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In [3] the author gives a very down-to-earth construction of an 
embedding of an arbitrary reduced commutative ring R into a Baer ring RB 
by an R-compatible ring homomorphism. However: the mapping property 
claimed in [3] does not hold in the generality stated there: an extra 
condition on the ring is necessary. 

In this paper our main task is to correct that result. 
We achieve this goal in Theorem 2.2 where we prove that R CT RB is a 

universal embedding if and only if every R-compatible homomorphism 
h: R + S from R to a Baer ring S satisfies condition (B): for all given 
elements Y, b,, . . . . 6, (t z 1) of R, if Y belongs to all minimal prime ideals 
containing bi, 1 < id t, then h(r) belongs to all minimal prime ideals 
containing k(bi), 1 <i< t, and in Theorem 2.12 where several other 
conditions are given. We also show that if R is reduced, a polynomial ring 
over R automatically satisfies these conditions. 

In Section 3 we construct a ring which fails to satisfy the conditions of 
Theorem 2.12 hence proving that the correction is necessary. 

We are indebted to K. Prikry for pointing out a gap in the proof in [3] 
which eventually led to this Note and to M. Hochster for the hospitality 
and valuable discussions during the preparation of this Note. 

SECTION 1 

In this section let us briefly recall from [3] some notation, definitions, 
and the construction of RB. 

First of all, we shall deal with commutative rings with unit. If a is an 
ideal of the ring R, a- = {r E R 1 ra = 0} is the annihilator of a and is an 
ideal. Sometimes we shall write Anna instead of aL. For an element a of R, 
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we shall denote by (a) the principal ideal Ra. An element e of R such that 
e2 = e is said to be an idempotent. Finally, p (resp. m) will denote a prime 
(resp. maximal) ideal of R. 

DEFINITION 1.1. A Baer ring is a ring such that the annihilator of every 
principal ideal is principal and generated by an idempotent element. 

DEFINITION 1.2. Let R, R’ be rings. A homomorphism h: R -+ R’ from R 
to R’ is said to be R-compatible if whenever (aj’ =(b)‘, ct, be R, then 
(h(a))’ = (h(b))’ in R’. 

When (a)’ is principal and generated by an idempotent, this idempotent 
is uniquely determined by a, and we denote it a*. We write a0 for 1 --a*. 
Note that a is idempotent o a = a3 o a * = 1 - a. Therefore Definition 1.2 
can be rephrased as follows: 

(C). h is an R-compatible ring homomorphism implies that if J* exists, 
then h(a)* exists and, in fact, h(a)* =h(a*) (since (a): = (a*j= 
(l-a*)‘~h(a)~L=h(l-a*)~=(l-Iz(a*))-j. 

If R is a Baer %3, then ai=,$ioa*=b*ol-a*= 
l--b*o(l-a*)-=(l-b*)i and u--=(1-a*)‘, bl=(l-b*)l. Then 
(C j = h(u*) generates h(a)l and h(b*) generates h(b)‘, and since a* = b*, 
h(a*) = h(b*) and h(u)l = h(b)i. 

DEFINITION 1.3. An R-compatible homomorphism between two Baer 
rings is termed a Buer homomorphism. 

Construction of RB following [3, Theorem 1] 

Let R be a reduced ring. Set X= Min(R) (i.e., the set of all minimal 
prime ideals of R endowed with the inherited Zariski-topologyj. For any 
XE X. px will denote the minimal prime ideal of R corresponding to the 
point X. Set g = nT,, X (R/p,) where R/p, is an integral domain. It is not 
difficult to prove that R has the strongest Baer property, that is, the 
annihilator of every ideal is principal and generated by an idempotent (see 
[4, Theorem 4.11 I). In particular, W is a Baer ring. 

Of course, the map i: R + 9, where for each x i(r), = r + p,: is injective 
since R is reduced and is R-compatible. However, as 9 can be very big if 
Min(R) is not finite, in [3] we aimed to find a smaller Baer ring in 
between. The construction goes as follows. Let us think of R as sitting 
inside 9%‘? i.e., identify R with i(R) c W. Hence an element r E R is a family 
(r,),E x where r, = r + p,. Set 
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and then let r* = 1 -r3. The operations -* and -’ are all to be carried in 
W. Note that if rE R and r3 or r* exists in R, then i(r)” =$I-“) and 
i(r j* = i(r*); hence i is an R-compatible monomorphism. Note also that 
(P)’ = (r*) in R. Now let us consider RB, the subring of W generated by the 
elements r, r*: YE R. It is shown in [3, Theorem 11 that RB is a Baer ring. 
However: the universal property for the map i: R -+ RB does not hold 
under such a general hypothesis on R. Some restriction is needed. 

In the next section we shall provide the appropriate correction and: in 
Section 3: we shall exhibit an example of a ring failing to satisfy the extra 
condition. 

In particular we shall prove (see Theorem 2.2) 

THEOREM. The following conditions on a reduced ring R are equicalent. 
(I) For every R-compatible homomorphism h: R + S from R to a 

Baer ring S there is an induced Baer homomorphism h “: RB + S such that 
for all r E R, h#(i(r)) = /z(r) and h#(i(r)“) = h(r)‘. 

(2) For every integer t 2 1 and elements r, bL, ..,, b, of R, if r belongs 
to all minimal prime ideals of R containing bi, 1 d i < t, then h(r) belongs 
to ali minimal prime ideals of S containing h(bi), 1 < i 6 t. 

%iCTION 2 

In this section our aim is to restate Theorem 1 in [3] correctly. Heading 
to this goal let us investigate in detail what is needed for the “universal” 
mapping property to hold. 

The question is: Given a reduced ring R so that one can construct RB, is 
it true that, for every Baer ring S and for every R-compatible ring 
homomorphism h: R -+ S, h factors through the R-compatible 
monomorphism i: R + RB1 In other words, is there a Baer homomorphism 
h# : RB + S which extends h? If that were true as stated in [3], it should 
also be true that whenever Canite riaF = 0 in RB, then Ccnite h(ri) h(ai)” = 0 
in S and we shall see that this is not so in general (see Sect. 3). 

To gain a better insight into the matter let us provide another construc- 
tion of RB. 

Let (X0 1 aE R} be a family of indeterminates indexed by R. Set 
T= R[X,,laE R]/(Fn--X,, XnXb-Xab)a.bER. Hence T= R+C,.. Rx, 
where x2 = x, and x,xb = x,~, a, b E R. Let us observe that RB is nothing 
else than R[a” 1 a E R] since a * = I- a3 and, therefore, there exists a surjec- 
tive R-homomorphism t: T -++R[a” 1 a E R] given by t(x,) = a’. Note that 
(ab)’ = a”b”. Of course, 

Ker(t)= (r+r,x,;+ ... +r,x,mzETIr+r,a~+ ... +r,ak=O). 
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Set j = Ker(t). We obtain Scheme 1. (Note: i denotes lowercase German 
jay.) 

SCHEME 1 

Comment. We first get a map Ii from the polynomial ring R[X,]~E R] 
to S by Xat-+Iz(a)‘. Since h(a)” is idempotent, h kills &“&X0: and, since 
(h(ab))’ = (h(a) h(b))” = h(a)’ g(b)“, h’ kills X,, - .X,X,. Hence h’ induces 
h’: T-S. 

Since <: T,j + RB is an isomorphism, the existence of h”: RB -+ S will 
follow from the existence of h*: 7’,Ii -+ S which makes the above diagram 
commute. Clearly, h* exists if and only if h’ kills i. 

As it is sufficient to show that L kills generators of i, let us write the 
elements of j as a sum of “simpler” elements. 

LEMMA 2.1. In T ecery element can be written as a sum of expressions 
incolt;ing mutually orthogonal idempotent- F in the sense we make precise 
below in formula (3). 

ProoJ Pick an element x of T, hence x = r. 1 + r!x,, + . . . + r,x,_. As 
X;=xUt .Y’=Y and x*=1--.xU, hence xz~,*=C! and x,+.)cf=l. Also 
1 = n;: f (Ix:, Yx$) or 

n 

where 2 = (0: *) and any two elements in this sum with distinct indices are 
mutually orthogonal. Therefore, each XI; (\I = 0, * and i = 1, . . . . m) can be 
written as 
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which implies that 

x= c ri ,... ,x$,...x&. Q.E.D. (3) 
IJl. ...,im)E2m 

In particular, an element x of T with a fixed representation as in (3) 
belongs to 1 if and only if x rj, _. .,im a+ ... &k = 0 which implies that each 
term of the sum is 0. 

Then, the question of whether &kills 1 reduces to the question of whether 

Ifra~.-.a~b~-..b:‘=O,thenisK(ra’~..-a,”b:...b:)=O, 

i.e.,ish(r).(fiih(ui)“)-($ Ih(b,)‘)=O. 
(4) 

But 

r~($laF)-(fi,b~)=O-F or every minimal prime ideal p of 

R, either r E p or at least one a, E p 

or at least bj $ p; i.e., for every 

minimal prime ideal p of R, either 

ra,...a,Eporatleastonebj$p. 

That is, 

0 * Every minimal prime ideal of R which 

contains 6, , . . . . b, (t 2 1) also 

contains ra 1 . . . a, (s > I ). 

We have thus shown 

THEOREM 2.2. Let R be a reduced ring. The following conditions are 
equivalent: 

(i) RB is a universal Baer extension of R. 

(ii) For ecery R-compatible homomorphism h: R + S from R to a Baer 
ring S, there exists a Baer extension h * : RB -+ S of h. 

(iii) For all r, b, , . . . . b, (t 2 1) elements of R, if r belongs to all minimal 
prime ideals of R containing bi, I <i< t, then h(r) belongs to all minimal 
prime ideals of S containing h(bi), 1 d id t. 
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Throughout we shall refer to (iii) as to condition (B). 
Let us head to a characterization of such rings R. 

hOPosITION 2.3. Let R be a ring, t an element of R, and Rz the 
localization of R at the element t. Then 

(1 j The natural map cp: R -+ R, is R-compatible. 

(2) If R is reduced, then for all u, t: E R 

(SC) c/l~(u/l)l in R,ou;(tu)’ in R. 

(B) (~/l)~=(z:ll)’ iu R,e(t~)~ =(ttlj- it? R. 

(3) If R is a Baer ring, then q is a Baer homomorphism. 

ProoJ (1) It is enough to recall from [2, Proposition 3.141 that 
S ~ ‘(Ann M) = Ann( S- ‘M) for all finitely generated R-modules M. 

(2) - !I Let us assume that c E (tu)i in R, i.e., a(tu) = 0. Then 
cp(c(tu)) = (c/l)(tuil) = O/l and t/l invertible imply c/l E (u/l)l. Conver 
sely, let u/l E (u:l)l in R,. Then tk(w)=O in R for some integer ic>O 
implies (au)“ = 0. Therefore ctu = 0 as R is a reduced ring, i.e., t’ E (tu j’ 
in R. (2) - /3. It follows from (1) and (2) - a. 

(3) It follows from (1) and Definition 1.3 as it is easy to check that 
R, is a Baer ring as well. 

COROLLARY 2.4. ,4n R-compatible homomorphism h: R -+ R’ between 
tti.0 reduced rings R, R’ induces an R-compatible map h,: R, + RL,,, fGr alf 
elemerzts t of R. 

Proof Let us remark that in R,, Ann(b/t) = Ann(b/l) as l/t is inver- 
tible. Thus we have to prove that if Ann(bj1) = Ann(c/l) in R,, then 
Ann(h(t;)/l) = Ann(h(c)/l) in Shct,, for all b/l, c/l in R,. By Proposition 
2.3: (2) -p, Ann(b/l) = Ann(cj1) o (tb)’ = (tc)’ which implies 
(h(tb))- = (h(tc))’ by the R-compatibility of h, and this means 
Ann(h(b):ll) = Ann(h(c)!l) by Proposition 2.3: (2) -p already mentioned. 

DEFINITIOS 2.5. An ideal i of R is said to be a B-idea/ if for all elements 
u: c of R, til=t’l and UE~; then GEi. 

EXAMPLES. The ring itself, the zero ideal, a minimal prime ideal: and: of 
course, any intersection of them are B-ideals. 

DEFINITION 2.6. A B-ideal of a Baer ring is termed a Baer ideal. 

DEFINITIOK 2.7. A dense ideal b of R is an ideal with b’ = (0). 
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A few properties of B-ideals, Baer ideals, and dense ideals strictly related 
to our goal are 

PROPOSITION 2.8. (1) A B-ideal of a reduced ring is radical. 

(1’) An ideal of a Baer ring is a Baer ideal if and only if it is an inter- 
section of minimal prime ideals of the ring. 

(2) An ideal of a reduced ring R is a B-ideal if and only if it is the 
kernel qf an R-compatible ring homomorphism having R as a source. 

(2’) An ideal of a Baer ring S is a Baer ideal if and only if it is the 
kernel of a Baer homomorphism from S to a Baer ring S’. 

(3 ) If b = (b, ) . . . . b, j is a Jinitely generated ideal of a reduced ring R, 
then b is not dense (i.e., b1 # (0))~ 3ae R- (0) such that ab,= 0, 
l<i<toV’(b)={pEMin(R)Ipzbj#@. 

ProoJ (1) For an element x of a reduced ring R we have (x”)’ = xl, 
hence if X” E i, then x E i since i is a B-ideal, i.e.: i is radical. 

(2) Let i be a B-ideal of R. Set i? = R/i. Claim: The natural map 
7~: R t) R is R-compatible. 

In fact, let r, u E R be such that rL = u-. Two cases are possible. 1st Case. 
If r (or U) E i, then u (or r) E i, hence R= i:’ = U-. 2nd Case. Assume r$ i 
and ?l# U’. Then there exists an element in R such that i. Y= 0 and 
i. U # 0; that is, tr E i and tu $ i, a contradiction since r’ = 24- =a 
(tr)l = (tu)l for all t E R, because R is reduced (see Proposition 2.3). 
Conversely, let ~0: R + R’ be an R-compatible homomorphism. Set 
i = Ker q. Let r, UE R have the property that r- = u’. If rE i, then 
R’ = (qr)l = (qpu) i which implies qpu = 0 hence zl E i. Note that we do not 
need R to be reduced in this part. 

For the proof of (1’) see [8], for the proof of (3) see [l]. (2’) follows 
from (2). 

DEFINITION 2.9. An R-compatible homomorphism h: R + S from a 
reduced ring R to a Baer ring S is said to satisfy condition (Bz) if 

(B,) For all elements b,, . . . . 6, (t 3 1) of R, if no minimal prime ideal 
of R contains biz 1 d i< t, then no minimal prime ideal of S contains h(bi), 
l<i<t. 

Since no minimal prime ideal of R contains bi9 1 <id t o the ideal 
b = (b,, . . . . b,) is dense, condition (Bc) says that under h a finitely generated 
dense ideal of R expands to a dense ideal of S. 

Remark 2.10. Of course, if an R-compatible homomorphism h: R -+ S 
from a reduced ring R to a Baer ring S satisfies condition (B), then it 
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satisfies condition (B,), since no minimal prime ideal contains bi: 
1 < i < t o 1 belongs to ali minimal prime ideals containing bi, 1 6 i < t. 

THEOREM 2.11. Let R be a reduced ring, S a Baer ring, and h: R + S an 
R-compatible homomorphism. TFAE 

(i) h satisfies condition (B). 
(ii) lzj: R+ S,z,f, satisfies (B)for alIfe R. 

(iii) h-,-: R,-+ SkCf , satisfies (B, j for all f E R. 

Proof: (ii) +A (iii) for allfe R by Remark 2.10. (iii j = (i). If (B) fails: we 
get elements r, b,, . . . . b, (t 3 1) in R such that r belongs to all minimal 
prime ideals of R containing b,, . . . . 6, but h(r) does not belong to a 
minimal prime ideal q of S containing k(b,), . . . . hbr). In the ring R,, 
b,:‘l, I.., b,!l do not belong to any minimal prime ideal. By B,) for 
(R,, S,(,,, II,) the images h,(b,)/l, ,.., h,(b,)/l are not in any minimal prime 
ideal of S,,(,;. But q. S,(,, gives a minimal prime which contains h,(bi)/lF 
1 d i d I. a contradiction. 

(i) - (ii). Given r;ffm, b,hfmC, 1 d i< t: elements of R/, to show that if Y[!= 
belongs to all minimal primes containing 6,/f m1, 1 < i< ?, then h(r)/h(f)” 
belongs to all minimal primes of Sh(: ) containing h(bi)/h(f)“;: ! < i < t: is 
equivalent to showing that if r/l belongs to all minimal primes containing 
b,,Q, 1 d i 6 t: in R,. then h(r)/1 belongs to all minimal primes containing 
h(bi);‘l, 1 d id t, m Sl,,,f,. 

If not, choose a minimal prime ideal q of ShCfj containing /r(b,);: 
(1 d id r) and not containing h(r)/l. 

Claim. Every minimal prime ideal of R which contains bi, I < i < t: 
contains yf: .4ssume not and let p be a minimal prime ideal containing bi, 
1 6 i < i, and not r- Then f $ p implies pR,- is a minimal prime containing 
bJ1 (i= 1, 2, . ..~ tj; hence pRf contains r,!l. This implies f kr E p e 
(.fijk E p efr E p, a contradiction. Therefore, every minimal prime of S 
which contains h(b,), i = 1: . . . . t, contains h(rf ) = h(r) h(f ), a contradiction 
since qC does not contain h(f) h( -) t an is a minimal prime containing h(b,j, d . 
i= 1. . ..) t. Q.E.D. 

For the next result we need some notation. Let R be a reduced ring. 
For an element r of R, set I’= Min(R,), while X= Min(R). Let 
X;= ix E x:ir 4 p,>. There is a canonical homomorphism r~ from X, to I< 
Let P:IL.~R~P.~FI,.~, R/p, be the restriction map. 

THEOREM 2.12. 
(R-lB z PW~)~(;(,,,. 

There are natural isomorphisms (R”), = ( RB)iC,j z 
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ProoJ: Let pB be the restriction of p to RB so that pB: RE -++ p(RB). Set 
i = Ker(pB). i consists precisely of the elements of RB vanishing on Y, 
whence i = i(r)’ = lJ,(i(r)“)‘. Therefore the induced map p$,: (RB)iC,, + 
MRB))pup,, is an isomorphism. Let j: R, + nJ E y R,/py be the map for R, 
which corresponds to the map i for R defined earlier. The maps pier) and $ 
in the commutative diagram below 

are easily seen to be isomorphisms. (Here, if g E JJ,, X, R/p,, 
~(g,ll)(vl(x))=g(x)ll; K/P,,,, is identical with (R/p,),.) By definition, 
(R,)B is the subring of nJ-E y R,lpy generated by the elements j(f), fe R, 
W(r), and (j(f)hli(r)k)‘, fe R or by the elements j(j), f~ R, l/j(r), and 
;$f,jW = (Afi))“, f~ R. Th e image of this subring under I,-’ in 

XEX, &‘P.~)~~~~,.,, is the subring generated by djcf)), .f~ R, pMfr)Y = 
PCW’I, i.e., (R.IB viewed in (n,, w, R/p,),,i(,)I is the subring generated by 
p(i(f)), feR, b'p(4r)), and pCi(f )“I, fER which is exactly P(R~)~(~(,))- 
Therefore we have got the isomorphisms (R,.)B 2 p( RB)pCiCrjj 2 
(RB)i(r, = (RB)r. 

PROPOSITION 2.13. Zf all R-compatible homomorphisms h: R + S from a _ 
reduced ring R to a Baer ring S satisfy? condition (B), then all R-compatible 
homomorphisms k: R, -+ T from R, to a Baer ring T satisjjr (B). 

Proof: Choose an element r of R and let k: R, + T be such a 
homomorphism. Note that k(r/l) is invertible in T. First we get an R-com- 
patible map h: R +V R, -+k T, hence there exists h* : RB + T such that 
h# 2 i = k 0 cp = h. By localizing RB at i(r) we get a map q*: R, -+ (RB)iC,, by 
the universality of R, and also a map (RB)iC,, -+ T since h(r) is invertible in 
T. Hence by the isomorphism (RB)i,,j z (R,)B established earlier we obtain 
a map (R,)’ + T which says that k satisfies (B). 

Our task is at end since we can prove 

THEOREM 2.14. TFAE on a reduced ring R. 

(1) Every R-compatible homomorphism h: R + S from R to a Baer 
ring S satisfies condition (B). 

(2) R 4 RB is a universal R-compatible embedding. 
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(3) A proper B-ideal of R, has no dense finitely generared subideal, ftir 
all r in R. 

(4) A prime B-ideal of R, has no dense finitely generated subideal, ftir 
ali r irl R. 

(5) Euery R-compatible map R, -+ K satisfies condition (B, j ,for all 
,GeEds K and r in R. 

ProojI (1) o (2) by Theorem 2.2. (1) D (3): (I) = (5) are easy to prove. 
(3) = (4) is trivial. 

(4) e (1). Let us assume that (4) holds. We want to prove that every 
R-compatible map h: R --, S, S Baer ring, satisfies condition (B). Claim: I: 
suffices to show that an R-compatible map R, -+ S’ satisfies condition (B-) 
for all Baer rings S’ and r in R. 

.4ssume not and let h: R, + S’ fail to satisfy condition (B,).Then there 
exists a finitely generated dense ideal of R, which does not expand to a 
dense ideal in S’. Say b = (b,, . . . . b,). Choose a minimal prime ideal q of S 
containing h(bij, 1 <i< t. Claim: k’(q) is a B-ideal of R,. If not, 
let X’ =yi in R, and XE h-l(q), y$ h-‘(q). Since h is R-compatible, we 
have h(x)- = h(y)‘, a contradiction because h(x)E q e-h(x)’ sL qT but 
h(y)i$qeh(p)‘=h(x)-sq. 

(5)a (1). If not, let h: R -+ S fail to satisfy condition (B), i.e.: there 
exist elements r, bl,..., b, in R such that r belongs to all minimal primes of 
R containing bi, 1 < i < t, but h(r) 4 q a minimal prime ideal of S which 
contains h(bi), 1~ id t. By localizing at r and h(r) and then taking the 
fraction field K of Shcr,/qShrr, , we obtain an R-compatible map 

R, -+ S/z(r) + S/,dqStr,.rj -+ K 

which maps the finitely generated dense ideal (b,, . . . . 6,) to (O), a contra- 
diction. 

Next is a result, interesting in itself, which implies that for a reduced ring 
R, the embedding R[X] 4 R[X]” is automatically universal. 

THEOREM 2.15. Let R be a reduced ring. Then in REX],, f E R[X], ever-v 
j?nitely generated dense ideal contains a nonzerodisisor. 

ProoJ Suppose that do/f *O, . . . . d,/f 1r E R[X],6 have no common 
annihilator. Then the elements di;‘l, i= 0, 1, . ..) r7 have no common 
annihilator. Claim: If N> sup{deg di, 0 < iQ r>, then x:rZO di Yv/l is a 
nonzerodivisor. Prooj Say g/fj kills it. Then G = f “g kills D = C;= o di X“’ 
in R[X], for some sufficiently large k. 

It suffices to show that if G kills C:=odiXvi in R[X] then G kills each 
di(O < i<r), for then G/l =0 in RCA’],. Let CG) C, be the ideals 



30 MARIA CONTESSA 

of R generated by the coefficients of G and D respectively. 
GD = 0 = C, . C, = (0). (If not, choose a minimal prime ideal p of R such 
that p 2 C,. C,, that is, p i4 c1 .c2 for some coefficient c, of G and some 
coefficient cl of D. Then GD & 0 mod p, a contradiction.) CG. C, = (0), 
however, implies that C, . C, = (0) since C, c C,, 0 d id r. Hence Gd, = 0 
for i = 0, 1, . . . . I’, i.e., G/l kills dJ1 in R[X],-for all i Thus G/l =f”g,‘l =0/l 
in R[X].,, i.e., g/l = O/l in R[X], QED. 

COROLLARY 2.16. For a reduced ring R, then enzbedding R[ X] 4 R[X]’ 
is unicersal. 

Proof: Assume not and let h: R[X&-- S fail to satisfy Theorem 2.14: 
(4). Let b = (d,, . . . . d,) be a finitely generated dense ideal of R[X],r which 
expands to a nondense ideal. There exists a minimal prime ideal q of S 
containing h(d,), . . . . h(d,), whence h-‘(q) contains b = (d,, . . . . d,) which 
contains a nonzerodivisor 6 by Theorem 2.15. But h is R-compatible and, 
therefore, Iz(~)~ = h(l)- = (0) c q, a contradiction since h(6) E q. 

SECTIOK 3 

In this section we shall exihibit a ring which fails to satisfy condition 
(B,) and hence the conclusion of Theorem 2.12 does not hold for it. 
Therefore, Theorem 1 as stated in [3] is not correct. 

We shall construct a reduced quasilocal ring (R,, m,) and elements x, 
J E m, such that xl n?:’ = (x,y)- = (0), but every element of m, is a 
zerodivisor. It is then immediate that R, -++ KU/m0 is an R-compatible 
map from R, to a field K, which does not satisfy (B.:) or (B). Hence 
R, cs Rz does not have the universal mapping property and this is not the 
universal Baer embedding of R,. 

LEMMA 3.1. Let (R, m) be a quasilocal reduced ring with x, y E m such 
that 

(1) Ann x n Anny = (0). 
(2) Ifs 1 xn and s 1 y”, then s is a unit. 

Let u E m. Set R’ = R[Zj/j where j = {WE R TZJj3N such that (xw)“, 
( yw).’ E (uZ)}. Then 

(a) R’ is quasilocal and reduced. 

(b) jnR=(O)andhence RcjR’andm,~m.,. 

(c) The inlage of Z in R’ is not zero, uZ= 0 in R’, and hence u is a 
zerodicisor in R’. 

(d) In R’ (1) and (2) hold for the irnuges of x and J-. 
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Proof. (a j Let 5 E R’ be such that ji’ = 0, hence 31; E i in R CT; for some 
i, that is: (xl)“, (r’y)” E (uZ). Set N= max(in, inz). Then (~xj~“, 
(a~)” E (uZ), whence ‘x E j, i.e., 5 = 0. That proves (a) since R’ is clearly 
quasilocal. 

(b) We need to check that i n R = (0 j. Pick an element YE j n R. 
Then (rx) ‘, (rJ*)“E (~2). Elements of (uZ) have constant term 0: whence 
(r,y)‘v= (q.j.‘~=O, i.e., rx = ry = 0, since R is reduced. Therefore 
r E Ann x r? Ann y = (0) hence r = 0. 

(c) If ZEN, then (ZX)~=UZ.IZ,(Z) and (Zyjti=uZ.ii,(Z) and, 
therefore, u 1 x” and u 1 J”, i.e.? u is a unit. This is a contradiction since u E m. 
Thus, Z$ j and the image of Z in R’ is not zero. 

(dj (1) Suppose ME Ann -fin Annj in R’. Then f(.Z).x~i and 
f(Z).yEi in RaZj, hence (f(z).x)“~(~Z) and (f(Z)y.~)-“‘E(uZ), Se: 
;V = &ax(2X, 2X’). Then (f(Z) x)““’ and (f(Zj~)“” belong to (uZ), i.:.. 
f(Z) E i hence f(Z) = 0 in R’. 

( 2) If f(Z)]%” and f(Z)lJ’” in R’, then x”-f(Zjg(Z)~ j and 
l.n -f(Z) lz(Zj E j- that is, for sufficiently large N ((9 -f(Z) g(Zj) ~ x)-‘= 
ifZ.k,(Zj; ((X”-f(Z)g(Z)).~j.‘~=~lz.kZ(zj; ((y”-f[Z]h(Zj).xjcv= 
uZ. ri(Z) and ((~3” -f(Z) /z(Z)) .J)“= uZ. t?(Z). Substituting 0 for Z we 
obtain, in R, ((3~‘~ -f(O) g(0)) x).‘= 0, i.e.. (x” -f(O) g(0)) x = 0, and 
((~“-~f(O)g(Ojj~)~~~O~ i.e., (x”-f(O)g(.O))~q=0, that is, (~“-~~((ojg(Oj) 
E Ann .Y n Ann J’ = (0): hence Y --f(O) g(0) = 0 in R. Therefore S(O) 
divides xi!. 

Similarly y” =J(O) Iz(O)~f(o) i J”. Hence .f(O) is a unit in R and: 
therefore, f(Z) is a unit in R hq and, of course, f(Z) is a unit in R’, 

LEMILIA 3.2. Let (R, m) be a quasilocal, reduced ring. Let .Y, ~3 E m be 
such that 

(1) AnnxnAnny=(O). 
(2) s / x” and s i J” C- s is a unit of R, 

Then R t R, , where R, is quasilocal, reduced with mR c mR!, ( 1) and (2 j 
ho!d in RI, and euery element qf mR is a zerodi’visor in RI. 

Proof: Let il be an ordinal with first element 0 such that n - {O> is in 
l-l correspondence with mR. Construct a chain of rings Ri. indexed by the 
ordinal /1 by transfinite induction. Let R, = R. If i > 0, there are two cases. 
If i. is a limit ordinal, let Sj. = uJ1< j. R, and then use Lemma 3.1 to enlarge 
5, to a ring Rj. in which u, is a zerodivisor and the conditions specified in 
the conclusion of the Lemma hold. If i. has an immediate predecessor 
p 3 OI use Lemma 3.1 likewise to enlarge R, :o an R;. such that U, is a 
zerodivisor in R;. Let R1 = lJj.En R;.. QED. 
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Finally, consider a chain R c RI c . .. where R,z+ 1 = (R,), in the sense 
of Lemma 3.2, and set R, = lJiao Ri where R, = R. Then R, has the 
following properties: 

(1) It is quasilocal and reduced. 
(2 j There exist .x, J E m, such that Ann x n Ann 17 = (0). 
(3) Every element of m, is a zerodivisor. 

As an example of a ring to start with take R = KfX, YJ, K a field. 

For the ring (R,, m,), the canonical projection 7~: R, -+ Rw/mw = K, 
is R-compatible in that a- = bl in R,e a- =&I, m, is a prime B-ideal 
containing the finitely generated dense ideal (X, Y), hence by Theorem 2.12 
the map R, + Rf: is not universal. 
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