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A multidimensional theory of similarity in which the mental representations of stimulus 
objects are assumed to be drawn from multivariate normal distributions is described. A 
distance-based similarity function is defined and the expected value of similarity is derived. 
This theory is the basis for a possible explanation of paradoxical results with highly similar 
stimuli regarding the form of the similarity function and the distance metric. A stochastic 
approach to multidimensional scaling based on samedifferent judgments is demonstrated 
using artificial and real data sets. The theory of similarity presented is used as a basis for a 
Thurstonian extension of Shepard’s model of identification performance. 8 1988 Academic 

Press. Inc. 

INTRODUCTION 

The goal of this paper is to describe a multidimensioal theory of similarity and 
to show how estimates of the model parameters assumed to be involved in making 
similarity judgments can be obtained. From the viewpoint of a mathematical 
model, mental representations of physical objects (or their analogous in lower 
organisms) can be treated as n-dimensional vectors with particular distributional 
properties and multidimensional parameters. Thurstone (1927) provided a 
framework for thinking about scaling relative psychological magnitudes by 
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specifying the statistical parameters of an internal unidimensional continuum. 
Hefner (1958) extended Thurstone’s ideas to the multivariate case in which the 
psychological magnitudes are represented as n-dimensional random vectors, where 
the values on each dimension have been drawn at random from independent 
normal distributions of equal variance. This means that the variances across dimen- 
sions are equal, but that the variances for different stimuli may not be. Techniques 
to obtain maximum likelihood estimates of the location and variability parameters 
of Hefner’s model have been developed by Zinnes and MacKay (1983, 1987). 
Choice probabilities are not monotonically related to the distances between the 
means of the distributions under the assumptions of the Hefner model, when 
variances between stimulus points are unequal. MacKay (1987) has extended the 
model to cases in which the psychological variance on each dimension may be 
unequal for each stimulus. 

Ashby and Perrin (1988) proposed a multidimensional version of signal detection 
theory in an attempt to find a common theoretical basis for similarity and recogni- 
tion (identification). In this approach, the probability of confusing one stimulus 
object with another depends on the degree of overlap of the representational dis- 
tributions. For a given momentary value there are particular probabilities that the 
variate was drawn at random from either of the two distributions of interest and 
the subject’s identification decision will depend on the ratio of these two 
probabilities. This model does not involve a distance-based similarity function. 

De Soete, Carroll, and DeSarbo (1986) described an unfolding model, the 
wandering ideal point (WIP) model, for paired comparisons data. Their model dif- 
fers from Hefner’s in that the values corresponding to the stimuli are fixed, only the 
ideal points have multivariate normal distributions, and the variance-covariance 
matrix of the ideal point distribution need not be an identity matrix. In the WIP 
model it is assumed that a subject will prefer one stimulus object over another 
whenever the momentary Euclidean distance between the preferred stimulus and 
the (wandering) ideal point is smaller than the equivalent distance for the non- 
preferred stimulus. This model appears to have much in common with a 
Thurstonian variant of Torgerson’s method of triads (Ennis, Mullen, & Frijters, 
1988). In Torgerson’s method of triads, the subject’s task is to decide which of two 
stimuli is most like a third preselected stimulus. This third stimulus could be 
replaced by the ideal point from the WIP model. The stimuli evoke psychological 
magnitudes which are assumed to be modelled as if they were drawn from inde- 
pendent normal distributions. In the Thurstonian variant of Torgerson’s method of 
triads, iPjk represents the probability that stimulus Si will be perceived to be more 
similar to Sj than S,. If S; is replaced by the subject’s ideal point, then ,Pjk is the 
probability that S, will be preferred to S,. This preference model is more general 
than the WIP model because the momentary psychological magnitudes evoked 
by the stimuli are not fixed. However, Ennis, Mullen, and Frijters (1988) only 
presented the unidimensional model for Torgerson’s method of triads. 

An attempt to find a multidimensional extension of Torgerson’s method of triads 
might usefully begin with a multidimensional model for the duo-trio method (Ennis 
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& Mullen, 1986b; Mullen and Ennis, 1987; Mullen, Ennis, de Doncker, & Kapenga, 
1988) which is itself a special case of the Thurstonian variant of Torgerson’s 
method of triads. The duo-trio method involves three stimuli, two of which are 
physicochemically identical. The subject’s task is to decide which of two (possibly) 
different stimuli is most like a third preselected stimulus. It is assumed that the 
momentary psychological magnitudes corresponding to the three stimuli have been 
drawn from multivariate normal distributions (two independently drawn from one 
distribution, the third from a possibly different distribution). Another tri-stimulus 
grouping technique, the triangular method (in which the subject’s task is to select 
the most different stimulus), has also been modelled under distributional assump- 
tions similar to the duo-trio method (Ennis & Mullen, 1986b, Mullen & Ennis, 
1987; Kapenga, de Doncker, Mullen, & Ennis, 1987). 

In this paper, we extend the mathematical models developed for grouping 
techniques to same-different judgments and identification performance. This is 
accomplished by defining an explicit distance-based similarity function from which 
the expected value of similarity for confusable stimuli can be computed. We then 
show how the multivariate psychological parameters corresponding to a selection of 
hypothetical and real objects can be obtained. 

A MULTIDIMENSIONAL THEORY OF SIMILARITY 

Assumptions 

Consider the case of a single pair of stimulus objects, S, and S,., which give rise 
to momentary psychological values of the respective magnitudes x and y where 
x’ = (x, ) x2, . ..) x,), y’= (Yl, Y,,  ...? y,); x’ indicates an n-dimensional row vector 
and n is the number of psychological dimensions. The momentary psychological 
values are mutually independently distributed with x having density function h(x) 
and y having density function h(y). The probability densities h(x) and h(y) are mul- 
tivariate normal distributions with means u, and p, and variancecovariance 
matrices V, and V,.. On the basis of the momentary psychological values, x and y, 
the subject decides whether the stimuli are the same or different. Let z =x - y. 

Let d represent the momentary distance between x and y perceived by the 
subject, where 

Ily 
d= i 1.~~1~ , ~31. [ 1 k=l 

The distance between population means is 
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Let the similarity of two particular momentary psychological values be g(d). The 
form of g specifies the similarity function, or the function relating similarity to 
distance. If the subject invokes a step function, g(d) will be 0 or 1 depending on the 
value of d relative to some threshold value. If the subject invokes a continuous 
function, then g(d) will be a value that may be different from 0 or 1. If g is con- 
tinuous, g(d) should decrease as d increases. Continuous and step functions will be 
considered for g. 

The Continuous Function 

There are many different functional forms which could be proposed for the 
function, g. Shepard (1987) argued in favor of an exponential decay similarity func- 
tion. A flexible function which includes the exponential decay function is 

g(d) = exp( -d”L a z 0. 

In order to satisfy the earlier stated requirement that g(d) should decrease as d 
increases, c( must be 20 or g(d) would become larger as d became larger. The 
particular value for a may be different for different subjects and experimental 
conditions, although it is conceivable that c1 may be a constant. 

V is the variancecovariance matrix of the difference between psychological 
values, z. p is a vector of differences between the means of the momentary 
psychological values, c ‘i and p,.. 

The probability of declaring two randomly sampled psychological values from 
h(x) and h(y) to be the “same” is the expected value of g (in the absence of response 
bias), or 

f(p, v, 6 Y)=1‘* y -1 Ix exp{-OS(z-p)‘V’(z-p)} 
~ cc ~ x 02 (2x)42 JVJ li2 

xexp(-d”)dz, dz,...dz,, (1) 

wheref(p, V, a, y) represents the expected value of the similarity of the two objects. 
Equation (1) can be evaluated numerically for any tl and y (which defines the 

metric of d), but can be simplified significantly for the case when c1= 2 and y = 2. 
For this case, 

(2) 

where 

J=V ‘+21 

and I is the identity matrix. 
A proof of Eq. (2) is given in the Appendix. 
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The Step Function 

Conceptually, the step function can be handled in a way similar to that of the 
continuous function, except that g(d) is either 0 or 1 depending on the value of d 
relative to a threshold value, t. 

If g(d) = 0.5 { sgn(r - d) + I}, where sgn is the Signum function, then g(d) will be 
0 when d> r (stimuli are different) and 1 when d< T (stimuli are the same). 

The formula for calculatingf(p, V, T) is 

xOS(sgn(r-d)+ l;dz, dz,...dz,,. (3) 

T may be a fixed value or may be drawn from a particular probability density 
function and vary from trial to trial. In the examples given later, however, we 
consider T to be fixed. 

Identlyication and Categorization Models 

Identification and categorization performance models, such as those discussed by 
Nosofsky (19&S), based on Shepard’s (1957) work, could be extended to deal with 
stimuli whose psychological magnitudes may vary from trial to trial by formulating 
the models in terms of expected values. For instance, in the case of identification 
performance, 

P(R,) Sj) = E bj g(dq) 
Ckm= 1 b/cd&) 1 ’ 

where P(R, 1 S;) is the probability that stimulus Si leads to response R,; bj and 6, 
are response bias parameters, 0 d b, < 1; m is the number of stimuli; and g(d,) is the 
similarity function evaluated at d,. According to this formulation of identification 
decisions, the subject obtains a distance-based similarity value on each trial for the 
stimulus in question (Si) and each of the memory representations of the m stimuli. 
The terms in the denominator may not be independent if, for instance, the subject 
uses the same momentary psychological magnitude corresponding to Si in deter- 
mining each of the d,, (k = I, . . . . m). On the other hand, before obtaining similarity 
values [g(dik)] for Si and each of the m memory representations, the subject may 
obtain different psychological magnitudes corresponding to Si (i.e., resampling the 
stimulus distribution before referring to each memory representation). The model 
given by Nosofsky (1986) for categorization can be similarly formulated. These 
stochastic extensions of identification and categorization models will require more 
study and elaboration and will not be pursued further here. 
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EVALUATION OF CONTINUOUS AND STEP SIMILARITY FUNCTIONS 

Computing 

Equations (1 ), (2), and (3) were evaluated on a Gould 32/97 computer. Equa- 
tions ( 1) and (3) were handled numerically using an adaptive routine by Genz and 
Malik (1980) in the bivariate case. These results agreed to third decimal place 
accuracy with Monte Carlo simulations of 100,000 trials per estimate. 

When n, the number of dimensions, is equal to 2, 

v= 
0: + CT: Plala2+p203a4 

~l”la2+ha3a4 I o:+o: ’ 

where cr: and D: are the variances of the distributions from which x1 and x2 were 
drawn, respectively; e: and ai are the variances of the distributions from which y, 
and y2 were drawn, respectively; p1 is the correlation coefficient between the dimen- 
sions of h(x) and p2 is the correlation coefficient between the dimensions of h(y). 

Similarity Functions and Distance Metrics 

Shepard (1987) proposed the basis for a law of generalization involving the 
following two ideas: first, that the probability that a response learned to stimulus 
Si will be made to stimulus Sj is approximately an exponential decay function of the 
distance between the stimuli in a space of a certain dimensionality; second, that the 
metric used to define this distance will be Euclidean when the psychological dimen- 
sions are integral and city-block when they are separable. Shepard noted that the 
theory applied only to experiments in which generalization is tested immediately 
after a single learning trial with a novel stimulus. Shepard pointed out that with 
highly similar stimuli or with delayed test stimuli, the relationship between 
similarity and distance was of a Gaussian form and that the distance metric 
appeared to be Euclidean for cases in which the theory would predict city-block. 
The work of Nosofsky (1986) exemplifies this kind of result. Using highly similar 
stimui, Nosofsky (1986) discussed identification and classification performance and 
used a “Gaussian” function in modelling the relationship between the Euclidean 
distance separating the stimulus points and similarity. With regard to Nosofsky’s 
results, Shepard conjectured that internal noise may make “the otherwise sharply 
peaked gradient of generalization . . . more nearly Gaussian.” 

There were two distances defined earlier under the assumptions for the similarity 
model. The distance between momentary trial psychological magnitudes was 
represented by d, while the distance between the means of the distributions of psy- 
chological magnitudes was 6. Nosofsky and Shepard define the distance between 
the points representing the stimuli without psychological error and, consequently, 
treat distance in a deterministic manner. This concept of distance corresponds 
better to 6 than it does to d, since it is not expected to vary from trial to trial. 

When modelling the relationship between 6 and f(p, V), it is instructive to 
consider, for a particular similarity function and metric (c( and y), the effect of the 
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FIG. I. Expected value of similarity as a function of the Euclidean distance between the means of the 
distributions of psychological magnitudes for values of a of 1, 2, and 3 in the similarity function 
g(d)=exp( -d”). 
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FIG. 2. Expected value of similarity as a function of the city-block distance between the means of the 
distributions of psychological magnitudes for values of OL of 1, 2, and 3 in the similarity function g(d) = 
exp( -d’). (a) Means differ on one axis only; (b) means differ equally on both axes. 
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multidimensional stochastic portion of the model on this relationship. Figures 1, 2a, 
and 2b show that for Euclidean and city-block metrics, the relationship between 6 
and f@, V) will have a modified Gaussian form for a range of similarity functions 
(c( = 1, 2, or 3). For all of the points in these figures, it was assumed that Q, = (r2 = 
D) = IY~ = 0.2 (equal variance on all dimensions for all stimuli) and that p, = p2 = 0.0 
(separable dimension stimuli). [Note that, for these parameters, the relative orien- 
tation of the stimulus means to each other will not affectf(p, V) when the similarity 
function involves a Euclidean distance metric; but when the city-block metric is 
assumed, it will.] These figures suggest, qualitatively consistent with Nosofsky’s 
findings, that a modified Gaussian function relating f(r, V) and 6 should be 
expected, even if the similarity function is an exponential decay function and the 
metric defining d (within-trial distance) is city-block. 

Assume that subjects employ an exponential decay similarity function (cz = 1) 
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FIG. 3. Expected value of similarity between pairs of 16 stimuli plotted against the city-block and 
Euclidean distances (6) between the means of the distributions of psychological magnitudes. An 
exponential decay function has been used to describe the relationship between city-block distance (d) 
and within-trial similarity. 
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within each trial and that the city-block distance metric is also employed (y = 1). 
Consider 16 stimuli whose momentary psychological magnitudes can be represented 
mentally by independent multivariate normal distributions with means (0, 0), 
(0.8, 1.2), (0.3, 0.7), (0.9, Ll), (1.2, 0.6), (0.8, 0.8), (0.1, OS), (0.3, O.O), (0.7, O.l), 
(1.1, l.O), (0.9, 0.6), (0.6, 0.6) (0.4, 0.4), (0.2, 1.2), (0.9, O.l), (0.7,0.7); variances 
(0.2,0.2) for all stimuli; and correlation coefficients of zero between dimensions for 
all stimuli. Imagine that the experimenter knows the location parameters (means) 
for each stimulus so that the distance between means (Euclidean and city-block 
metrics) can be computed. From Eq. (1) one can obtain the expected similarity 
value for each pair of stimuli assuming that CI = 1 and y = 1 within each trial. It is 
interesting to inquire about the relationship between 6 (the distance between 
population means) andf(p, V) (the expected value of similarity). Figures 3a and 3b 
show this relationship for this set of 16 coordinates in two dimensions. Given the 
modified Gaussian form of these figures, it seems reasonable to attempt to lit a 
linear function relating ln[f(p, V)] and 6* to the data for both metric forms of 6. 
Such a linear regression analysis suggests that the Euclidean metric leads to a fit of 
the data (r* = .98) which is at least as good as the city-block metric (r* = .95). This 
conclusion might also be reached by simple inspection of the figures. Qualitatively, 
at least, one can conclude that the distance metric appropriate to the function relat- 
ing distance to the expected value of the similarity of pairs of stimuli, evoking 
separable dimension representations, may be different from the metric employed by 
subjects within individual trials. It is possible, consequently, to reconcile Nosofsky’s 
findings with those of Shepard’s regarding the form of the metric provided that 

~a~=a~:cr~=a~~1.0,p,=p,~O.o,r~2.0 

'\ 
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FIG. 4. Expected value of similarity as a function of the Euclidean distance between the means of the 
distributions of psychological magnitudes for different values of T when a step judgment function is 
assumed. 
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Shepard’s theory concerning the similarity function and the metric is applied within 
trials for confusable stimuli. Specific comments on Nosofsky (1986) and Shepard 
(1986, 1987) have been made (Ennis, 1988a, 1988b). 

The Step Function 

Figure 4 shows the relationship between 6 and f(n V) for step functions where 
r is 2.0, 2.5, and 3.0 and where equal variances of 1.0 and correlation coefficients 
of 0.0 are assumed. In order to produce self-similarity values (6 = 0.0) in the 0.84.9 
range, r should be between about 2.0 and 3.0 for this case. Although the step func- 
tion model will make differential predictions for varying values of the stochastic 
parameters, it is quite limited compared to the continuous form of g. The only way 
to manipulate the rate of decrease off(p, V) as a function of 6 for a given V matrix, 
for instance, is to change r. This will also have the effect of changing the predicted 
probability of declaring identical objects “same.” 

STOCHASTIC MULTIDIMENSIONAL SCALING 

Assuming that c1 and y are given, we have shown how the expected value of 
similarity is a function of the difference between the means of the distributions of 
psychological magnitudes (cc) and the variancecovariance matrix of the difference 
between psychological values (V). It should, therefore, be possible to estimate the 
means and variancecovariance matrices of the psychological magnitudes corres- 
ponding to a selection of objects. For the case c1= 2 and y = 2, the means and 
standard errors for 36 stimuli in two dimensions were sampled at random from dis- 
tributions that yielded values off@, V) in the range 0.5-1.0. One of the stimuli was 
assigned the mean (0,O). All correlation coefficients were assigned the value 0.0. 
The matrix of 666 similarity values (all stimulus pairs including self-comparisons) 
was obtained by solving Eq. (2) for the selected means and standard errors. A 
modified Levenberg-Marquardt (steepest descent) algorithm was used to obtain 
multidimensional parameter values for which the difference between the similarities 
corresponding to the parameters obtained and the input similarities was minimum 
in a least-squares sense. Let a be a vector containing the parameters to be 
estimated. These are the estimates of the means and standard errors of the 
distributions of interest. From a, it is simple to compute pii and V, (the means of 
differences and variance+ovariance matrix of differences for stimuli Sj and S,) and, 
consequently, f(pii, VU) can then be computed from Eq. (2). The function to be 
minimized is 

qb)=CC [pii-f(p,,,V,)12, j<i, 

where P, is the observed probability of declaring Si and Sj to be “same.” A key to 
solving this problem and avoiding local minima is the generation of good initial 
starting values. 
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The analysis was initiated with randomly generated values of the means and 
assuming that all standard errors were 0.2 and that correlation coefficients were 0.0. 
The value of 0.2 for the standard errors was chosen because this value yields a self- 
similarity value of about 0.85, which roughly corresponded to the average diagonal 
value of the samedifferent matrix. The parameter values at this minimum were 
then used as the starting configuration for a second stage in which all standard 
errors were assumed to be equal across dimensions for a particular stimulus, but 
may vary across stimuli. The configuration at the minimum from stage 2 was used 
as the starting configuration for the final stage in which the standard errors may 
vary across both stimuli and dimensions. 

The results of this analysis are given in Table 1. This table shows the means and 
standard errors of the original configuration of 36 points and their corresponding 
estimates. These estimates differ only slightly in the third decimal place from the 
actual values, supporting the validity of the strategy used to reach the minimum. 
The residual sum of squares at this minimum was <O.OOl. An attempt to estimate 
all of the parameters in one stage failed to recover the original configuration. It is 
interesting to note that the results reported in Table 1 were obtained without rota- 
tion of the estimated configuration and are a mirror image of the original con- 
figuration. This orientational uniqueness is a consequence of variance inequality. 
The ability to directly interpret the results of a multidimensional scaling analysis 
without the arbitrariness introduced by rotation should prove useful in identifying 
the dimensions employed by subjects when comparing stimulus objects. 

Differences between pairs of identical stimuli obtained from same-different 
judgments can be viewed as a consequence of differences in variances on one or 
more of the dimensions involved in the decision process. Ashby and Perrin (1988) 
have discussed this kind of interpretation of self-similarity. There may also be 
differences in self-similarity due to different numbers of psychological dimensions 
involved in the judgment. Krumhansl (1978) proposed a spatial density model to 
explain differences in self-similarity and asymmetrical similarities. Alternatively, it 
may be possible to formulate the effects of spatial density in terms of variance 
differences. Psychological magnitudes obtained from means located in a densely 
populated region of the space may have been sampled from distributions with 
higher variance than those located in a less densely populated area. Consequently, 
self-similarity measured in terms off(p, V) would be lower in dense regions than in 
sparse regions. This hypothesis was supported by a reanalysis of the Rothkopf 
(1957) Morse code same-different matrix, as can be seen in Fig. 5. 

Using the parameter estimation procedure described earlier for the artificial data 
set, means and variances for the Rothkopf data were obtained assuming that c1= 2 
and y = 2. Solutions in which it was assumed that the variances across dimensions 
for a particular stimulus were equal and unequal were obtained. The unequal 
variance model gave a slightly lower residual sum of squares than the equal variance 
model, but the configurations of means for the stimuli were almost identical. For 
convenience in comparing the relative variances of the stimuli, the equal variance 
model was used. Figure 5 shows that the size of the standard error for a stimulus 

480’32%X 
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TABLE 1 

Actual Means and Standard Errors for 36 Stimuli and 
Their Estimates Obtained Using Nonlinear Least-Squares Minimization 

Means 

Dimension 1 Dimension 2 

(1) (2) (1) (2) 
- 

0.000 0.000 0.000 0.000 0.152 0.154 0.253 
- 0.046 -0.046 -0.235 0.234 0.182 0.184 0.240 

0.059 0.059 0.149 -0.149 0.190 0.192 0.150 
0.361 0.361 0.105 -0.105 0.679 0.680 0.236 

-0.102 -0.103 -0.039 0.039 0.213 0.215 0.382 
0.000 0.000 - 0.224 0.224 0.216 0.218 0.240 

-0.041 -0.041 -0.113 0.113 0.238 0.240 0.211 
-0.093 - 0.094 -0.100 0.100 0.237 0.238 0.425 
-0.314 -0.314 0.117 -0.117 0.227 0.229 0.162 
-0.405 - 0.406 0.296 -0.295 0.286 0.288 0.173 

0.144 0.144 0.101 -0.100 0.160 0.162 0.392 
- 0.023 - 0.023 0.142 -0.142 0.231 0.233 0.152 
-0.194 -0.194 0.111 -0.111 0.150 0.153 0.170 
-0.106 -0.106 -0.119 0.119 0.158 0.160 0.179 
-0.281 -0.282 -0.250 0.250 0.150 0.153 0.177 

0.146 0.147 -0.096 0.096 0.298 0.300 0.151 
0.140 0.141 0.278 - 0.277 0.155 0.157 0.154 
0.521 0.521 -0.138 0.138 0.150 0.153 0.217 
0.095 0.096 -0.035 0.035 0.465 0.467 0.235 
0.108 0.108 -0.047 0.047 0.168 0.170 0.164 

-0.179 -0.179 -0.405 0.405 0.588 0.590 0.186 
-0.047 -0.047 0.022 - 0.022 0.330 0.332 0.272 
-0.142 -0.143 0.032 -0.032 0.224 0.226 0.254 
- 0.099 -0.100 0.072 -0.072 0.155 0.158 0.181 
- 0.077 -0.77 - 0.034 0.034 0.150 0.152 0.620 

0.124 0.124 0.206 - 0.206 0.267 0.268 0.151 
0.270 0.271 -0.154 0.154 0.155 0.158 0.210 

-0.268 - 0.269 0.218 -0.218 0.210 0.212 0.266 
0.205 0.206 0.012 -0.012 0.161 0.164 0.695 
0.282 0.282 -0.261 0.261 0.172 0.175 0.160 
0.369 0.369 0.023 - 0.023 0.171 0.174 0.152 

-0.025 -0.025 0.013 -0.013 0.559 0.561 0.156 
- 0.329 - 0.329 0.068 -0.068 0.238 0.240 0.293 
-0.127 -0.128 0.151 -0.150 0.179 0.182 0.181 
-0.101 -0.101 - 0.090 0.090 0.167 0.169 0.157 
-0.368 -0.368 0.207 - 0.207 0.162 0.165 0.160 

Standard errors 

Dimension 1 Dimension 2 

(1) (2) (1) 
- 

(2) 

0.251 
0.238 
0.148 
0.235 
0.381 
0.238 
0.209 
0.424 
0.160 
0.170 
0.390 
0.149 
0.168 
0.177 
0.174 
0.149 
0.151 
0.215 
0.233 
0.162 
0.183 
0.271 
0.252 
0.179 
0.619 
0.149 
0.208 
0.262 
0.693 
0.158 
0.150 
0.154 
0.291 
0.179 
0.155 
0.158 

Note. Actual values are designated (1) and estimates (2). 
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AVERAGE DlSTANCE FROM ALL OTHER STIMULI 

FIG. 5. The standard error on either dimension for 36 Morse code signals plotted in relation to the 
average Euclidean distance between each stimulus mean and the 35 other stimulus means. 

distribution is related to the degree to which that stimulus is isolated from the other 
stimuli in the set under study (measured by the average Euclidean distance between 
a stimulus and all the other stimuli). Shepard (1963) had applied nonmetric multi- 
dimensional scaling to the same Rothkopf matrix and obtained a configuration of 
perceived Morse code signals. The configuration of means obtained using stochastic 
multidimensional scaling was quite similar to Shepard’s configuration and would 
certainly have led to the same interpretation of the dimensions (number of signal 
components and the dots/dashes ratio). This result is not that surprising for this 
matrix because many of the samedifferent judgment probabilities were less than 0.5 
suggesting, in the absence of response bias, that many pairs of signals were not 
highly confusable. Notwithstanding these comments, this data set proved useful in 
showing that some stimuli may be more precisely perceived than others and that 
this precision may depend on the location of a stimulus relative to the others in the 
data set. Variance differences between stimuli may explain differences in self- 
similarity. It would be interesting to analyse a matrix of same-different judgments 
obtained from more highly confusable objects than the Morse code signals. 

When a = 2 and y = 2 it is possible to estimate the parameters of a sample 
problem rapidly without the need to use the much slower numerical methods to 
evaluate Eq. (1). To include a and y as parameters to be estimated is possible, but 
would require extensive numerical evaluation of Eq. (l), leading to a several 
hundred-fold increase in computation time, depending on the desired accuracy of 
the numerical analysis. A closed form for the special case a = 2, y  = 2 is given in 
Eq. (2) and it would be very useful to have a similar algebraic form when a = 1, 
y = 1. This is important because the city-block metric and the exponential decay 
function may be universally inherent in similarity judgments and identification deci- 
sions with separable dimension stimuli. 

In considering the similarity function, g, we have restricted ourselves to a par- 
ticular form, exp( -d”). If g were defined as any monotonically decreasing function 
of 4 then it can be seen that nonmetric multidimensional scaling would be a special 
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case of the more general approach described here, but in which variances are 
assumed to be zero. 

CONCLUSION 

A multidimensional model of similarity has be described which involves a 
distance-based similarity function and an assumed distribution of momentary 
psychological magnitudes from which the distance is derived. Evaluation of the 
same-different judgment model shows that it is possible to produce a modified 
Gaussian function relating similarity to the distance between the means of the dis- 
tributions of psychological magnitudes even if the within-trial similarity function is 
an exponential decay function. Nosofsky’s findings regarding the form of the metric 
(Euclidean) for a particular set of confusable stimuli is consistent with Shepard’s 
theory that the appropriate metric is city-block for separable stimuli, provided 
Shepard’s theory is applied at the individual trial level. 

Using a nonlinear least-squares procedure, it is shown how the parameters of a 
sample problem may be estimated from a matrix of hypothetical samedifferent 
judgments. Because of uniqueness introduced by unequal variances, where such 
variances exist, the multidimensional scaling analysis yields a solution configuration 
that does not require rotation to interpret the psychological dimensions used by the 
subject. Assuming that the judgment function is any monotonically decreasing func- 
tion of the distance between the momentary within-trial psychological magnitudes, 
the stochastic multidimensional scaling procedure described in this paper is a 
general case which includes deterministic approaches, such as nonmetric multi- 
dimensional scaling, as special cases. 

APPENDIX 

The momentary psychological values are x and y where x’ = (x,, x2, . . . . xn), y’ = 
.(YlY Y2> . . .Y y,); x’ indicates an n-dimensional row vector and n is the number of 
sensory dimensions. The momentary psychological values are mutually independ- 
ently distributed with x having density function h(x) and y having density function 
h(y). The probability densities h(x) and h(y) are multivariate normal distributions 
with means P, and I+ where r: = (P.~~, ILL, . . . . P,,) and I$ = (P.~, , py2, . . . . Pi,), and 
variance-covariance matrices V, and V,. 

On the basis of the momentary psychological values, x and y, the subject decides 
whether the stimuli are the same or different. 

Let z = x - y and d represent the momentary distance between x and y perceived 
by the subject, where 

r n 
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V is the variance-covariance matrix of the difference between psychological values, 
z. c is a vector of differences between the means of the momentary psychological 
values, p-v and pc.. 

The expected value of similarity, in the absence of response bias, is f(p, V, CI, y). 
In an individual trial, similarity is defined as g(d), where 

g(d) = exp( -d”) 

=exp( - [$, ,zJy) 

= G(z), 

xexp(-d”)dz,dz,...dz,, 

x G(z) dz, dz-, . ..dz.,. 

Consider the case when y=2, c1=2, 

y=z cr=2-+G(z)=exp[-(z’z)]. 

Since (z-~)‘V~l(z-~)=z’V-‘z-z’V-‘~-~‘V-’z+~’V~l~, then 

f(p, V) = (27c-“‘2 JV( -1’2 

xI”, r,, -r:, exp[-O.S(z’Jz-z’b-b’z+p’V-‘p)] dz, . ..dz.,, 

where J = V -’ + 21 and b = V- jp. V-I, I, and ss’ are symmetric; thus J is 
symmetric. 

DeIine the following: 

Ai are the n distinct eigenvaiues of J (since J is symmetric), 

Vii are the eigenvectors, 

C = (V,,, . . . . Vj.n), and, 
for any x, D” = (cij); cii = A;; cq = 0, i #j. 

v;. I, ..*, V,, form an orthonormal basis; therefore 

C-‘JC=DandC-‘=CT, 

Z’JZ = z’CC ~ ’ JCC - ‘z 

=z’CDC-‘z 

= (z’CD1”)(D”‘CTz). 
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Let 

ENNIS, PALEN, AND MULLEN 

t = D”2cTz _ D - l/*CTb 

t’ = ~‘(33 l/2 _ b’CD ~ l/2. 

For each zi there exists a tj such that dt, = li dzi: thus 

dt, . ..dt., = (1,12-.&,)“2 dz, . ..dz. 

= ID(1’2 dz, . ..dz., 

= IJ11’2dz,-dz,. 

f(p, V) = (27~)-“‘~ IV1 -l/2. IJI -I’* 

xfs. rm -.,“, exp[ -0.5(t’t + p’V-‘p - b’Jb)] dt, . . . dt, 

= (27r)-“I* [VI -li2 IJI -“* exp[ -0.5(p’VP1c - b’Jb)] 

X J_“, exp( - t:/2) dt,) Ja exp( - tz/2) dt2). . . 
-‘w 

cc, 
X 

I exp( - ti/2) dt,) --ocI 

= (IV1 IJI)-1’2 exp[p’(2J-’ - I)r], 

where 

J=V-‘+21. 
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