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ABSTRACT 

Structural reliability analysis often involves extensive integration of a function of multiple basic 
variables. Special techniques can be used to reduce this numerical effort. This paper develops 
integration formulas for computing the statistical parameters of a function of a random vector, in 
particular calculation of the first few moments. The formula is a numerical procedure using selected 
weights and points to estimate integrals. The points and weights are predetermined in the indepen- 
dent standard normal variable space. The sample points in basic variable space are then obtained by 
various transformations. The formulas were developed for the basic variables with various probability 
information known. The procedure is convenient to implement, and allows for a direct use of the 
available deterministic computer programs. 

INTRODUCTION 

Recently, there have been extensive new developments in reliability theory and its application 
to structural engineering. Especially noteworthy has been the work of Ang and Cornell [1], 
Galambos and Ravindra [2], and Ellingwood et al. [3] in the United States, Lind [4] in Canada, 
and Ditlevsen [5] and Rackwitz [6] in Europe. A more critical review on structural reliability 
methods can be found in the book by Madsen et al. [7]. 

In structural reliability analysis, load and resistance models play a very important role. The 
models are derived using survey data, tests, analysis and engineering judgement. Often the 
resistance or load is expressed as a function of multiple basic variables such as material 
properties, dimensions, geometries, frequency and magnitude of load, and so on. It is then 
necessary to evaluate the statistical parameters, particularly the first few moments, of these 
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functions. Various numerical methods have been widely used, such as the Monte Carlo method 
[8], Latin Hypercube Sampling [9,10], and point estimates [11,12]. However, Monte Carlo 
simulation or Latin Hypercube Sampling require prohibitively large computational effort, 
although the number of simulations is independent of the number of basic variables. This paper 
develops a simple numerical integration procedure for computing the statistical parameters of a 
function of multiple random variables. The samples of basic variables are obtained by transfor- 
ming a priori the selected points in standard normal space to basic variable space. The method is 
similar to point estimates, except that the points and weights are predetermined in standard 
normal space. The procedure is convenient to implement, and allows a direct use of the available 
deterministic computer programs. 

THEORETICAL DEVELOPMENT 

For a general function of a random vector X = ( )(l, X 2 . . . . .  X n), that is 

a ( x )  = a (x , ,  x2,. . . ,  x , )  (1) 
the exact k th  moment  of G, E[Gk(X)], may be obtained by evaluating the integral: 

= x,)Gk(x],. ,  x , ) d x ] . . d x ,  (2) 
OC 

where fx(x l , . . . ,  x,) is the joint probability density function (PDF) of the random vector X. In 
many applications, however, the integration of eqn. (2) may be difficult to perform, and special 
numerical procedures are needed. Gorman [13] used the quadrature formulas to evaluate eqn. (2) 
for the special cases of normal and lognormal random variables. In this study numerical 
integration formulas were formulated for any jointly distributed random vector. 

Single standard normal variable 

Let Z denote a single standard normal variable with the probability density function defined 
a s  

1 e x p ( -  ~z 2) (3) f z ( z ) = ~ ( z ) -  2 ~  

Substituting eqn. (3) into eqn. (2) and z = ~/2u(dz = v/2 du) yields 

E[Gk(Z)] = f ~ ~(z)Gk(z) dz (4a) 

1 +~ 
- ~fg f exp(--u2)Gk(v~u) du (4b) 

The integration of eqn. (4b) can be evaluated using the Gauss-Hermite  formula [14]: 

1 + ~  1 m f exp(-uZ)GJ'(f~u) du =- ~ Y'~ otjGk(v/-2uj) (5) 
f~r j=l  

where aj and uj are the j t h  weight factor and zero of the (2m - 1)th order Hermite polynomial, 
respectively, which are widely available [14], and m is the number  of points considered. 
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Using zj = v'2uj and letting wj = aj/f~,  weight factors and points in standard normal space 
(Z space) are obtained. Thus eqn. (5) becomes 

f ~,(z)G~(~) dz-- ~ wjGl"(zj) (6) 
- o o  j = l  

Equation (6) is the integration formula for a single standard normal variable, and it is graphically 
shown in Fig. 1. When Gk(z) is a polynomial of at most the (2m - 1)th degree, eqn. (6) is exact. 
Typical normal points zj and the corresponding weights wj are given in Table 1. 

Single non-normal variable 

Let X denote a non-normal variable in eqn. (2) and make a marginal transformation [15]: 

X= Fx~(d~(z)) (7) 

where ~(z)  is the cumulative distribution function (CDF) of standard normal variable Z, and 
Fx(x) is the cumulative distribution function of non-normal variable X. The transformation is 
graphically shown in Fig. 2. By this transformation the domain of the integration eqn. (2) is 
changed from X space to the standard normal space: 

J+" J7 o fx(x)G (x) d x -  4~(z)Gk(ex'(tb(z))) dz (8) 

The right side of eqn. (8) can be evaluated using eqn. (6) 
-4-oo m 

L ~  q~(z)Gk(Fx'(gi)(z))) dz--- Y" wjGk(Fx'(~(zj))) (9) 
j=l 

That is, for a non-normal variable X, eqn. (2) can be calculated using the formula 

E (10) 
j=]  
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T A B L E  1 

Examples of points and weight factors for integration formulas 

Number of points Points Weight factors 
m :1 w :  

1 z I = 0  "h =1 

I 
2 : 1 = - 1  w~ = 

z2 = + 1  w,  = ~  

3 2 |  = - - ~ f 3  WI = i', 

: 2 = 0  w 2 = ~  

Z 3 -F ~J-3 w 3 = g  

4 z, = - V/3 + ~ -  w 1 = (3 - ~/6 ) / 1 2  

:2 = - ~ w~ = (3 + ( 6 ) / 1 2  

z 3 = + ( ~ - - ~  w~ = (3 + ~/6- ) /12  

z 4 = + ~ w 4 = (3 - ( 6 ) / 1 2  

5 z 1 = - 7 / 5 +  1 ~  w , = ( 7 - 2  1 ~ ) / 6 0  

z 2 = -  5 ~ £ - -  1 ~  w , = ( 7 + 2  1 ~ - ) / 6 0  

z 3 = 0 w 3 = 8 / 1 5  

~4 -- + ~ / 5 - ~  l l f ~  11; 4 = (7 + 2 H / i O ) / 6 0  

z s = + 5 ~ / ~ -  l~/f0- w 5 = (7 - 2 1~/10 ) / 6 0  

in which 

xj = F ; l ( e ( z j ) )  (11) 

where zj and wj are the points and weight factors associated with standard normal space. 
Equation (10) is the integration formula for a single non-normal variable. 

Multiple standard normal variables 

In many practical problems, reliability analysis often involves multiple random variables. In 
this study, the foregoing method has been generalized to a function of multiple variables. This 

(z) -L 
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Fig.  2. T r a n s f o r m a t i o n  o f  normal variable to non-normal variable. 
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section describes the development of integration formulas for a function of independent standard 
normal variables. The following sections describe integration formulas for a function of multiple 
non-normal variables. 

In the case of an independent standard normal vector Z - -  (Zi, Z 2 . . . . .  Z,  ) the joint probabil- 
ity density function is, 

f z ( z , ,  z 2 . . . . .  z , )=~(z~) ,~(z2) . . .~ ( z , , )  (12) 

Equation (2) becomes 

E[o*(z)] . . . .  = q,(Zl), q,(z,)Gk(z~,., z,,)dzl...dz,, (13) 
--OQ --OO 

Two approaches have been developed to evaluate above integration: the product integration 
formula and the non-product integration formula. 

Product Integration formula 
The product formula is based on the factorization of G into single-variable functions: 

n 

G ( Z  1, Z 2 . . . .  , Z , ) =  1-I G,(Z~) (14) 
i=1 

Such an operation is difficult since usually the function G is given only implicitly as a function of 
Z1, Z 2 . . . . .  Z,.  Special techniques are required to approximately factorize G(Z1,. . .  , Z,)  into 
G 1 ( Z 1) G 2 ( Z 2 ) . . .  G n ( Z n). A method suggested by Rosenblueth [11] was modified for the current 
study. 

Based on Rosenblueth's suggestion a function G =  G(ZI, Z 2 . . . . .  Z~) is approximated by a 
function H = H(Z1, Z 2 . . . . .  Z~), which is defined by 

n n 

H = G o l -  I G,* = G o Y  I Gi(Zi) (15) 
i = 1  ~ i = l  

where G O = G(0, 0 , . . . ,  0), i,e., the function evaluated at the zero means of variables Z, Gi* are 
the functions of G computed as though Z i were the only random variable, and other variables 
were set equal to their zero mean values, i.e., 

G*=G(O,O, . . . ,Z , , . . . ,O)  (16) 

G i* 
G , -  Go (17) 

At the zero means 

OH OG 
H =  G and ~z i - az i (18) 

Substitution of H for G in eqn. (13) results in the following equation: 
n q-o~ 

E[ Gk(Z)] = G~ i~=1 f_, ~(zi)Gi~(zi)dz i (19) 

The repeated application of the integration formula, eqn. (6), leads to the approximation of 
eqn. (19): 

n [ m i  n 

E[Gk(Z)]  =G°k I-I I E wiGik(zii) =Gko l-I E[Gik( Zi)] (20) 
i = 1  j = l  i = l  
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where m~ is the number of points considered for variable Zp Equation (20) is the product 
integration formula for multiple independent standard normal variables. 

Non-product integration formula 
For a multiple independent standard normal vector Z, the probability density function, eqn. 

(12), can be further expressed as 

1 e x p ( _ ½ z ? _ ]  2 _1 2 ~z 2 - .. .  ~z.) (21) 

As in the one-dimensional case, substituting eqn. (21) into eqn. (2) and z i = v ~ u  i (dz, = ¢~- dui),  
eqn. (2) can be rewriten as 

1 S +~ +~ E [ G k ( Z ) ]  - f ~  _ ~  " L ~  e x p ( - u Z - u 2 - - u Z ) G k ( v / 2 U ) d u ' " ' d u "  (22) 

The integration of eqn. (22) can be evaluated using various Gauss quadrature rules [16,17]: 

1 ~.,ajGk(~/c~Ulj ... . .  ~/~Unj ) {23) E[o*(z)]--- J : ,  

where aj and ( u u , . . . ,  u, j)  are widely available Gauss quadrature weigth factors and points 
[16,17]. 

Substituting zij = ~/2uij and wj = a/~vr~ -£ into eqn. (23) the following non-product integra- 
tion formula is obtained: 

E [ G k ( Z a  . . . . .  Z~)]--  ~ w j G k ( z u ,  z2j . . . . .  z,,j) (24) 
j =  1 

Typical weights wj and points (z U, z2j . . . . .  z. j)  in independent standard normal space are given 
in Table 2. 

Variables with joint distribution known 

The integration formulas for independent standard normal variables can be extended to 
functions of variables with any type of joint distribution known. The extension is based on the 
Rosenblatt transformation [15]. 

Let a set of n random variables X = ( X I , . . . ,  X,,) have a joint C D F = F x ( x  1, x 2 , . . . ,  x,), 
which can be given in terms of a sequence of conditional distribution functions: 

Fx(  X )  = Fx , (x l )Fx2 ix,(X2) --- Fxolx, . .  x,, , ( x .  ) (25) 

The original vector X can be transformed sequentially and componentwise, using the following 
equalities; 

d~ ( z I ) = Fx, ( x 1 ) (26a) 

~(z2)  = Fx21x,(X2) (26b) 

~(z3) = Fx31x, x2(X3) (26c) 

¢b( z . )  = Fx. ix .... x . _ , ( x . )  (26n) 



TABLE 2 

Examples of points and weights for non-product integration formulas 
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Formulas Points Weight factors 
m ( Z l j , . . . ,  Z i j  . . . . .  Z n j  ) W j  

n +1 Z 1 = (fn, 0, 0 ..... 0) 

n ,0 .... ,0 

Z3= - ' n ( n - 1 )  ' n - 1  ,0 ..... 0 

~ ( n + l )  ~ ( n + l )  , , ~ - 1 )  

Z .=  - ' -  n ( n - 1 )  ' ( n - 1 ) ( n - 2 )  .... V 2 

( ~ / ~  ~ ( n + l ) ~  ( n + l )  ~ - )  

Z"+a= - ' -  n ( n - l )  ' -  ( n - 1 ) ( n - 2 )  ..... - 

2n 

2 n  2 + 1 

Z l  = - -  2 n  + l  = ( r~ ,  0 . . . . .  O) 

z 2  = - z . + 2  = (o, ¢ ~ ,  o . . . . .  o) 

z . =  - z . + .  = ( o , o  . . . . .  ~ )  

z = (o, o ..... o) 

Z =  (+~/n +2 ,0  ..... O) " 

( ¢ 2  2 ¢ + 2  Z =  _+ - - , _ +  
2 

- -  o). , . . . ~  

1 
W 1 - -  

n + l  

1 
W 2 =  

n + l  

1 
W 3 =  

n + l  

1 
Wtl ~ 

n + l  

1 
W n +  1 ~ - -  

n + l  

1 
W 1 ~ W n +  1 ~ - -  

2n 
1 

W 2 = W n +  2 = - -  
2n 

1 
W n ~ W n +  n ~ - -  

2n 

2 
wj-  n+2  

4 - n  
wj 

2(n +2) 2 

1 

wj - (" +2) ~ 

a Points include all possible permutations of coordinates. 

and  hence 

Xl=Fx,  l[~(z,)]  

= F - 1  x2 ,,2,,,,['1'(z2) I xl] 

x3 = F ; , ] x ,  x2 [*(z3) lxlx2] 

(27a) 

(27b) 

(27c) 

F - 1  x , =  x. l x , . . . x . , [ rb ( z , ) l x , . . .X ,_ l ]  (27n) 
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The Jacobian of the transformation is written as: 

J = dp(z l ) . . .  ~b(z.) (28) 
f x ( X ]  . . . . .  x , ,)  

By the above transformation, the integration of eqn. (2) over the non-normal space X is 
performed over the independent standard normal space Z: 

+ o 0  + o c  E[Gk(X)]=/ ..f f x (  x ,  . . . . .  X , , ) G k ( x l  . . . . .  x , , ) d X l . . . d x , ,  
- -  0 0  - - 0 0  

+ O 0  + O 0  

= f f fx(x, . . . . .  x.)ok(x,  . . . . .  xo)Jdzl dz° 
- -  0 0  - -  O C  

+ O C  + O C ~  

= f f q ~ ( z , ) . . . d ~ ( z , , ) G k ( x l  . . . . .  x , , ) d z l . . . d z , ,  (29) 
- -  O C  - -  O C  

Equation (29) can be evaluated using either the product integration formula eqn. (20) or the 
non-product integration formula eqn. (24). Suppose eqn. (24) is used, then eqn. (29) becomes: 

E [ G k ( X ,  . . . . .  X.)]--- ~ w , G k ( x ] j  . . . . .  x . j )  (30) 
j= l  

with 

x i j  = Ff~Ix, .x,_, [ ¢b( z i j  ) [ x] j  . . . X,i_l,j] (31) 

where i denotes the i th variable and j denotes j t h  point; wj and (z]j . . . . .  z , j , . . . ,  z , j)  can be 
obtained from Table 2. 

Therefore, arbitrary distributions can also be handled by integration formulas for normal 
distributions provided that the conditional distribution functions can be produced. In principle, 
there are n ! probabilistically equivalent transformations differing in the ordering of the variables. 
In general, not all of them have the same favorable numerical properties [18]. Therefore, in some 
problematic cases it is worthwhile to try one of the alternatives. 

Variables with marginal distributions known 

In many applications, the joint PDF f x ( x l  . . . . .  x , )  is often unknown, as complete statistical 
information on X is seldom available. In most situations the information available on X consists 
of only the mean vector X, the correlation matrix C, and the set of marginal CDF's,  F x ( x i ) ,  i = 
1 . . . . .  n. In this situation the integration formulas derived in the previous sections cannot be 
directly applied. To use the formaulas it is natural to seek a multivariate distribution model 
which itself is based on the normal distribution. In addition, the model sought must be consistent 
with the known marginals and the correlation matrix of the random vector X. There are a large 
number of such models available in the literature [19]. The model used by Der Kiureghian and 
Liu [20] for reliability analysis under incomplete probability information is chosen for the 
current study. 

First define Y = ( Y 1 ,  Y2 , - - . ,  Y,,) as joint standard normal variables by assigning a joint 
distribution to X] , . . . ,  X,: 

f x ' ( X ] ) ' "  f x " (X" )  (32) 
f x ( x l  . . . . .  x , ) = q , , ( y l  . . . .  ' Y" '  C°)  , ~ ( y , ) . . . 4 ~ ( Y , , )  
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in which fx,(Xi)= dFx,(Xi)/dx ~ is the marginal PDF of S i, and O,(Y, Co) is the joint PDF of 
n-dimension normal variates with zero means, unit standard deviations, and correlation matrix 
C 0. The correlation coefficients 00,q of C O are expressed in terms of the correlation coefficient 0is 
of X~ and Xj through the integration: 

f ~  f ~  x i - X  i x j -~ ' j  eO2(Yi, Yj, Oo,ij) dxidxj  
P i j  = - - ~  _ ~ Oi  O j  q~(y,)q~(yj) 

Equation (33) can be solved iteratively to find 00,q- To avoid such tedious calculations, 
approximate formulas for the ratio 

F= PO,i/Pij (34) 

are available in the literature [20,21]. 
After establishing the multivariable distribution model, eqn. (32), the k th  moment of the 

function G(X 1 . . . . .  X.) can be evaluated as the mathematical expectation of Gk(X) 
+ o o  + o o  

e[G*Cx)] = f f fx(Xl . . . . .  xn)Gk(X) dx1...dx n 
O0 "+°  OO 

= f_++ . . ,  f++dp,,(Y, Co) fx '(x ') . ' . fx"(x')  Gk (X)dX  (35) 
- q~(y,)...q~(y,,) 

The domain of the above integration can be converted from non-normal space X to the 
correlated standard normal space Y by the marginal transformation: 

Yi=¢b-l[Fx,(Xi)] i = 1 , 2  . . . . .  n (36) 

To use the integration formulas derived in previous sections the correlated normal space Y must 
be mapped onto uncorrelated standard normal space Z by the linear transformation: 

Z = L o l Y  (37) 

where L 0 = the lower triangular matrix obtained from Cholesky decomposition of C 0. 
Since eqns. (36) and (37) are two one-to-one transformations, their inverse transformations 

exist and therefore Z can be mapped to Y, and then Y to X 

Y = LoZ 

F-1 2(,.= x, [+(y,)]  

Combining eqn. (38) with eqn. (39) finally Z is mapped to X: 

X = e - ' [  + ( L 0 Z  )1 

The Jacobian of the combined transformation, eqn. (40), is obtained as:: 

q ~ ( Y l )  • --  ' ~ ( Y n )  

J= fx,(xl ) fx+(X,,) IL01 

(38) 

(39) 

(4o) 

(41) 
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where 

I L o l  = 

OYl OYl 
° • . 

~z I Oz. 

Oz 1 az. 

(42) 

By the transformation, eqn. (40), the integration, eqn. (35), finally is perfomed over the 
domain of the uncorrelated standard normal space: 

+ o o  . + o o  Y f ~ j co.( , .f~,(x,)...f~(X,) G~(X)dxl...d~, 
- " " -  C ° ) - ~ - ( - f l )  q ~ ( Y . )  

--£7 
=£7-- 

(a.(Y, Co) --~-Y-1)-- ~ -~)  Gk(X)Jdzl""dz" 

dZl • . . d z  n (43) 

The integration, eqn. (43), can be evaluated using either product or non-product integration 
formulas. Suppose the non-product formula eqn. (24) is used, then eqn. (43) is calculated by 

E[Gk(X)]--- ~ w,Gk(x,, ,  x~, . . . . .  x . , )  
j = l  

(44) 

in which (Xlj, x2j . . . . .  x . j )  is obtained using eqns. (38) and (39): 

... o tzxJ 
• = " L .  " " (45) 

~y.jj Lnl L~. z~j] 

= (46) 

F -1 )] x j  x. [*(Y, ,  

where the first subscript i denotes the ith variable and the second subscript j denotes the j t h  
point; wj and (z l j , . . . ,  z,j) can be obtained from Table 2. 

NUMERICAL EXAMPLES 

Three examples are given to illustrate the use of the developed integration formulas• The 
application of the approach to bridge reliability analysis can be found in Ref. [22]. 
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Example 1. Single variable function 

A simple example is given here to show the use of integration formula eqn. (6) and eqn. (10). 
Consider a function of a single variable 

G ( X ) = X  2 (47) 

Case 1: Standard normal variable. Let X be a standard normal variable denoted by Z 
with zero mean and unit variance. The mean value of G is calculated using three points. From 
eqn. (6): 

3 

E[c (z ) ]  -= E wjC(zj) 
j=a 

The 

-~ ( -  V~-) 2 + 4(0)2 + -~( + v/3-) 2= 1 (48) 

result is exact since in this case the mean of G is equal to the variance of Z (oz 2 = 1). 
Case 2: Non-normal variable. Assume that X is a lognormally distributed random variable 

with cumulative distribution function (CDF): 

= ~ (  In x - 2.283 
~ ) (49) Fx(x) 

In this case a four-point integration formula is used. The corresponding points and weight 
factors in standard normal space are taken from Table 2: 

z2 = ~ and *o2 = 3 + gr6- (50) 

+ 3 V / ~  °:3 3 + ~ -  

+ ~ - - - - ~  ~4 3 vr6 - 

The points in non-normal space are obtained using eqn. (11) 

xj= FxX(@(zj)) = exp(2.283 + 0.198zj) (51) 

( xl ) 6181'18 
x 2  = (52) 
x 3 

x 4 1516 

The mean value of G is calculated by using the integration formula eqn. (10), 
4 

G-~ ~_, wjG(xj)= 104 (53) 
j = l  

The exact value of G is also 104. 
Calculations are also performed for X with other types of distribution. The results are 

compared with the exact value. The comparisons are summarized in Table 3. The most accurate 
results are obtained for the integration formula eqn. (10). The mean value of G is also evaluated 
using eqn. (10) with a different number of points. The results are shown in Table 4. From the 
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TABLE 3 

Two-point integration vs. types of random variables; G = X 2 with X = 10, o x = 2  

Distribution x] x 2 
( l  X 0 X 

Error (%) 

Normal 8.00 12.00 - 1.000 1.000 104.00 0.00 
Gamma 8.01 11.99 - 0.995 0.995 103.95 0.05 
Lognormal 8.04 11.95 - 0.980 0.975 103.82 0.17 
Beta 7.96 12.04 - 1.020 1.020 104.16 0.16 
Weibull 7.98 12.00 - 1.010 1.000 104.04 0.04 
Extreme Type I 8.15 11.84 - 0.925 0.920 103.40 0.57 
Extreme Type II 8.35 11.57 - 0.825 0.785 102.59 1.36 

TABLE 4 

Accuracy vs. number of integration points 

Distribution Mean value of function: G = X 2 

2 points 3 points 4 points 5 points 6 points 

Normal 104.0000 
Gamma 103.9470 104.0000 
Lognormal 103.8209 103.9968 104.0000 
Beta 104.1649 103.9932 104.0004 
Weibull 104.0421 104.0285 103.9944 
Extreme Type I 103.4037 103.9888 104.0032 
Extreme Type II 102.5860 103.6864 103.9470 

104.0000 
104.0004 104.0000 
103.9992 104.0000 
103.9912 103.9992 

t a b l e  o n e  c a n  see  h o w  m a n y  p o i n t s  a r e  r e q u i r e d  in  i n t e g r a t i o n  to  o b t a i n  a c c u r a t e  r e s u l t s  fo r  

d i f f e r e n t  v a r i a b l e s .  

Example 2. Multivariate function 

T o  i l l u s t r a t e  t h e  u s e  o f  i n t e g r a t i o n  f o r m u l a s  fo r  m u l t i v a r i a t e s ,  c o n s i d e r  t h e  w i n d  p r e s s u r e  

a c t i n g  o n  a w i n d o w .  T h e  p r e s s u r e  is g i v e n  b y  t h e  f o r m u l a  

G = ½ y ( X  1 + X2)  2 (54)  

w h e r e  G is t h e  w i n d  p r e s s u r e ,  - / i s  t h e  d e n s i t y  o f  a i r ,  X 1 is t h e  b a s i c  w i n d  s p e e d ,  a n d  X 2 is t h e  

g u s t  w i n d  s p e e d .  C o n s i d e r  7 to  b e  d e t e r m i n i s t i c  w i t h  a c o n s t a n t  v a l u e  o f  2, X 1 a n d  X 2 to  b e  

r a n d o m  v a r i a b l e s  w i t h  X1 = 10, Ox, = 1, X2 = 20, a n d  Ox: = 1. 

Case 1: X, and X 2 with normal distr ibution. T h e  i n d e p e n d e n t  s t a n d a r d  n o r m a l  v a r i a b l e s  

a r e  d e f i n e d  as  

x l -  x, 
Z 1 = = 3(] - 10 ( 5 5 a )  

x2-  x2 
Z 2 - - - X  2 - 2 0  ( 5 5 b )  

Ox~ 
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The wind pressure G is further expressed in terms of the independent  standard normal  vector Z: 

G =  ( Z  1 + Z 2 + 30) 2 (56) 

Both product and non-product  formulas are used to estimate the statistics of function G. 
Using the product  integration formula, eqn. (20), G 0, G~*, and G2* are obtained as 

G O = G(0, 0) = 900 (57a) 

al* = G(Z1,  0) = ( Z  1 + 30) 2 (57b) 

o2* = G(o,  z 2 )  = ( z 2  + 30) 2 (57c) 

From eqns. (15-17) the wind pressure G is approximated by the product  of two single-variable 
functions: 

G -- H =  900 (Z~ + 30) 2 ( Z  2 + 30) 2 (58) 
900 900 

From eqn. (20) the mean of the wind pressure acting on a window can be calculated by 

---- 900 Wg 900 wj 900 
• = ~j=a 

If the two-point formula (m I = m 2 = 2) is used, then from Table 1, 

Zll ) ( _ 1  

Thus the mean of G is 

~_-  9 ~ ( 2 9 2  + 312) ~ 
1800 =902.0011 (61) 

The exact mean of G is equal to 902. 
The non-product  integration formula, eqn. (24), approximates the mean of 6; by 

--~ ~ Wj(Zlj "It" Z2j + 30) 2 
j=l  

If a (n + 1)-point formula is used, then from Table 2 the points and the weight factors are ( ,( 0 Wl) 
- -  

z.  ~231 - ~  - ~  w~ 
The mean value of G, G, is calculated as 

= 902 

This is the exact mean of G. 

(63) 
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CASE 2; X 1 and X 2 with joint PDF known. 

( ( . ) )  1 1 x I - X l 1 

fx(Xa' x 2 ) -  v~,," ~fb--2Ox, exp - 2  vz~r V~/w-ol"x/1 2 
-- pXl,lnX2 

1 

X 2 

1 
× exp - 

In x a - l n  X 2 - p X , , I n X 2 ( O l n X 2 / ( I X 1 ) ( X , -  Sl)  

OlnX2~/1 __ p2 X],lnX 2 

2) 
(64) 

where 

a,~x: = i ln(1  + Vx2) 

In X 2 = l n  X2-~Ox21 2 

Vx2Pxl,x~ 
Px,.,.x. i l n (  1 + Vx2' ) 

(65a) 

(65b) 

(65c) 

and 

Px:.x, Px2,x: j 0.6 

The solution for the first two moments of G proceeds as follows: 
(1) F i n d  c o n d i t i o n a l  C D F ' s  from the given joint  distribution. 

Fx,(X,)=+( x ' -  ' 

In x2--1n X2--px,,lnx2(OlnX2/ox,)(Xl-- ~ )  
Fx~,x,(X2 Ix1) = ~ O,.x" 

(66) 

(67a) 

(67b) 

(2) Perform the Rosenblatt  transformation using eqn. (27). In this example, the transforma- 
tion can be obtained as follows, 

)(1 = Fx, l [~ (Z l ) ]  = Sl "1- ox1Z1 (68a) 

X2 = Fx~x,[ O(zz) Ix, l = exp (In X 2 + Px,,,. x~(OmxJOx,)(Xl - X,) + O,~x~il - P2x,.,.x~ Z2) 

(68b) 

Using the given parameters the above two equations can be simplified as 

X 1 = 10+  Z1 

X 2 = exp(2.9956 + 0.03Z 1 + 0.04Z 2) 

(69a) 

(69b) 
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(3) Select the points and weight factors in the standard normal space. If the (n + 1)-point 
formula is used, then from Table 2 the points and the weight factors are 

Zll Z21 

Z12 Z22 = - -  

Z13 Z23 -- 

(4) Calculate (Xlj, x2j ) using eqn. (31) 

°1 /Wlj (I and  w2 = ½ 

1 

Xll X21 ] [ 11.414 20.866 / 
x]2 x221 = [ 9.293 20.563] 
X13 X23} 9.293 18.644] 

(5) Calculate the first two moments of G using eqn. (30) 
3 

E[G(X)]  = Y'~ 1G(Xlj, X2j ) =904.484 
J 

3 

E[ G2(X)]  = E 1G2(Xlj ,  x 2 j )  = 829821.3 
J 

The exact value of G for this case is equal to 902.72. 
Case 3: X 1 and X 2 with marginal distributions known 

Fx, ( x 1 ) = exp( - exp( - 1.283( x 1 - -  9.55)) ) 

¢(, In x2()_05- 2.996 ) Fx2(Xz) 

and the correlation matrix 

 =[16 O6] 
The solution for the first two moments of G proceeds as follows: 
(1) Construct the correlation matrix C O by using the available formulas [20,211, 

[1 0.01, ] 
C°= 0.6158 

(2) Determine L o by Cholesky decomposition of Co: 

Lo_[a o ] 
0.6158 0.7879 

(3) 

Zll 

Z21 

(70) 

(71) 

(72) 

(73) 

(74a) 

(74b) 

(75) 

(76) 

(77) 

Select normal integration formulas. Suppose the (n + 1) non-product formula is used, 

Z12 

Z22 

Z13 

Z23 

2 2 

0 2 2 

(78) 
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(4) Calculate correlated s tandard normal  vectors Y using eqn. (45) 

(, 0 iiz,j) ,79, 
Y2j = 0.6158 0.7879]~z2j  

Yu Y]2 Y]3] [ 1 . 4 1 4 - 0 . 7 0 7 - 0 . 7 0 7 ]  (80) 
Y21 Y22 Y23 = [0.871 0.530 - 1.40 l 

(5) Perform marginal t ransformat ion using eqn. (46) 

= F - ]  1 ln( - l n (@(y , j ) ) )  (81a) xlj  11 (dP(Yaj)) = 9-55 1.283 

x2j = Fx21(~(Yzj)) = exp(2.995 + 0.05y2j ) (81b) 

Xll X12 X13 ] [11.495 9.270 9.270] 
x21 x22 x23 = 20.887 20.534 18.645] (82) 

(6) Calculate the first two moments  of G 

E[G] = ~G(xa~, x21 ) "4- ½G(Xl2 , x22 ) -{- ½G(x13, x23 ) = 9 0 5 . 4  (83) 

aGZt x = E[ G21 = ½ G 2 ( x u ,  x2,) + ½G2(x12, x22) + ~ , ,3, x23) 831930.5 (84) 

The exact mean of G is 902.72. The 0.2% error is due to the approximat ion  in calculating the 
correlation coefficient P0.a2 and the nonlineari ty of G expressed in terms of independent  
s tandard variables. The error due to the nonlineari ty of G can be reduced by using integration 
formulas with more  points. 

Example 3. Modeling of reinforced concrete section 

In this example the ult imate bending m o m e n t  of the reinforced section shown in Fig. 3 is 
considered. This case was also studied by Ditlevsen [23]. The ult imate bending m o m e n t  is 

X•X2 (86) 
M U = g l g 2 g  3 - g 4 g 5 x 6  

where X 1 is the area of reinforcement,  X 2 the yield stress of the reinforcement,  X 3 the effective 
depth  of the reinforcement,  X 4 a factor related to the stress-strain relationship of concrete, X 5 

B=X6 

Area = X 1 
e e e  

D = X  3 Uncertainty shape 
(modeled by factor 

K=X4)  

I T M  

F-y= X 2 
Cross section Ultimate stress distribution 

Fig. 3. State of ultimate stresses for reinforced concrete section. 
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Statistics of basic variables in Example  3 
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Variable  M e a n  value S tandard  devia t ion 

X 1 1260 m m  2 63 m m  2 

X 2 250 N / m m  2 17.5 N / r a m  2 

X 3 770 m m  10 m m  
x 4 0.55 0.055 
X 5 30 N / m m  2 4.5 N / m m  2 

X 6 250 m m  5 m m  

T A B L E  6 

Compar i son  of in tegra t ion me thod  with M o n t e  Car lo  me thod  

M e t h o d  RFM (106) VFM 
(N rnm) 

3-point  in tegra t ion  235 0.085 
5-point  in tegra t ion 235 0.085 

100 s imulat ions  237 0.074 
500 s imulat ions  234 0.086 
5000 s imulat ions 235 0.084 

the maximum compressive strength of the concrete, and X 6 is the width of the beam. 
(X1, X 2 . . . . .  Xt) are basic variables with lognormal distributions, and mutually uncorrelated. 
The mean values and standard deviations are given in Table 5. 

The mean and coefficient of variation of M U were calculated using 3- and 5-point product 
integration formulas, and also evaluated using Monte Carlo simulations. The results given in 
Table 6 indicate that integration formulas give results with good accuracy. 

CONCLUSIONS 

A set of numerical integration formulas were developed to compute the statistical parameters 
of a function of multiple random variables. The formula is a numerical procedure to estimate 
integrals using selected weights and points. The points and weights are predetermined in the 
independent  standard normal variable space. The sample points in basic variable space are 
obtained by special transformations. The formulas were developed depending on the available 
statistical data about the basic variables. 
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