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Abstract--Examination of  Hill's 1979 anisotropic yield criterion [Math. Proc. Camb. Phil. Soc. 85, 
179 (1979)] shows that for Cases I, 11 and III, there are combinations of m and R for which the yield 
loci are outwardly concave or even unbounded. For Case I, all loci are concave unless m = 2. For 
Cases I1 and 111, the combinations of m and R which lead to concavity and unboundedness have been 
established. Case IV and Hosford's criterion have no problem regions as long as m i> 1. 
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anisotropic parameters in yield criteria 
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strain ratio, de2/de3, measured in a one-direction tension test for a material with planar isotropy 
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a small positive change in ~t 

I N T R O D U C T I O N  

Hill [1] proposed,  in 1979, a general anisotropic yield criterion of  the form: 

f l a 2  - 0 - 3 1 "  "{- g 1o'3 - 0-11" + hi0-1 - a21" + a120-1 -0-2 -0-31" 

+ b120-2 - 0 " 3  -0"1  I m +  c120-3 - ° ' 1  - 0 " 2 1 "  = o"m, (1) 

where 0- is a scaling factor  for stresses. Four  special cases were suggested which can, with 
certain values of  the constants,  encompass  the so-called ' anomalous '  behavior  in which some 
sheet metals with average strain rat ios less than unity were found to have biaxial-to-uniaxial 
yield strength ratios greater  than unity I-2, 3-1. These four special cases, all o f  which involve the 
assumpt ion  o f  planar  isotropy (a = b and f = #) when expressed for plane stress (0" 3 ----- 0) 

reduce to: 
Case I ( a = b = O , f = y , h = O )  

f ( I  0-1 I" + t0"2 In') + c lol - 0-2 I" = am; (2) 

Case I1 ( a = b , c = O , f  =g=O) 

hi0-1- 0-21" + a(120-1 -o"21"+120-2-0-11")  = o";  (3) 

Case II1 ( a = b , c = O , f  =g ,h=O)  

f(t0-1 l" + I0-21") + a(120-1 - ae l "  + 120-2 - a l  I ' )  = am; (4) 

Case1V ( a = b = O , f  =g=O) 

h la l  - 0-21m +C10-1 +0-21" = 0"m. (5) 

An alternative non-quadra t ic  criterion, which is also a special case of  equat ion (1), was 
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proposed by Hosford  [4] on the basis o f  curve fitting yield loci calculated from 
crystallographic considerations. Although this criterion cannot  accommodate  'anomalous" 
behavior, it does retain some freedom of  shape when reduced to isotropy. (This is in contrast 
to Hill's four special cases which can accommodate  isotropy only if m = 2, in which event 
they all reduce to the yon Mises criterion.) When this criterion was proposed,  the exponent 
was not regarded as an adjustable parameter.  Values o f m  = 8 and 6 were recommended for 
fcc and bcc metals, respectively, regardless o f  the R-value. However, for comparison with the 
other criteria, the exponent is varied here. For  planar isotropy and plane stress, this criterion 
reduces to: 

Hosford 's  criterion {a = b = c = O, f =  g) 

f ( l a l  I" + 1o'2 I")-+- h I~rl --o21" = o-". (6) 

If we consider a tension test in the one-direction (el = a u, o2 = 0) we can express the 
scaling factor and the constants in terms of  a u and the strain ratio, R. The general expression 
for R is 

R = [ ( 2  m ~ + 2 ) a - c + h ] / [ ( 2 "  ~ - l ) a + 2 c + f ] .  ~7) 

These can be combined to give the following expressions for au/a~ in terms of  the stress 
ratio, 7: 

Case I 
(0.1 / 0 .  u )m = (R + 1)/[ (1 + 2R)(1 + I~l m) - RI I  + ~["]; (8) 

Case I I  

(a,/O-u)m = ( R + l ) ( 2 m - 2 ) / { E R ( 2 " - 2 ) - 2 " - 4 ] ] l - = l ' + 2 ( ] 2 - : ~ ] m + 1 2 = - l t m ) l :  t9) 

Case I I I  

Case I V 

H o,sJ b r d 

( o , / % )  = = (R+l)(2~+4)/{[R(2-2'~)+2~+4](I +1~1 m) 

+ 2 R ( 1 2 -  ~l" + 12~ - i t ) } ;  (lo) 

(~q/au)"  = 2 ( R +  1)/[(2R + 1)ll - ~ l ' +  l1 + ~[m]; 

( a l / a u )  m = ( R +  1)/(1 + I ~ U + R [ 1  _ ~]m). 

{lJ) 

(12) 

CALCULATIONS AND LIMITATIONS 

The shapes o f  the yield loci corresponding to these criteria have been explored by 
numerical evaluation o f  equations (8)-(12). The results are plotted in Figs 1-5 for R = 0.5 and 
2 and various levels o f  re. Even without  considering how well they fit experimental data and 
analyses based on crystallographic slip, some conclusions can be drawn about  their 
applicability. The first three special cases have regions o f  outward concavity (hereafter 
referred to simply as concavity) and are unbounded  for some combinat ions o fm  and R. These 
regions are summarized in Fig. 6. The exact limits o f  unboundedness  Cat ~ = l or - 1) can 
be found simply by substituting the appropriate  value o f  into the yield criterion, setting 

~u/Cq > 0 and solving for m (or R). 
There are several ways o f  determining the limiting m and R values for convexity. One 

involves examining the curvature. For  loading paths between pure shear (~ = - l ) and plane 
strain (d~.2 = 0), convexity requires 

d262 /da  2 .>1 0 ! 1 3) 

and between plane strain (de2 = 0), and biaxial tension (~ = 1) 

d2o2/d6 2 K O. {14) 

Because o f  the mathematical complexity o f  the criteria, it is often simpler to examine the 
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FIG. 1. Yield loci for Case 1 with (a} R = 1/2 and (b) R = 2. The numbers refer to the value of 
the exponent, m. Note the concavities at ~ = - 1 and near ~ = 0 for m > 2. The loci are unbounded 

at ~ = 1 for large values of m. 
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FIG. 2. Y ie ld  loc i  for  C a s e  I1 w i t h  (a) R = 1,,2 a n d  (b) R = 2. T h e  n u m b e r s  J:eler to  t h e  v a l u e  

o f  t h e  e x p o n e n t ,  m. N o t e  t h e  c o n c a v i t i e s  at  ~t = 1 for  m > 2 a n d  at ct = 1!'2 for  h i g h e r  l eve l s  o f  re. 

T h e  c u r v e s  for  R = 1/'2 a n d  rn = 8 a n d  10 are  u n b o u n d e d  at ct = - 1. 
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FIG. 3. Yield loci for Case II1 with (a) R = 1/'2 and (b) R = 2. The numbers refer to the value of  
the exponent, m. There is no concavity for low values of  R, but for high values there is a concavity 

at c~ = 1/2. The curves for R = 2 and m > 4 are unbounded. 

s l o p e s  o f  t h e  l o c u s  in  c r i t i c a l  r e g i o n s .  N e a r  b i a x i a l  t e n s i o n  (ct = 1), 

d a 2 / d a  1 <~ - 1 

a n d  n e a r  p u r e  s h e a r  (~ = - 1) 

d a 2 / d a  I ~ 1. 

(15) 

(16) 
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FIG, 4. Yield loci fo r  Case  IV with  (a) R = 1/2 a n d  (b) R = 2. The  n u m b e r s  refer  to  the value o t ' t he  

exponen t ,  m. No te  the curves  a re  ne i ther  o u t w a r d l y  concave  no r  u n b o u n d e d .  
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FIG. 5. Yield loci for Hosford's criterion with (a) R = 1/2 and (b) R = 2. The numbers refer to the 
value of the exponent, m. Note the curves are neither outwardly concave nor unbounded. 

C o n v e x i t y  n e a r  ~ = 1 / 2  r e q u i r e s  t h a t  i f  d t r2/do"  1 > O, d t r2 /do-  1 

M a t h e m a t i c a l l y  t h i s  c a n  b e  t e s t e d  b y  a s s e s s i n g  w h e t h e r  

( d a 2 / d a l ) ~  - 1/2 + ~ >1 ( d a 2 / d a l ) c ,  = 1/2 ,  

w h e r e  A is s m a l l  a n d  p o s i t i v e .  

m u s t  i n c r e a s e  w i t h  cc 

(17)  
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FiG. 6. Summary of the invalid regions tor Cases 1 (a), II (b) and !11 tel. C means concavity and 
U means unboundedness. 

C a s e  I 

(A) If  m > 2, the  locus  is concave  near  cz = 0. This  is because  with m > 2 and  ~ -- 0, 
2 

d ' a 2 / ' d a l  = - {m - 1)(R + 1)(2R + 1 ) / R  2 which  c a n n o t  be pos i t ive  as r equ i red  by inequa l i ty  
(13). 

(B) F o r  m < 2, the locus  is concave  near  ~ = - 1 .  This  can be d e m o n s t r a t e d  with 
inequa l i ty  {16) which  reduces  to 

[ ( I + 2 R ) / 2 R ] [ 1 - ( 1 - A ) "  I ] - A ' - '  # 0 .  

This  can be satisfied as ~ ---, - 1 (A --* 0) only  if  m > 2. 

(C) The  locus  is u n b o u n d e d  at ~ = 1 for  

m > ln[2{1 + 2 R ) / R ] / I n 2 .  t18) 

C a s e  I I  

{A) The re  is a concav i ty  for  c~ = 1 if  m < 2 and  

m < ln [2(R + 2 1 / [ R -  1)] /In2.  {19~ 

F o r  ~ = 1 - A ,  inequa l i ty  (15~ reduces  to 

h / a  = 2 m I{R- I I - ( R + 2 )  > / ( 3 / 2 ) [ ( 1 / A - 2 }  m " - ( l / A + 2 )  m ~]. 

Wi th  m < 2, the  R H S  ~ 0 as  A ~ 0, so inequa l i ty  (191 results.  

{B) F o r  m > 2, there  is a concav i ty  at cz - 1/2 for  low values  o f  R. Inequa l i ty  (17) may  be 

expressed  as 

h / a  ~ { 1 2 " / 4 ) / [ ( 3 / A - 6 )  '~ t - ( 3 / A - 2 y "  1 - 4 " '  1]. 

F o r  m > 2 ,  the R H S - ~ 0  as A - + 0 ,  so there  is a concav i ty  if  h / a  < 0 .  Subs t i t u t i ng  

h / a  = 2"  ~(R - 1 - (R  + 2), the  c o n d i t i o n  for concav i ty  m a y  be expressed  as 

2 < m < ln [2 (R  + 2 ) / ( R -  1)]/ln2. (20i 

(C) The  locus  is u n b o u n d e d  at ~ = - 1 if  

R ~ [4 + 2"  - 4 ( 3 / 2 ) " ] / ( 2  m - 2). {21) 

C a s e  I l l  

(A) The re  is a concav i ty  at ~. = 1/2 if  

m > 2 and  m > l n [ 2 ( R + 2 ) / ( R -  1)] / ln2.  (22)  

These  l imits  fo l low f r o m  inequa l i ty  (17) which  is v io la ted  if  m > 2 a n d f / a  > O. 

IB) The  locus  is u n b o u n d e d  at ~ = 1 for  

m > l n [ 4 ( R  + I ) / ( R -  l ) ] / l n 2 .  (23)  

F o r  Case  IV and  the a l t e rna t ive  cr i te r ion ,  there  a p p e a r  to be no  l imi ta t ions  on  m and  R,  

except  that  m # 1 as s ta ted by Hil l  [1]  for  the genera l  cr i ter ion.  
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D I S C U S S I O N  

That a yield surface may not be concave can be demonstrated by an argument commonly 
referred to as Drucker's postulate [5]. Bishop and Hill [6] advanced an argument for 
convexity based on Schmid's law for slip in crystals. Hill [7] has given an improved proof. 
The convexity requirement puts a very severe limitation on the three special cases of Hill's 
1979 non-quadratic criterion. 

In a general sense the problems of convexity come about because the special cases violate 
the important caveat stated by Hill [1], that "in principle, all three stress differences should 
arguably appear on a broadly similar footing". The trouble appears to arise because of the 
truncation of the general form in equation (1). 

Case 1 is valid only i fm = 2, in which case it reduces to Hill's 1948 criterion [8] simplified 
for planar isotropy. Therefore it should not be regarded as a viable separate criterion or case. 
'Anomalous" behavior cannot be accommodated by Case II either because that would require 
[9] rn > 2 for R < 1 which is a combination for which the criterion is not valid. Anomalous 
behavior can, however, be accommodated with m > 2 because there is no difficulty if R > 1. 
Of  course Case IV can also be used. 

When the special cases are used to evaluate experimental data, care should be taken to 
ensure that the data lie within an acceptable m vs R region. This was not done, for example, in 
the analysis [10] of experimental data for copper, brass and aluminum [11]. The analysis 
reported levels o fm for Cases I and II that lie in the regions for which these cases should not 
be used and therefore have no validity. The data analyses with Cases III and IV are 
acceptable. 

C O N C L U S I O N  

The special cases of  Hill's 1979 general anisotropic criterion have been examined. For 
many combinations of m and R, the predicted loci are concave or even unbounded. Case I is 
useable only with m = 2, and Cases II and III have limited applicability. No concavities were 
found with Case IV or Hosford's non-quadratic criterion. 
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