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When are molecular wires thin enough to show one-dimensional exciton kinetics? Cylindrical naphthalene wires (5-5000 nm 
radius) show a definite one- to three-dimensional transition (about 25 nm for triplet excitons at 4 K; 40 nm at 77 K). Nuclear 
channel pore membranes (polycarbonate) serve as templates and calibrators. The triplet exciton migration (multiple hopping) 
length is SO-100 molecules. The closest neighbor distribution is used as an order criterion. Steady-state simulations of the rear+ 
tions: A+A-rO and A+A+A in low-dimensional media give non-random reactant distributions, e.g. Wigner-like rather than 
Poissonian spacings in one dimension. Effectively, a dynamic, quasi-ordered superlattice of excitations is created (excitation 
grating with a 5 nm spacing). Experimental verification involves a new technique: excitation time modulation. Porous glass 
(Vycor) is shown to have an effective one-dimensional channel topology. Naphthalene powder and isotopic alloys also show non- 
random steady-state exciton distributions. 

1. Introduction 

Excitation kinetics allows us to study paradigms of 
transport in disordered films, polymers and mem- 
branes as well as paradigms of heterogeneous chemi- 
cal kinetics. It is also a tool for studying the topology, 
morphology and structure of molecular aggregates, 
strands, pores and domain boundaries. Newly devel- 
oped techniques of exciton luminescence are based 
on the anomalous energy diffusion and anomalous 
excitation population distributions in confined and/ 
or low-dimensional media. The ideal testing grounds 
for such techniques are one-dimensional crystals. We 
present below close experimental approximations of 
such systems. We also present simulations on both 
ideal one-dimensional lattices and approximations 
thereof representing the experimental systems. In 
particular we show that excitations, and reactants in 
general, are not distributed at random, but achieve a 
stable, self-ordered distribution. For example, for the 
A+A+A reaction in one dimension, the random 
Poissonian nearest-neighbor distribution is replaced 
by a skewed-Gaussian distribution. This gives rise to 
a mesoscopic scale, with a structure resembling a 
transient grating. 

Solid-state and stochastic problems in one dimen- 

sion have been of longstanding theoretical interest 
[ l-51. Currently, electronics in thin wires are of 
much theoretical and practical interest [6-91. The 
theoretical enigmas (localization, mesoscopic phe- 
nomena, boundary effects) are compounded by ex- 
perimental difficulties: minute currents, heat 
dissipation, shorts, non-uniformity and suspect test- 
ing procedures. Many of these difficulties are not 
present for Frenkel excitons. There are no Coulomb 
repulsions and for triplet excitons the interactions are 
extremely short-ranged and the surface effects are 
minimal [ 4,10 1. Moreover, triplet excitons are al- 
ready localized in the bulk [ 111 and thus there is no 
localization-delocalization transition of cross-over. 
Experimentally one can rely on optical measure- 
ments which are as simple for thin wires as for the 
bulk. Furthermore, sample uniformity or continuity 
is not a crucial factor. One can thus concentrate on 
the mesoscopic properties of interest, stemming from 
the confinement of the excitons inside a thin “wire”. 

Recently, porous materials and “fractal” networks 
have also been of much interest [ 12- 15 1. The differ- 
ence between a fractal network and a quasi-one-di- 
mensional network is not often all that clear [ 12- 16 1. 
Energy transfer [ 13,141 and exciton kinetics [ 151 
have been used for the characterization of such net- 
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works (e.g. pore networks of porous media). Under- 
standing the characteristics of truly one-dimensional 
networks and the effects of sample diameter is thus 
of practical interest. Furthermore, molecular or po- 
lymeric chains, fibers, filaments and networks exist 
in most synthetic, natural and biological organic sys- 
tems, from organic conductors to neuron transmit- 
ters. Molecular exciton kinetics in thin filaments are 
of relevance to all these systems. 

It has been demonstrated [ 2 1 ] that the reaction 
A + B+ 0, in low dimensions, has a segregated, par- 
tially ordered steady state. It is demonstrated here that 
the simpler A +A+product reactions also lead to or- 
dering, i.e. non-random closest neighbor distribu- 

We note that our systems differ significantly from 
previously studied quasi-one-dimensional systems 

tions. This ordering accounts for the non-classical 

[ 17-201. The latter are essentially two- or three- 
dimensional systems with highly anisotropic exciton- 

steady-state reaction kinetics demonstrated earlier 

exchange interactions. Thus, for a short time the ex- 
citon is confined in one dimension. However, there 

[ 22-261 for low-dimensional (ds2) media. It also 

is always a finite probability of moving along other 
directions (interchain hopping), resulting in a two- 

makes possible a simple, but powerful, new experi- 

or three-dimensional behavior over longer times (this 

mental technique for the characterization of low-di- 

usually confines the measurements to ultrashort 
times). Moreover, the phonons and exciton-phonon 
interactions in these systems are seldom one-dimen- 

mensional or disordered media [ 27,281. This 

sional. In contrast, our systems are truly one-dimen- 
sional over long times and there is no escape or 

ordering process also accounts for the anomalous ki- 

tunneling out of the thin, one-dimensional systems. 

netics of unstirred batch (“big-bang”) reactions in 

(Our ultrathin wires are obviously three-dimen- 
sional on extremely short time scales.) 

low dimensions [ 29-371. 
The rate-law for the elementary A+A+O or 

A+A-+A steady-state reaction is given by 

R=KpX, (1) 

where R is the steady-state creation rate, p the den- 
sity, K a rate constant and X the reaction order. Clas- 
sically, X= 2. For the one-dimensional lattice it was 

found [ 22,231 that X= 3, and, in general for fractal 
domains, X= 1 +d,/2 (d, < 2), where d, is the spec- 

Most of our previous studies [ 15,26,34-371 em- 

tral dimension [ 23,26,38,39]. The interpretation of 
these high X values is not straightforward, even 

ployed a “long-time technique”, i.e. a study of long- 

though they have been linked to the time-dependent 
rate coefficients for transient reactions [ 23,261. For 

time phosphorescence and delayed fluorescence de- 

monodisperse islands and percolation clusters, ex- 
tremely high X values were found, both experimen- 

cays. In section 2 we employ this technique on our 

tally [ 35 ] and by simulation [ 25 1. On the other hand, 
replacing the strictly random creation of A particles 

most ideal one-dimensional naphthalene samples. In 

with a geminate random creation reduces X back to 
two in one dimension [ 22,371 and down to one for 

section 3 we test out a novel “short-time technique”, 

islands [ 37 1. For a uniformly random (in one di- 
mension) distribution of particles, the probability p 

which is explicitly based on the phenomenon of ki- 

of finding a nearest-neighborpair (forp-0) isp-p’. 
Hence the instantaneous reaction rate is R-p-p*. 

netic self-ordering. Its utility and theoretical impli- 

An order X#2 implies the absence of a random 

cations are first demonstrated via computer 

(Poissonian) particle distribution, i.e. the presence 
of partial ordering. For instance, an evenly spaced 
population or a population with a skewed-Gaussian 

simulations. Subsequently, experiments are pre- 

nearest-neighbor kinetic distribution given by 
K(r) = (Yr exp( -jlr’) results in R -p3, compared 

sented on one-dimensional as well as other low-di- 

with R wp* derived from the Poissonian (Hertzian) 
distribution H(r) -exp( - yr). The existence, nature 

mensional or disordered systems. In section 4 we 

and consequences of such anomalous distributions are 
addressed below. 

compare and summarize the findings from both 
techniques. 

2. Long-time excitation kinetics in molecular wires 
and filaments 

Exciton transport is usually monitored via the ki- 
netics of trapping or annihilation [ 11,15,18,26]. The 
kinetic process may be unary, pseudo-unary or bi- 
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nary (monomolecular, pseudo-monomolecular or 
bimolecular in chemical language), e.g., trapping, 
heterofusion or homofusion, respectively [ 4,15,26]. 
In all these cases the “rate constant” (instantaneous 
reactive collision probability per unit density ) is given 

by WI 

k-dSjdt, (2) 

where S is the mean number of distinct lattice sites 
visited by a single exciton (in the absence of reactive 
processes). We note that eq. (2) is valid for all to- 
pologies, in contrast to the expression k-D 
(D = diffusion constant) which is valid only for three- 
dimensional (homogeneous) lattices. To a very good 
approximation one has [ 26 ] : 

S-C, f<f<l ; (3) 

kwt-h, f<h=l-f<l. (4) 

At long times h = 0 for three-dimensional lattices and 
h= 1 for one-dimensional lattices. We note that for 
fractal lattices h = 1 - dJ2 where d. is the spectral di- 
mension [26,37-391. The pragmatic questions we 
pose are: How thin has a wire to be to give one-di- 
mensional behavior (h = f )? What is the nature of 
the crossover from three-dimensional to one-dimen- 
sional behavior? What does this crossover depend on? 
What can we learn from it? What is the use of thin 
exciton wires? 

We note here that in perfect crystalline samples the 
excitons move freely (at random, due to phonons), 
resulting in binary (bimolecular) exciton-exciton 
annihilation [ 26,36,37]: 

A+A+hv, (5) 

where h v designates fluorescence (“delayed”). Thus 
the annihilation rate R and the fluorescence rate F 
are given by [ 361 

F-R=kp;, (6) 

where pA is the free exciton density. However, in most 
real samples [ 15 1, a fraction of the free excitons (A) 
are quickly trapped, giving a roughly constant density 
pAS of trapped excitons (A’ ), resulting in a pseudo- 
unary (pseudo-monomolecular) annihilation reac- 
tion and rate [ 15,401: 

A+A’+hv, (7) 

F-R=k’pA, k’=hy~~ . (8) 

In addition, the triplet excitons undergo natural de- 
cay (lifetime ‘5): 

A+hv ; P=r-‘p,. (9) 

The overall results are thus: 

k-F/P”, n= 1,2, (10) 

where n = 2 is for perfect (trapless) samples and n = 1 
is for real samples (with traps). We note that for 
three-dimensional samples k (and log k) is expected 
to be constant in time while for one-dimensional 
samples k- t - ‘I* and log k- log t (with a slope of 
-l/2). 

An important fine point concerns the validity of 
relations such as k-t -‘/* or eqs. ( 1) and (4) in the 
short and intermediate time domain. The standard 
theoretical derivations [ 29,30,36] emphasize that 
these are asymptotic relations (t-m). However, ex- 
plicitly or implicitly, at t=O the ensemble of reac- 
tants has a random (Poisson) di&bution and a 
classical reaction rate. By contrast, in our experi- 
ments [ 15,36,40] the exciton ensemble is prepared 
under steady-state exitation where the source is turned 
ofSat t=O. We show below (section 3) that the re- 
sulting distribution is a stable, self-ordered distribu- 
tion. For such a distribution the rate law R-p 3 and 
its analogs are valid for all t > 0 and not only for t+ co. 

The optical arrangement and sample preparation 
have been described before [ 15,40 1. The only signif- 
icant change involves the use of channel-pore (“Nu- 
clepore”) #’ polycarbonate membranes. These 6 pm 
thick membranes come with well isolated, cylindrical 
pores (fig. 1) . While a given membrane has uniform 
pore diameters, membranes with different pore di- 
ameters are available and we used them in the range 
of10nm(100A)to1~m(100006).!Sometypical 
results are shown in fig. 2 ( T= 4 K) and fig. 3 ( T= 77 
K). We note that only the pseudo-unary model 
(n = 1) resulted in linear slopes. The binary model 
(n= 2) cannot be fitted with straight lines and, 
moreover, results in non-constant k curves even for 
the thickest wires ( 1.2 pm ) . The totality of the h val- 
ues (negative slopes), for all wires (each at 4 and 77 
K), is given in fig.4. 

*I Nuclepore Corp., Pleasanton, CA, for similar applications to 
wire fabrication, see ref. [ 4 11. 
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Fig. 1. Channel-pore membrane: polycarbonate (“Nuclepore”). 
Enlargement about x 104. Pore length 6 pm. 

We observe that the thinnest wires yield a value 
h x 0.5, while the thickest wires give h z 0, for both 
temperatures. Actually, extrapolating to zero diame- 
ter, ho.49 k 0.02. On the other hand, for micron- 

3.0 
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LN (TIME) SEC 

Fig. 2. Annihilation rate coefficient R = F /P versus time on a In- 
In scale, for naphthalene filled channel-pore polycarbonate mem- 
branes at T=4 K. The pore radii are (A) 75 A, (B) 150 A, (C) 
250 A and (D) 400 A. Note that the trapped (bound) exciton 
phosphorescence is excluded via an interference filter (centered 
at the free exciton peak). 
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Fig. 3. Annihilation rate coefficient R = F/P versus time on a In- 
In scale, for naphthalene filled channel-pore polycarbonate mem- 
branes at T=77 K. The pore radii are (A) 250 A. (B) 400 A and 
(c) IOOOA. 

sized wires LO.02 f 0.02. These two limiting values 
are in excellent agreement with the theoretically ex- 
pected values of h = l/2 and h = 0, respectively #2. The 
crossover (from h z 0 to h x 4 ) occurs at diameters of 
about 500 to 800 A at 4 and 77 K, respectively. The 
crossovers are relatively sharp and their temperature 
dependence is relatively mild. The higher value at 
higher temperatures is consistent with a somewhat 

112 We note that the finite width of the thin wire does not invali- 
date the h = l/2 value. Simulations on a “bundle” of three in- 
terconnected lines (“Toblerone” shaped) give h = 0.5 [ 421. 

j , , , . , “!/J _T ? , 

50 150 250 350 450 5000 7cJOo 

R(8) 

Fig. 4. Exponent h versus wire radius, r (in angstrom), at 4 K 
(0 ) and 77 K ( X ). The 20 A point (A ) is for porous Vycor 
[ 15 1. Note break in scale. 
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faster hopping rate. In our interpretation the cross- 
over radius is roughly consistent with the average 
cruising range 1 (endpoint to endpoint distance) of 
the exciton, within its lifetime. 

An indirect, rough estimate for the naphthalene 
cruising, range in similarly prepared samples was 
given [ 151 as L= 1000 A. This is in excellent agree- 
ment with our present result (1~ 500 A). Obviously, 
for wires with radius r s A the excitons do not “feel” 
the pore boundaries while for rc=l the excitons are 
severely confined along two of the three directions. 
We note that the polycarbonate excitation energy val- 
ues are so much higher than those of naphthalene that 
there is a vanishing probability for barrier crossing or 
tunneling (AE> 100 kTeven at 77 K). 

Regarding previously studied random pore mem- 
branes (“Gelman”) [ 15 1, we notice that these are 
prepared by an entirely different process, resulting in 
an apparent self-similar distribution of pore sizes (see 
picture in ref. [ 26 ] ) . As pointed out before [ 15 1, the 
exciton annihilation method is heavily biased to- 
wards small pores. Thus the previously derived h val- 
ues can now be calibrated in terms of weighted pore 
sizes (for the nylon, acetate, etc. pores of ref. [ 15 ] ) . 
Specifically, a range of h values between 0.1 and 0.3 
can be interpreted in terms of a weighted pore size 
distribution of a few hundred &ngstrom. This is in 
contrast to the much larger nominal pore sizes, based 
on filtration experiments. On the other hand, it is 
possible to retain a fractal-like interpretation [ 15 1, 
where h= 1 -d,/2 and d. is an effective spectral di- 
mension. This also explains how different h values 
may be obtained by different experimental methods. 
For instance, the photodimerization method [40] 
which is based on the diffusion of excited molecules 
in solution, does result in a somewhat higher range of 
h values for the same random porous membranes 
(probably due to a different weighting). An interest- 
ing exception to the random pore membranes appear 
to be the natural (cellulose) filter papers. These are 
not likely to contain a self-similar distribution of 
minipores. The h =O result [ 151 points towards 
nearly cylindrical pores, with a diameter distribution 
that has a cut-off higher than 1000 A. 

Of particular interest is the resolution of the po- 
rous glass (Vycor ) dilemma [ 15 1. The nature of the 
pore network has been highly controversial [ 12- 16 1. 
It has been argued on the one hand that it is a random 

(percolation-like) network with a fractal dimension 
on the order of two [ 131. On the other hand it has 
also been argued to be non-fractal but essentially one- 
dimensional [ 12,15,16]. Based on the exciton kinet- 
ics technique it was argued [ 15 ] that the effective 
spectral dimension is 1.05, i.e. effectively one-di- 
mensional. Our present study uses the same ap- 
proach for “calibrated” cylindrical pores which are 
obviously non fractal and one-dimensional. We have 
included the older [ 15 ] Vycor glass measurements as 
a data point in fig. 4. It essentially falls on the same 
curve as the new, polycarbonate data. The Vycor data 
are thus totally consistent with a one-dimensional 
pore topology [ 42,43 ] #3. 

In summary: ( 1) We have produced cylindrical 
molecular crystal wires down to a radius of 5 nm. (2) 
The recombination process involves free and bound 
excitons (“heterofusion”). (3) The triplet exciton 
kinetics tits a multiple-hopping model. (4) The over- 
all migration range is about 25 nm at 4 K and 40 nm 
at 77 K. ( 5 ) The long-time exciton transport is strictly 
one-dimensional in the ultrathin wires. (6) The frac- 
tal-like kinetics model works well in a low-dimen- 
sional non-fractal system. (7) The porous-glass 
(Vycor ) channels are described well by a non-fractal, 
quasi-one-dimensional topology. (8) The exciton 
annihilation method appears to be a reliable tool for 
probing spectral dimensions and low-dimensional 
topologies. 

3. Short-time excitation kinetics in one-dimensional 
and fractal-like samples: self-ordering 

In this section we demonstrate explicitly the phe- 
nomena of kinetic ordering in low dimensions for the 
simplest binary reaction A+A+O or A+A+A. A 
new, mesoscopic, length-scale (the most probable 
closest neighbor distance) emerges. This not only ex- 
plains the anomalous long-time reaction kinetics de- 
scribed above but also gives rise to a new short-time 
technique which, first of all, demonstates the excita- 
tion self-organization, and secondly, provides a new 

(13 We believe that the very recent report [43] of a spectral di- 
mension of 1.1 is also consistent with a quasi-one-dimensional 
pore topology. 
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method for the characterization of low-dimensional 
structures. 

3.1. Simulations 

The experimental exciton reaction: triplet + 
triplet + fluorescence was simulated by A + A+0 and 
A+A+A random walks on a variety of lattice sur- 
faces. Comparisons were made between different ini- 
tial conditions. Steady-state conditions were 
generated by adding several new walkers per step un- 
til the total number of walkers was constant. Pulsed 
conditions were then studied by adding in one step 
the same number of walkers that exist at steady state 
to produce an initial uniformly random distribution. 
In both cases, after stopping the addition of walkers 
( t = 0 ), the number of walkers or reactants remaining 
at time t (equivalent experimentally to phosphoresc- 
ence) and the number of annihilations or reaction rate 
at time t (equivalent experimentally to delayed fluo- 
rescence) were monitored. While the initial (t ~0) 
global densities are equal for both forms of reactant 
generation, this does not guarantee equal reaction 
rates at t 2 0 or equal global densities at t > 0. Exam- 
ples are given in fig. 5 which is discussed further 
below. 

I 

” ‘1 
STEP NUMBER 

160 

Fig. 5. Ratio of annihilation reaction rates RJR,, (rate for uni- 
formly random pulse over rate for steady-state generation) ver- 
sus step number for the simulation A+A=O on various lattices. 
Total number of sites = 30000. (A) One-dimensional islands 
(20 sites each). (B) One-dimensional continuous chain. (C) 
Three-dimensional islands (3 x 3 x 3 sites each). (D) Three-di- 
mensional percolation clusters (cubic; 40% occupation, all clus- 
ters). (E) Three-dimensional cube. 

The spatial and temporal aspects of a distribution 
of reacting particles (excitons) are related. The sim- 
ulations show this most clearly for a one-dimensional 
lattice. Fig. 6 gives the distribution D(I) of interpar- 
title (closest neighbor) gaps in terms of gap-lengths 
(I). For a Poissonian (uniformly random) distribu- 
tion of particles the most probable gap is the shortest 
one (f= 1 lattice unit), giving a quasi-exponential 
D( 1) m exp( -/I/) one-dimensional [ 441 distribution 
of gaps. This is no longer true for the steady-state dis- 
tribution. Here there is a most probable gap-length 
( r> 1) with a skewed exponential (0)/w I exp ( - jIl) 
distribution. Similar A+A+A simulations give a 
skewed Gaussian (see above), Wigner-like distribu- 
tion [45,46]. We note that experimentally, the ran- 
dom distribution represents a pulse-created exciton 
distribution. Allowing each one of the two realiza- 
tions (pulsed and steady state) to relax reactively 
(with no further supply of particles), one finds two 
different reactive decay curves in spite of the equality 
of populations for both realizations. The initial de- 
cay rate will differ most drastically as it is only deter- 
mined by pairs with a gap I= 1. There are many more 
such 1= 1 gaps for the pulsed distribution than for the 
steady-state distribution, the ratio being about ten for 
the one-dimensional lattice (see fig. 6). Fig. 5, curve 

___. _._ 
------l 

GAP 100 

Fig. 6. Distribution D(I) ofthe interparticle closest neighbor dis- 
tance (gap) I in lattice units for each particle on a one-dimen- 
sional line 30000 long: (A) Steady state (A+A-+O) after 2000 
steps of adding two particles per step (density = 2%). averaged 
over 1000 realizations. (B) Uniformly random distribution of 
the same number of particles as in (A), with no reaction steps 
taken. Note that for gap length I= 1 the gap population is 10.7 
that ofcase (A). 
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(B) plots the ratio of reaction (fusion) probability 
as a function of time for the one-dimensional lattice. 
At t=O this ratio is about eight. The two ratios are 
related (but not equal). In principle, curve (B) of 
fig. 5 carries the information given in fig. 6. It is ob- 
vious from fig. 5 that the most significant steady-state 
ordering occurs for one-dimensional-islands (fila- 
ments). On the other hand, there is no ordering ef- 
fect for a cubic lattice. Other topologies show an 
intermediate behavior (which is highly specific). The 
simulations of fig. 5 give the temporal aspect, which 
is closest to our experiments. We emphasize here that, 
for each topology, the initial populations (steady state 
and pulsed) are strictly equal. This is also the key for 
the design of meaningful experiments (see below). 

The anomalous values of the reaction order_%? (eq. 
( 1) ) can now be addressed. With X= 3 (the one-di- 
mensional result), there is an extra power in the p 
dependence. This can be related to the extra length- 
scale (1) that enters the problem. Obviously, 1~p-r. 
It appears that now R-p-p21-’ -p3. We interpret 
this as meaning that the probability of having a pair 
at distance 1 isp2, but at a distance of unity this prob- 
ability is scaled down #4 by 1. 

Analogous arguments can be made for other low- 
dimensional media (do 2). The interesting question 
remains: What determines the critical dimensional- 
ity for this self-ordering effect? Is it the same as for 
the segregation in the A+B case [ 2 1 ]? Obviously, 
above this critical dimension the diffusional self-stir- 
ring [ 371 efficiently re-randomizes the reacting par- 
ticle distribution, not only for steady-state reactions, 
but also for transient (“pulse”, “batch”, “big-bang”) 
reactions. 

3.2. Experiments 

Triplet fusion experiments were performed on 
naphthalene impregnated porous glass (Vycor ) , 
naphthalene powder and perfectly crystalline iso- 
topic alloys of naphthalene (CloHs:CloDs). Purifi- 
cation, preparation and other experimental 
procedures were the same as in previous studies [ 15 1. 
The time dependence of the naphthalene triplet-trip- 

M Rigorously, a skewed Gaussian or skewed exponential distri- 
bution in one-dimension gives a p’ global rate law, based on a 
local pw law, where w is the gap (g) distribution for g-0. 

let exciton annihilation reaction rate was monitored 
by delayed fluorescence emission. Phosphorescence 
emission corresponds to the instantaneous triplet 
reactant concentration (global density). The depen- 
dence of the relative decay rates and intensities of the 
emissions on initial excitation duration was exam- 
ined. A random population of excitons was produced 
by pulsed excitation (5 ms duration) from a me- 
chanically shuttered xenon arc lamp. The steady-state 
population was created by leaving the shutter open 
for several seconds (which is longer than the time re- 
quired to establish a constant phosphorescence sig- 
nal). Neutral density filters were used to give a 
phosphorescence intensity at time zero (the closing 
time of the shutter) equal to that of the pulsed mode. 
This ensures equal initial global exciton densities. 
However, it is not sufficient to assure equal annihi- 
lation kinetics. Actually, both the phosphorescence 
and the delayed fluorescence decays are quite differ- 
ent for the pulsed and steady state cases. Fig. 7 shows 
the results for naphthalene embedded porous glass. 
Similar results are obtained for naphthalene powder 
and for low concentration naphthalene single crystal 
isotopic alloys ( CtoHs below percolation [ 26,34- 

TIME (SEC) 0.5 

Fig. 7. Relative intensities of phosphorescence and of delayed 
fluorescence decays from naphthalene in porous Vycor glass at 
18 K following steady-state ( 11 s duration) or pulsed (20 ms 
duration) excitation (3.19 nm). (A) Phosphorescence from 
steady-state excitation with a number 2.0 neutral density filter to 
equalize its initial intensity to that of (B). (B) Phosphorescence 
from pulsed excitation. (C) Delayed fluorescence from condi- 
tions in (A). (D) Delayed fluorescence from conditions in (B). 
Note that the intensity scale for (C) and (D) is different than 
for (A) and (B). 



216 R. Kopelman et al. / Exciton kinetics in low dimensions 

361). On the other hand, no such differences in in- 
tensities or decay rates are observed for high concen- 
tration alloys (above percolation) or for nearly 
perfect naphthalene crystals. Above percolation, the 
single crystal alloy exhibits classical rather than geo- 
metrically restricted transport characteristics. This 
range of behaviors is shown in fig. 8. 

From figs. 5 and 8 it appears apparent that the po- 
rous Vycor naphthalene filaments have an effectively 
one-dimensional, wormlike topology. Similar con- 
clusions were obtained from long-time decays of 
phosphorescence and delayed fluorescence [ 15,471. 
The long-time technique is based on the anomalous 
diffusion (compact random walk) in low dimen- 
sions while the current short-time technique is based 
on the anomalous distributions of the reactive popu- 
lations at low dimensions. Obviously, there is a di- 
rect relation between the compactness of the diffusion 
and the ordering of the reactants. However, the long- 
time decay experiments are weighted more heavily 
by reactions on longer naphthalene filaments 
(worms) while the current short-time decays may be 
weighted more heavily by reactions on shorter tila- 
ments. We estimate the filament lengths at 200-1000 
A or longer, with an effective one-dimensional topol- 
ogy. The Vycor pore topology is thus quasi-one-di- 
mensional over a range of 200 A and possibly 1000 A 
or longer. This is consistent with some literature con- 
clusions [ 121 but not with others [ 131. It is evident 
from figs. 8 and 5 that a percolation network of pores 

Fig. 8. Ratio of delayed fluorescences: pulsed versus steady-state 
excitation, with equalized initial phosporescence intensities. (A) 
Naphthalene in porous Vycor glass. (B) Naphthalene powder. 
(C) 5% isotopic mixed naphthalene crystal. (D) II% isotopic 
mixed crystal. (E) 39% isotopic mixed crystal. 

is not consistent with our naphthalene in Vycor 
results. 

In summary, our experiments demonstrate a non- 
random distribution for the triplet exciton popula- 
tions in naphthalene samples that are not pure and 
perfect bulk crystals: crystalline powders, naphthal- 
ene filaments in porous silica and isotopic alloys with 
compositions below percolation. However, for iso- 
topic alloys with compositions well above percola- 
tion the exciton distribution is random, within our 
experimental accuracy. The naphthalene “worms” 
inside the Vycor pores exhibit a one-dimensional to- 
pology, with filament lengths of about 200-1000 A. 
The simulation results are consistent with the exper- 
imental ones. Furthermore, for one-dimensional to- 
pologies they show Wigner-like steady-state reactant 
distributions, implying the existence of steady-state, 
grating-like exciton quasi-superlattices in the excited 
naphthalene filaments. 

4. Summary and conclusions 

Both short-time and long-time techniques are in 
excellent agreement for the naphthalene impreg- 
nated Vycor samples. They both point towards the 
one-dimensional nature of the pores and filaments, 
over lo-100 nm length scales. We note that the Vy- 
car pores are about three times narrower than the 
thinnest polycarbonate pores, and thus more suited 
for the “short-time” technique. However, prelimi- 
nary short-time experiments on polycarbonate im- 
pregnated naphthalene still exhibit a one-dimensional 
behavior for the thinnest wires but not for the thicker 
ones. In the future, we plan to relate, quantitatively, 
experimental time scales and length scales. Overall, 
we have demonstrated the applicability and versatil- 
ity of the exciton annihilation techniques. We have 
also demonstrated the utility of porous media as tem- 
plates for one-dimensional solids. In addition, we 
have verified quantitatively the fractal-like (low-di- 
mensional) reaction kinetics formalisms. Finally, we 
have shown that the compact diffusion in low dimen- 
sions leads to ordered rather than random steady-state 
distributions of reactant populations, giving, for the 
one-dimensional lattice, an effective excitation grat- 
ing with a mean spacing as small as 50 A. 
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