
Volume 7, Number 6 OPERATIONS RESEARCH LETrERS December 1988 

ASSESSING THE EFFECTS OF MACHINE BREAKDOWNS 
IN STOCHASTIC SCHEDULING 

John R. BIRGE 
Department of Industrial and Operations Engineering, University of Michigan, 1205 Beal, Ann Arbor MI 48109, USA 

Kevin D. GLAZEBROOK 
Department of Statistics, University of Newcastle upon 7~ne, UK 

Received January 1988 
Revised July 1988 

In most scheduling problems discussed in the literature it is assumed that the machine (i.e. key resource) is continuously 
available. Plainly, this i~ often unrealistic. Here we suggest assessing the effects of machine breakdowns by evaluating the 
strategy which is optimal when the machine is always available as a strategy for the breakdowns case. The results extend 
earlier ones of the authors and co-workers. 

alternating renewal process • Gittim • renewal function * stochastic scheduling 

1. Introduction 

Let J - { 1 ,  2 , . . . ,N}  be a set of jobs to be 
processed on a single machine which is subject to 
breakdown. For k = 1, 2,. . .  the k-th breakdown 
of the machine is associated with two random 
variables Uk and Dk, both taking values in the 
positive integers. Uk is the k-th uptime for the 
machine, i.e. the length of the period between the 
( k -  1)-st and the k-th breakdown. Dk is the k-th 
machine downtime, i.e. the length of the k-th 
breakdown. All of these random variables are 
independent of each other, and further the up- 
times and downtimes are (separately) identically 
distributed. This process of breakdowns con- 
stitutes an alternating renewal process (see Ross,, 
1970). We further assume that the uptimes have 
finite first and second moments, Pl and it 2, that 
the downtimes have finite firs~ moment It o and 
that the machine is up from time 0 until/./1. 

The processing requirement of job j is a ran- 
dom variable X~, taking v~ues in the positive 
integers, 1 ~<j ~< N. The Xj's '~e indep~adent of 
each other and of the uptimes and downth-nes. At 

each non-negative point in time t, the state of the 
system consists of the machine's condition (up or ~ 
down), the (non-negative) time the machine has 
been in that condition, the set of completed jobs 
from J, and the cumulative processing time up to 
time t of all unfinished jobs in J. Note that this 
situation implies that the total processing time for 
a given job is only available after the job has 
completed. A decision depending only on the sys- 
tem state must be made at t to determine which 
uncompleted job to process during [t, t + 1]. A 
policy ~r is any rule for making these decisions 
until all jobs in Y are finished. Under ~r, job j is 
completed at time F~ (~r). The objective is to choose 
a policy which minimizes expected weighted flow 
time 

c.(, ,)  = E  O) 

where the wj's are given positive constants. 
For a machine which is continuously available 

(i.e. downtimes are zero), any optimal policy is 
known to be determined by a collection of Gittins' 
indice~ (see Gittins, !979, and Glazebrook, 1984)). 
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If job j has received x units of processing and has 
still to complete, its Gittins index is defined to be 

,~.,p~(x + t - 1)[ri,.o{1- pjfx + 
y ~ ( x )  = sup v,-lrr3,-! ~ 

-,'>I ,.I-ot,,s-ol.l-pj(x+s)}] 
x=ffiO, l , 2  . . . . .  

where 

O(t)--p(X~=t+ l[~> t), 

(2) 

t - 0 ,  1, 2 , . . . ,  

is the completion rate function for job j. Hence in 
the absence of breakdowns, an optimal policy 
always allocates the machine to any uncompleted 
job with maximal Gittins index. Glazebrook (1987) 
pointed out that this remains optimal for a prob- 
lem with breakdowns when the uptimes are geo- 
metrically distributed. 

Our objective is to evaluate the simple 'no 
breakdowns' optimal policy determined by the 
Gittins' indices in (2) as a policy for our general 
problem with breakdowns. For convenience de- 
note by % a policy which, whenever the machine 
is up, processes the uncompleted job with the 
largest Gittins index. Denote by v:* an optimal 
policy. We shall seek to evaluate % by putting 
upper bounds on the quantities 

C(~v) - C(~*) (3) 

or 

{c(,,)- c(,.)}{c(,*)}-'. (4) 
Following on from the last remark in th.e previous 
paragraph, a natural approach is to bound the 
quantities in (3) or (4) by a quantity which mea- 
sures the extent to which the uptimes fail to be 
geometric. This work is reported in Section 2 and 
extends results due to Glazebrook (1987). A more 
general result in Section 3 extends previous work 
by Birge, Frenk, Mittenthal and Rinnooy Kan 
(1987) which was resh-icted to the case of de- 
terministic proces~.,ing times. 

The renewal function mu(t  ) is defined as usual to 
be E { N u ( t )  }. We shall use the notation Nv( t  ), 
Nw(t) ,  my( t ) ,  row(t) to represent renewal 
processes and functions defined with respect to 
i.i.d, random variables {V1, V2, . . .  } and 
{ WI, W2,... } respectively. Throughout, all ran- 
dom variables are assumed to be positive integer- 
valued with finite mean. We make use of the 
following ideas from reliability theory (see Barlow 
and Proschan, 1975). 

/ i 

Definition 1. Positive integer-valued random varia- 
ble V is new better than used in expectation 
(N.B.U.E.) if 

E(V)>~E(V-vIV>~v+I ), v=0, I,2, .... 

Definition 2. Positive integer-valued random varia- 
ble V is new worse than used in expectation 
(N. W. U.E.) if 

E(V)<~E(V-vIV>~v+I), v-0,1,2, .... 

The following result follows fairly simply from 
Theorem 3.14 in Chapter 6 of Barlow and Pro- 
schan (1975). In Lemma I ' ~< ST' denotes stochas- 
tic ordering. 

Lemma 1. Suppose that there exists a N.B.U.E. 
random variable V 1 and a N. W. U.E. random varia- 
ble W 1 such that V 1 <~ sT U1 ~< ST W1 then 

t / E ( V I )  >I m y ( t )  >~ m u ( t )  

>~mw( t )>~ t /E (Wl ) ,  t>~O. 

Geometric random variables are both N.B.U.E. 
and N.W.U.E. and hence Lemma 1 relates to the 
situation where the uptimes are stochastically 
bounded above and below by such variates. The 
following definitions relate to the 'closest' such 
bounding variables obtainable. 

2. Beunds based on stochastic orderings 

We shall need some preliminary remarks and 
definitions relating to the renewal process Nu(t )  
determined by the up-times, i.e. 

-- .,uv ~ k >~ O : L~ + i r -L . .  • . 2 - .  . . . .  +uk tl 

2 6 8  

Definition 3. The upper geometric rate ~ of uptime 
U i is defined as ] -- inf,{ ~ > 0; V 1 ~< sTU1 where 
V 1 is geometric with probability ~ }. 

Definition 4. The lower geometric rate ~ of uptime 
U1 is defined as ~ = sup,~{ ~ > 0; U 1 ~< ST W1 where 
W: is geometric : ",h ,,,. hot, a',,, .. 
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It is not difficult to show algebraically that if 
~(.)  is the completion rate function of uptime U~ 
then 

sup@(j) > ~ -  sup 1 -  {1-@(k)}  
j j kffi=| 

>1 sup ,~(k).j-' 
J 

>I inf ~ -  { ~ - ~ ( k ) }  
J k - 1  

=~>~ inf @(j). (5) - j 

We are now in a position to use the above 
bounds on the uptimes and the related bounds on 
renewal functions to give the evaluation of the 'no 
breakdowns' optimal policy % we seek. Let ~r be 
a strategy for our stochastic scheduling problem 
with breakdowns, which is stationary with regard 
to the values of past downtimes. Optimal poficy 
~* plainly has this property. Under ~, job j is 
completed at time Fj(~). Denote by Fj°(~r) the 
impfied completion time of j under poficy ~r when 
there are no breakdowns (i.e. U1 is infinite). The 
assumptions concerning independence and finite- 
ness of moments imply via a simple conditioning 
argument that 

C(~)ffiE . % ~r 

- E  ~ j ( ~ ° ( , , ) + m , { ~ ° ( , , ) } ~ , o  . 

(6) 

Theorem 1 embodies an evaluation of % in terms 
of a measure of the extent to which the uptimes 
fail to be geometric. 

Theorem 1. 

(a)  C ( % )  - C(v¢* ) 

< (~ -- ~_)I~DE[j~ffiN~I wJF~O( ~, )], 

(b) { c(,,,) - c(,,* ) }~i; c(,,*)}-' 

.< 1. 

Proof. From Lemma 1, Definition 3 and (6) it 
follows that 

Similarly we have that 

c(~*) >~ (1 +~_.°)E ~j~o(~.) 

_ E E ~ jF j ° (  , 
jffil 

the latter inequality following from the optimality 
of ~v for the no-breakdowns case. Inequalities (a) 
and (b) now follow simply. 

Note that since (~ - ~) and { ~(~_)- 1 } _ 1 are 
both natural measures of the extent to which 
uptimes fail to be geometric then in Theorem 1 we 
have achieved our stated objective--namely the 
evaluation of ~v in terms of such measures. It 
follows fairly simply from Lemma 1 that we can 
do rather better then Theorem 1 in the case of 
N.B.U.E. and N.W.U.E. uptime distributions. This 
is of considerable practical importance since all of 
the standard discrete distributions have mono- 
tonic completion rate functions and hence are 
either N.B.U.E. or N.W.U.E. Theorem 2 has a 
proof which is a simple elaboration of that of 
Theorem I and hence it will not be given. 

Theorem 2. (i) If uptime/]1 is N.B.U.E. then 

(a) c(~,~) - c ( ~ *  ) 

<(.;  ~-~_) . °E ~o(~ , ) ,  

(b) {c(~)-c(~*)}{c(.*)}-' 
.< - ._).o) + } - '  

<< (~_~, ) - '  - 1. 

269 



Volume 7, Number 6 OPERATIONS RESEARCH LETrERS December 1983 

(ii) If upfime/]1 is N.W.U.E. then 

(c) c ( , , , )  - c ( , ,  * ) 

(d) {C(%)-C(~t*)}{C(~t*)}- '  

3. Bounds based on Lorden's ineqmality 

The bounds described here extend Theorem 2.5 
in Birge, Frenk, Mittenthal and Rinnooy Kan 
(1987) to the case with random processing times. 
They originate from Lorden's inequality for the 
renewal function which, under the conditioizs as- 
sumed here, states that 

_ _ _  t P2 t l ~ < m u ( t ) ~ < - - + - - - 1 ,  t>_.0. 
Pl /t I p2 (7) 

Tkeomm & 

Proof. From the right-hand side of (7), together 
with (6), it follows that 

c ( , , , )  = + { 

LJffil J 

Similarly, from the left-hand side of (7), we have 
that 

i " ) E  

- - P z ~  wj , 

the latter inequality following from the optimality 
of % for the no-breakdowns case. The result now 
follows. 

4. Comparing the bounds 

Each of the bounds given in Theorems 1 to 3 
may be applicable in a practical problem, depend- 
ing on the available information and the problem 
context. Theorem 1 is most applicable when the 
time between machine failures follows the com- 
mon empirical observation of a 'bathtub' distri- 
bution that has an upper bounding geometric 
probability either during infant mortality or after 
long service and has a lower bounding geometric 
probability at some time between these extremes. 
Theorem 2 applies when either the infancy or 
aging effect is dominant so that monotone com- 
pletion rates result. Theorem 3 applies best when 
only two moments of the distribution are known 
or when the value E[F~.lwjFj°(%)] is large in 
comparison with ~ ,  lwj. 

As an example, suppose the uptime follows a 
negative binomial distribution on the positive in- 
tegers. This distribution is N.B.U.E. and has read- 
ily available upper and lower bounding geometric 
rates. If this distribution corresponds to the num- 
ber of failures (plus one) until r ffi 2 successes with 
probability p - ½ of success, then Pl - 3,/z 2 - 13, 

--½ and ~ ffi ~. The bound from Theorem 1 on 
the relative'error from ignoring breakdowns is 1.0. 
The N.B.U.E. information allows us to halve this 
bound to 0.5 using Theorem 2. If we assume that 
P D -  ~ffilwj ffi 1, E[Y'-~ffi~wjFj°(%)]-- 10, then the 
relative error using Theorem 3 is 0.15. 
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