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Abstract The asymptotic behavior of the parametnc bootstrap estxmator of the samphng dlstnbuuon of a maximum 
hkeldaood esumator is investigated m a simple lattme case, integer valued random variables whose dlstnbutmns form an 
exponentml family. The exptected value of the bootstrap estimator ~s compared w~th an Edgeworth expansmn, less the 
contmmty correction 

AMS (1980) Subject Classtftcatton" 62E20. 
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1. T h e  m a i n  r e s u l t  

Singh's  (1981) theorem asserts  that  the b o o t s t r a p  
es t imator  of  the d i s t r ibu t ion  of  a s t anda rd ized  
sum of n i.i.d, non- la t t ice  r a n d o m  var iables  wi th  
three momen t s  differs  f rom the true value b y  a 
term of smal ler  o rder  of  magn i tude  than  1/7%- 
w.p. 1 as n ~ oo. The  pu rpose  of  this note  is to 
invest igate the la t t ice  case. I t  is shown that  the 
expected value of  the boo t s t r ap  es t imator  differs  
f rom the very weak  expans ions  of  Stein (1985) and  
W o o d r o o f e  (1986) by  a te rm of  o rde r  l / O n ,  the 
coefficient  of  which is very small  in m a n y  exam-  
pies. 

To isolate  the issues, the resul t  is p resen ted  in a 
s~mple context .  Thus,  let  )(1, )(2, . . .  deno te  i.i.d. 
integer va lued  r a n d o m  var iables  wi th  c o m m o n  
discrete dens i ty  (mass  funct ion)  of  the form 

f ~ ( x ) = h ( x ) e x p [ w x - ~ p ( w ) ] ,  x ~ Z ,  ~o~I~, 

where Z denotes  the integers,  h is a non-nega t ive  
funct ion and  ~0 denotes  an unknown  p a r a m e t e r  
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with  values in an open  interval  I2. I t  is assumed 
th roughou t  the grea tes t  c o m m o n  divisor  of  x - y  
for  which h(x )  > 0 a n d  h(y )  > 0 is one. 

the m e a n  and  var iance  of  X are 

0 = tk'(a~) and o '2(0)  = t~"(60), 

where ' deno tes  d i f fe rent ia t ion .  Rega rd ing  o 2 as a 
funct ion of  0 here  is jus t i f ied ,  s ince 0 and  o~ are  
increas ing  funct ions  of  each other.  

Let  .~, deno te  the  sample  mean;  .~._= S , /n ,  
where  S , - X  1 +  . . .  + X  n, n > / 1 .  Then  X,  is the  
m a x i m u m  l ike l ihood  e s t ima to r  of  0, whenever  i t  is 
in ~p'(~2). F o r  pu rposes  of  inference,  the d is t r ibu-  
t ions of the  ( app rox ima te ly )  p ivo ta l  quant i t ies  

Z =~_~_n ( ~  _ 0 ) =  S . - n 8  
a - " o~nn- ' n > / 1 ,  ( 1 )  

are  of interest .  The  d i s t n b u t l o n  func t ion  of  Z .  is 
deno ted  b y  

G.(.,, 
where  t ~ R,  w ~ $2, n >~ 1. I t  d e pe nds  on  the un-  
known p a r a m e t e r  w as  well  as n. 

To es t imate  these d i s t r ibu t ions ,  Efron  (1979) 
has  suggested the (pa ramet r i c )  b o o t s t r a p  es t ima tor  

( ~ . ( t ) = G . ( ~ . ,  t ) ,  t ~ R ,  n>l l ,  
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where 

,~. = ,~.(X, . . . . .  Xo) 

denotes the maximum likelihood estimator of 
(the solution to the equation ~k'(o~)= X., if one 
exists). For present purposes, ~t is convenient to 
allow ~., n >~ 1, to denote any strongly consistent 
sequence of estimators for which 

l l m  (P,~(  ]ndg'(~n)- S.] >~e) 

+v~-e~( I ~ . - o ~ l  > ~ ) }  = 0  (2) 

for all e > 0 and ~ ~ $2. Such a sequence may be 
constructed by letting ~. denote the maximum 
likelihood estimator for a restricted model in which 
52 is replaced by a compact 52. ~ 52 and 52. in- 
creases to 52 as n ~ o0. 

For the related case in which the distribution of 
)(1 is non-lattice, (a simple variation on) Singh's 
(1981) Theorem shows that G. and G(to, .) differ 
by o ( l /v rn )  w.p. 1 (P~) for all w. This is not true 
in the lattice case. 

If t ~ R, denote its integer part by [t]; and let 
( t )  = t - [t], denote the fractional part of t. 

Proposition. I f  520 is any compact subinterval of 52, 
then 

G. (o~, t) 

.0(5) 
umformly m t ~ N and ,o ~ 52o as n --* ~ ,  where • 
denotes the standard normal distribution function, eO 
denotes the standard normal density, 

o = = 3, 

and 

1 1 
t) = o ( :  - ( . 0 +   ot>) 

for t ~ R ,  w~52,  andn>~ l.  

Proof. For fixed a~, this is simply Theorem 1 (p. 
213) of Gnedenko and Kolmogorov (1968). The 
uniformity follows from an examination of the 
proof. 

Corollary 1. For t ~ R,  w ~ 52, and n >1 1, let 

P G * ( ~ ,  t )  = q~(t) + ~---~-n (1 - t2)g}(t). 

Then 

lim fa fn[G,(o~,  t ) -  G * (w ,  t ) l ~ ( w ) d w = O  

for all t ~ R and all densmes ~ wtth compact 
support m 52. 

Proof. It suffices to show that 

lim fs~(½ - (n#  + ¢~-o)}~ d w = 0  

for all integrable ~; and since the term in ( • • • } is 
bounded, it suffices to show this when ~ is the 
indicator of an interval (a,  b) c 52, by a standard 
approximation argument. See, for example, Bi- 
llingsley (1979, p. 226). Let v ( ~ ) = ~ ' ( ~ )  and 
v.(w) = q,'(~0) + ~ - " ( ~ ) / v ~ -  for o~ ~ 52 and n >/ 
1. Then v. converges to v and v" converges to v' 
uniformly on compacts as n ---, ~ ;  and v' = q/" is 
continuous and positive. So, if 52 0 is any compact 
subset of 52, then the restrictions of v and v. to 52 0 
have inverses w and w. for which w. and w~ 
converge to w and w', pomtwise and boundedly. 
If (a,  b] is any finite subinterval of 52, then 

lab{ ½ -- (n8  + V~o) )  ~ do~ 

1 
= ~/~"(½-(nY)}w--- ~ d y ,  

n 

where a .  = v . (a)  and fin = v.(b)  for n >~ 1. So, it 
suffices to show that the right side converges to 
zero as n ---, o¢ for arbitrary choices of a, b ~ 52. 
Since w'. converges boundedly to w', it suffices to 
show this when w'. is replaced by w'; by the 
standard approximation, it suffices to show it 
when 1/w"  is replaced by the indicator of an 
interval; and the latter condition is clearly satis- 
fied. [] 

If G(w, t) is regarded as the coverage probabil- 
ity of a confidence set at w, then f.G.(o~, t) 
~(~)  do~ may be regarded as the long run relative 
frequency of converage in many independent rep- 
lications of the experiment, when ~ is drawn from 
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the density ~; so, faG,(to, t)~(to) dto may rea- 
sonably be called the average coverage probabihty 
at ~. See Woodroofe (1986) for an elaboration of 
this point. The bootstrap estimator is compared to 
G* below. 

Theorem 1. For all t ~ R and all to ~ f2 for whtch 
p ( to ) --/= O. 

limCn[(~. ( t ) -  G* (to, t)] 
g/ 

-- l~b(T) (½ -- ((tVrffo) + ½potZn)} = 0  
O 

tn P~,-probabthty, where Z .  Is as m (1). 

Proof. Fix values of t ~ R and to ~ fa. Then, by 
the Proposition, 

Ge(to, ,)] 
= ~ ( ~ , - p ) ( 1 - t 2 ) q ~ ( t )  

+ q~(t)R.(go., t) + o(1) 

w.p. 1 (Po,) as n--+ m, where t3. = O(&~), for all 
n >~ 1. Clearly 

l im ( # . -  p)(1 -tE)ep(t)l = 0  

m P,o-probabdity as n + m, by the assumed con- 
sistency of &., n >/1. Next, since S. is an integer. 

R . (  da., t) = 8 .  1{½ - ((tVrffo) + t¢-n( 8 . - o )  

+n¢-S.>} 
for all n, where /~.=~k'(&.) and 8 .=o( /~ . )  
= X/~"(&.). By (2), a simple Taylor series ap- 
proximation, and the law of the iterated logarithm 

ten(8 ,  - o) + n ¢  - S, = S p o t <  + op(1) 

in P,~-probability as n--+ oo. So, since the frac- 
tional part is continuous, except for a set of con- 
tent zero, 

R.(03., t)  = o - ' {½ - ( ( t ~ - o )  + ½PotZ.)} 

+ o?(1) (3) 

under P,~ as n ---, oo. See the lemma below with 

u.  = (t o) + - o )  + - S.  

and 

V. = (tgrno) + ½potZ.. 

The theorem follows by collecting terms. [] 

Corollary 2. For r > 0 and 0 ~< m < 1, let 

e ( m ,  r) = fn[½ - (m + rs)]dp(s) ds. 

Then 

E , o { G , ( t ) - G * ( t o ,  t )}  

o~/n ¢p( t )e ( ( tCno) ,  ½oat) + o 

as n ---, oo for all t ~ R and all to ~ ~2 for whtch 
p(to) ~ O. 

Proof. if to ~ ~, then there is a compact ~/o c ~, 
for which P,o(~. ~ ~o} = o ( 1 / ¢ n )  as n - ,  ~ ,  by 
(2). It Is clear that 

( ~ . - p ) I (  a .  ~ fa0 }, n > l ,  

and 

( 1 / e . ) R . ( ~ . ,  t ) I ( d o . ~ [ 2 o ) ,  n > l ,  

are uniformly integrable random variables. It fol- 
lows that 

l i m E ~ ( ( <  - p ) I (  ga. ~ fa o } ) = O. 

l imE~{ ( 1 / 8 . ) R . (  go., t ) I {  go. ~ ~20} } 

- l e p ( t ) e ( ( t f n o ) ,  S p o t ) =  0. 
O 

(For the latter assertion, it is convenient to con- 
sider subsequences along which (t~-ffo) is conver- 
gent.) the corollary follows easily. [] 

Remark. The function e decreases quickly as r 
increaes. To see why, write 

½ - ( t ) =  ~ k-~sm(2~rkt), t ~ R .  
k=l 

Then 

e ( m , r ) =  ~ l f a s i n ( 2 , ~ k t ) l q , ( L Y ~ - ) d t  
k=l 

= ~ ~----4Im{exp(2~rimk-2r2~r2k2)} 
k=l 

= ~ ~----~sin(2~rmk)e -2r2~r2k2 
k = l  
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and for 0 ~ < m < l  and r > 0 .  For  example,  
supra l e ( m ,  ½) I < 0.01, supra l e ( m ,  1) [ < 10 -9. 

In  cases where sup,. l e ( m ,  p o / 2 )  I is small, the 
theorem suggests that  boo t s t rap  approx imat ions  
should be close to the very weak expansions cited 
above.  This is a weaker  p roper ty  than  that  as- 
serted in Singh's Theorem,  but  provides some 
comfort .  

Example.  I f  X 1 has the Poisson dtstrtbutton wtth 
unknown mean 0 > O, and i f  t = 2 (as in an upper 
97.5% confidence bound), then r = # o t / 2  = 1 for 
all ~o, so that the eoefftctent to 1 /  vrff ts less than 
10 -9" 

The  following l emma completes  the justif ica- 
t ion of (3). 

Lemma.  Let  /.In, n >~ 1, and V~, n >1 1, denote ran- 
dom variables for which: 

(1) the distrubttons of  V~, n >1 1, are ttght; 
(ii) all weak fimlt points o f  the dtstrtbutions of  

V., n >~ 1, assign measure zero to Z; and  
(iii) U. - II. ~ 0 in probabthty as n ~ oo. 

Then 

( U . )  - ( V . )  ~ 0 in probabdity. 

Proof .  Let Z 8 denote  the set of  x whose dis tance 
f rom Z is at most  8. Then  Z 8 is closed, and  Z8 
decreases to Z as 8 decreases to zero. So, 

l im lim sup P { 
O---~ 0 n 

by  Theorem 2.1 
and  condit ions 

v,  ~ Z s }  = 0 ,  

of  Billingsely (1968, pp. 11-12)  
(i) and (ii) above.  Thus,  given 

e > 0, there are n0 and 8 < e for  which P{V~ 
Z28 } ~<e/2 for all n>~no. So, 

P( I(u.)-(v.)l >~) 
< P {  IV.-  v.I >--~} + P{v.  c z ~ } .  

for  all n> /no ;  and  this is less than e for  all 
sufficiently large n. 

2. A Studentized version 

In  this section, suppose  that  ~3~ satisfies the more  
str ingent condi t ion 

limC%P,~(/~. 4= X. } = 0 ,  V~.  ( 2 ' )  
n 

Let 

To = 0 )  

and 

H.( to ,  t ) = P ~ ( T ~ < ~ t )  

for  all t ~ R, to ~ ~2, and  n >/1. Then  an expan-  
sion for H ,  m a y  be ob ta ined  as follows. For  fixed 
to, let h ( x )  = h ~ ( x )  = ( x -  O ) / o ( x ) ,  for x 
~'($2). Then  it is easily seen that  h is increasing 
near  x = 0, so that  the restr ict ion of h to a suita- 
ble ne ighborhood  of 8 has an reverse funct ion 
g = g,~ = h S 1. Moreover ,  it is also easily seen that  
g(O) = 8, g'(O) = o and  g " ( 0 )  = po. For  fixed 
t ~ R and to E ~2, let 

t)= ¢; [g l--'l } o [ ~ ] - g ( O ) .  

Then,  t .  = t + o t z /2v rn  + o ( 1 / v f n )  as n ---) oo; 
and,  by  ( 2 ' )  and Chebyshev ' s  Inequali ty,  

/L ('~, t) 

= G.( to,  t . )  + o(1/vrn  - )  

1 [6 ] = (/)(t) + -~-n q)(t)  (1 + 2t z) + R. (¢o ,  t . )  

1 

for  each t and  to. In  fact, (4) holds uni formly  on 
compac t s  with respect  to t ~ N and o~ ~ ~. Let  

/ 4 . ( t )  = h . ( ~ . ,  t )  

and 

P ( l + 2 t e ) q , ( t )  H.* (~, t) = ~(t )  + 

for  t ~ R ,  6o ~ ~2, and  n > ~ l .  

Theorem 2. Wtth the notation of  the prevtous para- 
graph, 

l i m v r n - [ H . ( t )  - . * ( t o ,  t )]  
n 

a ~ (  t ) ( ½ - ( ( ¢g oot 2) + ~po t z . )  ) = 0 

In P~-probabi#ty for  each t ~ R and to ~ (2 for  
whtch P( to ) ~ O. 
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Proof.  The  p roo f  is s inular  to tha t  of T h e o r e m  1, 
but  sl ightly more  compl ica ted ,  since ~ .'= t , (&n, t )  
depends  on  n and  X 1 . . . . .  X, .  In  the analysis ,  one 
f inds that  (with p robab i l i t y  a p p r o a c ~ n g  one), 

( i / ~ . ~ n )  = ( V  n + Op(1)),  

where 

V,, = ( f n o t  + ½pot 2) + ½tpoZ,, ,  n >~ 1. 

Here  V., n >~ 1, satisfies the cond i t ions  of  the 
lemma;  and  the a rgument  proceeds  as above.  
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