 

100 AGaAso.s4rPs.nss /Alc.sGac.,As multi-quantum well 
(solid line is for x-y polarized light and dotted line for z 
polarized light) a) 0 KV/cm case, b) 70 KV/cm case. 

absorption. At present there are no published experi- 
mental polarization dependences of absorption in such 
strained systems and it is hoped the results shown here 
will motivate studies in this important area. 

IV CONCLUSION 

In this paper we have presented polarization depen- 
dent optical absorption for excitonic and interband tran- 
sitions in lattice matched (GaAs/AlGaAs) and strained 
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Figuw 11: x-y polarized light absorption of 100 

.~GaAs0.94~P0.053 /Alo.sGao.,As multi quantum well 
structure in wave guide type application a) 0 KV/cm 

t ase. t)) 70 KV/cm case. 

Figure It’: z polarized light absorption of 1110 

AGaAso.s;Po.oss /Alo.sGao,:As multi quantum well 
structure in wave guide type application a) 0 Xiv/cm 
case. b) 70 KV/cm case. 

(biaxial tensile strain GaAsP/AlGaAs; biaxial com- 
pressive strain - InGaAs/AlGaAs) multi-quantum weli 

structures in presence of transverse electric field. \Ve 
have used the Kahn-Luttinger Hamiltonian to describe 

the top of the valence band and applied the eigenvalue 

method to calculate energy bands and wave functions. 
We have studied the effect of polarization on heavy-hole 
and light-hole bands including hole band mixing. We 

find that we can tailor the anisotropic absorption by 
controlling band mixing. The band mixing can be con- 
trolled either by applying electric field and/or by intro- 
ducing strain in the well region. This anisotropic nature 
of absorption in the quantum well is quite strong and 
can be used in optical modulation or switching. The 
modulation by electic field and strain is also expected 

to be very useful in polarization sensitive optical delrice 

application. 

Acknowledgement- The authors gratefully acknowledge 
valuable discussions with Prof. P.K. Bhattacharya. This 

work was funded by the NSF Lightwave Technology pro- 
gram under grant ECE 8610803. 

References: 

1. 

2. 

G. Bastard, Physics Review B. Vol. ‘K. 
1971( 1982) 

J.S. Weiner, D.S. Chemla, D.A.B. hliller, T.H. 
LVood. D. Sivco and A.Y. Cho. Applied Physics 
Letter Vol 46, 619(1935) 



656 Superlattices and Microstructures, Vol. 3, No 6, 1987 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

D.A.B. Miller, D.S. Chemla, T.C. Damen, :\.C. 
Gossard. W. Wiegman, T.H. Wood, and C.A. Bur- 
rus, Physics Review B, Vol 32, 1043(1985) 

W.D. Goodhue, B.E. Burke, K.B. Nichols, G.M. 

Metze, and G.D. Johnson, presented at the 6th 
MBE Workshop, Minneapolis, MN. Aug.( 198.5) 

T. H. Wood, C. A. Burrus, D. A. B. Miller, D. 

S. ChemIa. T. C. Damen, A. C. Gossard, and 
W. Wiegman, Applied Physics Letter, Vo1.44, 16 
(1984). 

K. Wakita, Y. Kawamura, Y. Yoshikuni and H. 

Asahi, IEEE, Vol. QE-22, No 9, 1831(1986) 

J. M. Luttinger and W. Kahn, Physics Review Vol. 
97, 869 (1955). 

G.E. Pikus and G.L. Bir, Sov. Phys. Solid State 
1, 1502(1959) 

J. N. Schulman and Y. C. Chang, Physics Review 
B Vol. 24, 4445 (1981). 

H. Kate, N. Iguchi, S. Chika, hl. Nakayama and 
N. Sano, Journal of Applied Physics, Vol. 52(2), 

588( 1986) 

G. D. Sanders and Y. C. Chang, Physics Review 
B Vol. 32, 5517 (1985). 

12. 

I 3 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

E. Bangerk and G. Landwehr. Superiatticeb nuci 
hlicrostructures. Vol. 1, 363 (19S5). 

R. L. Greene and Ii. Ii. Bajaj, Journal of L’accun~ 
Science of Technology Vol. Bl(2). 391 (lYS.ii. 

G. Bastard, Journal of Luminescence Vol. :Iu. .LX& 

(19S5). 

J. Singh and K. Ii. Bajaj, Applied Physics Letter 

Vol. 48, 1077 (1986). 

S. Hong and J. Singh, Applied Physics Letter Vol. 

49, 331 (1986). 

S. Hong and J. Singh, Journal of Applied Physics 
to appear in Sept. 1, 1987 issue. 

J. Lee, E. S. Koteles, and M. 0. Vassell, Physics 
Review B Vol. 33, 5512 (1986). 

See for example, F. Bassani and G. P. Parravicini, 
in “Electronic State and Optical Properties in 
Solids”, Pergamon Press, New York 1975. 

P. Lawaetz, Physics Review B Vol. 4, 3460 (1971). 

J. S. Weiner, D. S. Chemla, and D. A. B. Miller. 
Applied Physics Letter, Vol 47, 664( 1985) 


