A Note on Baer Rings

Maria Contessa

Department of Mathematics, 3220 Angell Hall,
The University of Michigan, Ann Arbor, Michigan 48109-1003

Communicated by I. N. Herstein

Received October 7, 1986

INTRODUCTION

In [3] the author gives a very down-to-earth construction of an embedding of an arbitrary reduced commutative ring R into a Baer ring R^B by an R-compatible ring homomorphism. However, the mapping property claimed in [3] does not hold in the generality stated there: an extra condition on the ring is necessary.

In this paper our main task is to correct that result.

We achieve this goal in Theorem 2.2 where we prove that $R \preceq R^B$ is a universal embedding if and only if every R-compatible homomorphism $h: R \to S$ from R to a Baer ring S satisfies condition (B): for all given elements r, b_1, \ldots, b_t ($t \geq 1$) of R, if r belongs to all minimal prime ideals containing b_i, $1 \leq i \leq t$, then $h(r)$ belongs to all minimal prime ideals containing $h(b_i)$, $1 \leq i \leq t$, and in Theorem 2.12 where several other conditions are given. We also show that if R is reduced, a polynomial ring over R automatically satisfies these conditions.

In Section 3 we construct a ring which fails to satisfy the conditions of Theorem 2.12 hence proving that the correction is necessary.

We are indebted to K. Prikry for pointing out a gap in the proof in [3] which eventually led to this Note and to M. Hochster for the hospitality and valuable discussions during the preparation of this Note.

SECTION 1

In this section let us briefly recall from [3] some notation, definitions, and the construction of R^B.

First of all, we shall deal with commutative rings with unit. If a is an ideal of the ring R, $a^\perp = \{ r \in R | ra = 0 \}$ is the annihilator of a and is an ideal. Sometimes we shall write Anna instead of a^\perp. For an element a of R,
we shall denote by \((a)\) the principal ideal \(Ra\). An element \(e\) of \(R\) such that \(e^2 = e\) is said to be an idempotent. Finally, \(p\) (resp. \(m\)) will denote a prime (resp. maximal) ideal of \(R\).

Definition 1.1. A Baer ring is a ring such that the annihilator of every principal ideal is principal and generated by an idempotent element.

Definition 1.2. Let \(R, R'\) be rings. A homomorphism \(h: R \to R'\) from \(R\) to \(R'\) is said to be \(R\)-compatible if whenever \((a)^\perp = (b)^\perp\), \(a, b \in R\), then \((h(a))^\perp = (h(b))^\perp\) in \(R'\).

When \((a)^\perp\) is principal and generated by an idempotent, this idempotent is uniquely determined by \(a\), and we denote it \(a^*\). We write \(a^o\) for \(1 - a^*\). Note that \(a\) is idempotent \(\iff a = a^o \iff a^* = 1 - a\). Therefore Definition 1.2 can be rephrased as follows:

\[(C). \ h \ is \ an \ R\text{-}compatible \ ring \ homomorphism \ implies \ that \ if \ \(a^*\) \ exists, \ then \ \(h(a)^*\) \ exists \ and, \ in \ fact, \ \(h(a)^* = h(a^*)\) \ (since \(\(a^o = (a^*)^o = (1 - a^*)^o = h(1 - a^*)^o = h(1) - h(a^*) = (1 - h(a^*))^o\)).\]

If \(R\) is a Baer ring, then \(a^o = b^o \iff a^* = b^* \iff 1 - a^* = 1 - b^* \iff (1 - a^*)^o = (1 - b^*)^o\). Then \(\(C\) \ implies \ \(h(a^*)\) \ generates \ \(h(a)^o\) \ and \ \(h(b^*)\) \ generates \ \(h(b)^o\), \ and since \(a^* = b^*\), \(h(a^*) = h(b^*)\) and \(h(a)^o = h(b)^o\).

Definition 1.3. An \(R\)-compatible homomorphism between two Baer rings is termed a Baer homomorphism.

Construction of \(R^B\) following [3, Theorem 1]

Let \(R\) be a reduced ring. Set \(X = \text{Min}(R)\) (i.e., the set of all minimal prime ideals of \(R\) endowed with the inherited Zariski-topology). For any \(x \in X\), \(p_x\) will denote the minimal prime ideal of \(R\) corresponding to the point \(x\). Set \(\mathcal{R} = \prod_{x \in X} (R/p_x)\) where \(R/p_x\) is an integral domain. It is not difficult to prove that \(\mathcal{R}\) has the strongest Baer property, that is, the annihilator of every ideal is principal and generated by an idempotent (see [4, Theorem 4.11]). In particular, \(\mathcal{R}\) is a Baer ring.

Of course, the map \(i: R \to \mathcal{R}\), where for each \(x\) \(i(r)_x = r + p_x\), is injective since \(R\) is reduced and is \(R\)-compatible. However, as \(\mathcal{R}\) can be very big if \(\text{Min}(R)\) is not finite, in [3] we aimed to find a smaller Baer ring in between. The construction goes as follows. Let us think of \(R\) as sitting inside \(\mathcal{R}\), i.e., identify \(R\) with \(i(R) \subset \mathcal{R}\). Hence an element \(r \in R\) is a family \((r_x)_{x \in X}\) where \(r_x = r + p_x\). Set

\[r^c = (r^c_x)_{x \in X} \in \mathcal{R} \quad \text{where} \quad r^c_x = \begin{cases} 1 & \text{if } r \notin p_x \\ 0 & \text{if } r \in p_x \end{cases}\]
and then let \(r^* = 1 - r^0 \). The operations \(-^*\) and \(-^0\) are all to be carried in \(\mathcal{R} \). Note that if \(r \in R \) and \(r^0 \) or \(r^* \) exists in \(R \), then \(i(r)^0 = i(r^0) \) and \(i(r)^* = i(r^*) \); hence \(i \) is an \(R \)-compatible monomorphism. Note also that \((r)^ - = (r^*) \) in \(\mathcal{R} \). Now let us consider \(R^B \), the subring of \(\mathcal{R} \) generated by the elements \(r, r^*, r \in R \). It is shown in [3, Theorem 1] that \(R^B \) is a Baer ring. However, the universal property for the map \(i: R \to R^B \) does not hold under such a general hypothesis on \(R \). Some restriction is needed.

In the next section we shall provide the appropriate correction and, in Section 3, we shall exhibit an example of a ring failing to satisfy the extra condition.

In particular we shall prove (see Theorem 2.2)

Theorem. The following conditions on a reduced ring \(R \) are equivalent.

1. For every \(R \)-compatible homomorphism \(h: R \to S \) from \(R \) to a Baer ring \(S \) there is an induced Baer homomorphism \(h^*: R^B \to S \) such that for all \(r \in R \), \(h^*(i(r)) = h(r) \) and \(h^*(i(r)^*) = h(r)^* \).

2. For every integer \(t \geq 1 \) and elements \(r, b_1, ..., b_t \) of \(R \), if \(r \) belongs to all minimal prime ideals of \(R \) containing \(b_i \), \(1 \leq i \leq t \), then \(h(r) \) belongs to all minimal prime ideals of \(S \) containing \(h(b_i) \), \(1 \leq i \leq t \).

Section 2

In this section our aim is to restate Theorem 1 in [3] correctly. Heading to this goal let us investigate in detail what is needed for the "universal" mapping property to hold.

The question is: Given a reduced ring \(R \) so that one can construct \(R^B \), is it true that, for every Baer ring \(S \) and for every \(R \)-compatible ring homomorphism \(h: R \to S \), \(h \) factors through the \(R \)-compatible monomorphism \(i: R \to R^B \)? In other words, is there a Baer homomorphism \(h^*: R^B \to S \) which extends \(h \)? If that were true as stated in [3], it should also be true that whenever \(\sum_{\text{finite}} r_i a_i^c = 0 \) in \(R^B \), then \(\sum_{\text{finite}} h(r_i) h(a_i)^c = 0 \) in \(S \) and we shall see that this is not so in general (see Sect. 3).

To gain a better insight into the matter let us provide another construction of \(R^B \).

Let \(\{X_a | a \in R \} \) be a family of indeterminates indexed by \(R \). Set \(T = R[X_a | a \in R]/(X_a^2 - X_a, X_a X_b - X_{ab})_{a, b \in R} \). Hence \(T = R + \sum_{a \in R} R x_a \) where \(x_a^2 = x_a \) and \(x_a x_b = x_{ab}, a, b \in R \). Let us observe that \(R^B \) is nothing else than \(R[a^c | a \in R] \) since \(a^c = 1 - a^0 \) and, therefore, there exists a surjective \(R \)-homomorphism \(t: T \to R[a^0 | a \in R] \) given by \(t(x_a) = a^c \). Note that \((ab)^c = a^0 b^c \). Of course,

\[
\text{Ker}(t) = \{ r + r_1 x_{a_1} + \cdots + r_m x_{a_m} \in T | r + r_1 a_1^c + \cdots + r_m a_m^c = 0 \}.
\]
Set \(j = \text{Ker}(t) \). We obtain Scheme 1. (Note: \(j \) denotes lowercase German "jay."

\[
\text{SCHEME 1}
\]

Comment. We first get a map \(\tilde{h} \) from the polynomial ring \(R[X_a | a \in R] \) to \(S \) by \(X_a \mapsto h(a)^\circ \). Since \(h(a)^\circ \) is idempotent, \(\tilde{h} \) kills \(X_a^2 - X_a \); and, since \((h(ab))^\circ = (h(a)h(b))^\circ = h(a)^\circ g(b)^\circ \), \(\tilde{h} \) kills \(X_{ab} - X_aX_b \). Hence \(\tilde{h} \) induces \(\tilde{h}: T \to S \).

Since \(\zeta: T/j \to R^B \) is an isomorphism, the existence of \(h^*: R^B \to S \) will follow from the existence of \(h^*: T/j \to S \) which makes the above diagram commute. Clearly, \(h^* \) exists if and only if \(\tilde{h} \) kills \(j \).

As it is sufficient to show that \(\tilde{h} \) kills generators of \(j \), let us write the elements of \(j \) as a sum of "simpler" elements.

Lemma 2.1. In \(T \) every element can be written as a sum of expressions involving mutually orthogonal idempotents in the sense we make precise below in formula (3).

Proof. Pick an element \(x \) of \(T \), hence \(x = r \cdot 1 + r_1x_{a_1} + \ldots + r_mx_{a_m} \). As \(x_a^2 = x_a \), \(x_a^* = x_a \) and \(x_a^* = 1 - x_a \), hence \(x_a^*x_a^* = 0 \) and \(x_a^* + x_a^* = 1 \). Also \(1 = \prod_{i=1}^m (x_{a_i}^* + x_{a_i}^*) \) or

\[
1 = \sum_{(j_1, \ldots, j_m) \in 2^m} x_{a_1}^{j_1} \cdots x_{a_m}^{j_m}, \tag{1}
\]

where \(2 = \{0, *\} \) and any two elements in this sum with distinct indices are mutually orthogonal. Therefore, each \(x_{a_i}^v \) (\(v = 0, * \) and \(i = 1, \ldots, m \)) can be written as

\[
x_{a_i}^v = x_{a_i}^* \cdot 1 = \sum_{(j_1, \ldots, j_{i-1}, j_{i+1}, \ldots, j_m) \in 2^m-1} x_{a_1}^{j_1} \cdots x_{a_{i-1}}^{j_{i-1}} x_{a_i}^v x_{a_{i+1}}^{j_{i+1}} \cdots x_{a_m}^{j_m} \tag{2}
\]
which implies that

\[x = \sum_{(j_1, \ldots, j_m) \in 2^m} r_{j_1} \cdots j_m x_{a_1}^{j_1} \cdots x_{a_m}^{j_m}. \quad \text{Q.E.D.} \quad (3) \]

In particular, an element \(x \) of \(T \) with a fixed representation as in (3) belongs to \(J_r \) if and only if \(\sum r_{j_1} \cdots j_m a_1^{j_1} \cdots a_m^{j_m} = 0 \) which implies that each term of the sum is 0.

Then, the question of whether \(\bar{h} \) kills \(J_r \) reduces to the question of whether

\[\text{If } ra_1^* \cdots a_s^* b_1^* \cdots b_t^* = 0 \text{, then } \bar{h}(ra_1^* \cdots a_s^* b_1^* \cdots b_t^*) = 0, \]

i.e.,

\[h(r) \cdot \left(\prod_{i=1}^s h(a_i)^* \right) \cdot \left(\prod_{j=1}^t 1 - h(b_j)^* \right) = 0. \quad (4) \]

But

\[r \cdot \left(\prod_{i=1}^s a_i^* \right) \cdot \left(\prod_{j=1}^t b_j^* \right) = 0 \iff \text{For every minimal prime ideal } p \text{ of } R, \text{ either } r \in p \text{ or at least one } a_i \in p \]

or at least \(b_j \notin p \); i.e., for every minimal prime ideal \(p \) of \(R \), either

\[ra_1 \cdots a_s \in p \text{ or at least one } b_j \notin p. \]

That is,

\[r \cdot \left(\prod_{i=1}^s a_i^* \right) \cdot \left(\prod_{j=1}^t b_j^* \right) = 0 \iff \text{Every minimal prime ideal of } R \text{ which contains } b_1, \ldots, b_t (t \geq 1) \text{ also contains } ra_1 \cdots a_s (s \geq 1). \]

We have thus shown

Theorem 2.2. Let \(R \) be a reduced ring. The following conditions are equivalent:

(i) \(R^B \) is a universal Baer extension of \(R \).

(ii) For every \(R \)-compatible homomorphism \(h: R \to S \) from \(R \) to a Baer ring \(S \), there exists a Baer extension \(h^*: R^B \to S \) of \(h \).

(iii) For all \(r, b_1, \ldots, b_t (t \geq 1) \) elements of \(R \), if \(r \) belongs to all minimal prime ideals of \(R \) containing \(b_i \), \(1 \leq i \leq t \), then \(h(r) \) belongs to all minimal prime ideals of \(S \) containing \(h(b_i) \), \(1 \leq i \leq t \).
Throughout we shall refer to (iii) as to condition (B).
Let us head to a characterization of such rings R.

Proposition 2.3. Let R be a ring, t an element of R, and R_t the localization of R at the element t. Then

1. The natural map $\phi: R \to R_t$ is R-compatible.
2. If R is reduced, then for all $u, v \in R$
 - $(u/v)^{1-} = (v/u)^{1-}$ in R,
 - $(v/u)^{1-}$ in R_t implies v/u^{1-} in R.
3. If R is a Baer ring, then ϕ is a Baer homomorphism.

Proof. (1) It is enough to recall from [2, Proposition 3.14] that $S^{-1}(\text{Ann } M) = \text{Ann}(S^{-1}M)$ for all finitely generated R-modules M.

(2) – α. Let us assume that $v \in (tu)^{1-}$ in R, i.e., $v(tu) = 0$. Then $\phi(v(tu)) = (v/u)(tu/u) = 0/1$ and $t/1$ invertible imply $v/u \in (u/1)^{1-}$. Conversely, let $v/u \in (u/1)^{1-}$ in R_t. Then $t^k(vu) = 0$ in R for some integer $k \geq 0$ implies $v(tu)^k = 0$. Therefore $v(tu) = 0$ as R is a reduced ring, i.e., $v \in (tu)^{1-}$ in R. (2) – β. It follows from (1) and (2) – α.

(3) It follows from (1) and Definition 1.3 as it is easy to check that R_t is a Baer ring as well.

Corollary 2.4. An R-compatible homomorphism $h: R \to R'$ between two reduced rings R, R' induces an R-compatible map $h_t: R_t \to R'_t$ for all elements t of R.

Proof. Let us remark that in R_t, $\text{Ann}(b/t) = \text{Ann}(b/1)$ as $1/t$ is invertible. Thus we have to prove that if $\text{Ann}(b/1) = \text{Ann}(c/1)$ in R_t, then $\text{Ann}(h(b)/1) = \text{Ann}(h(c)/1)$ in $S_{h(t)}$, for all $b/1, c/1$ in R_t. By Proposition 2.3: (2) – β, $\text{Ann}(b/1) = \text{Ann}(c/1)$ implies $(tb)^{1-} = (tc)^{1-}$ which implies $(h(tb))^{1-} = (h(tc))^{1-}$ by the R-compatibility of h, and this means $\text{Ann}(h(b)/1) = \text{Ann}(h(c)/1)$ by Proposition 2.3: (2) – β already mentioned.

Definition 2.5. An ideal i of R is said to be a B-ideal if for all elements u, v of R, $u^{1-}v^{1-} = v^{1-}u^{1-}$ and $u \in i$, then $v \in i$.

Examples. The ring itself, the zero ideal, a minimal prime ideal, and, of course, any intersection of them are B-ideals.

Definition 2.6. A B-ideal of a Baer ring is termed a Baer ideal.

Definition 2.7. A dense ideal b of R is an ideal with $b^{1-} = (0)$.
A few properties of B-ideals, Baer ideals, and dense ideals strictly related to our goal are

Proposition 2.8. (1) A B-ideal of a reduced ring is radical.

(1') An ideal of a Baer ring is a Baer ideal if and only if it is an intersection of minimal prime ideals of the ring.

(2) An ideal of a reduced ring R is a B-ideal if and only if it is the kernel of an R-compatible ring homomorphism having R as a source.

(2') An ideal of a Baer ring S is a Baer ideal if and only if it is the kernel of a Baer homomorphism from S to a Baer ring S'.

(3) If $b = (b_1, \ldots, b_t)$ is a finitely generated ideal of a reduced ring R, then b is not dense (i.e., $b^+ \neq (0)$) $\iff \exists a \in R - \{0\}$ such that $ab_i = 0$, $1 \leq i \leq t \iff V^-(b) = \{ p \in \text{Min}(R) | p \supseteq b \} \neq \emptyset$.

Proof. (1) For an element x of a reduced ring R we have $(x^n)^+ = x^+$, hence if $x^n \in i$, then $x \in i$ since i is a B-ideal, i.e., i is radical.

(2) Let i be a B-ideal of R. Set $\overline{R} = R/i$. Claim: The natural map $\pi: R \to \overline{R}$ is R-compatible.

In fact, let $r, u \in R$ be such that $r^+ = u^-$. Two cases are possible. 1st Case. If r (or u) $\in i$, then u (or r) $\in i$, hence $\overline{R} = r^+ = u^-$. 2nd Case. Assume $r \notin i$ and $r^+ \neq u^+$. Then there exists an element $\overline{r} \in \overline{R}$ such that $\overline{r} \cdot \overline{r} = 0$ and $\overline{r} \cdot \overline{u} \neq 0$; that is, $tr \in i$ and $tu \notin i$, a contradiction since $r^+ = u^- \Rightarrow (tr)^+ = (tu)^+$ for all $t \in R$, because R is reduced (see Proposition 2.3). Conversely, let $\phi: R \to R'$ be an R-compatible homomorphism. Set $i = \text{Ker} \phi$. Let $r, u \in R$ have the property that $r^+ = u^-$. If $r \in i$, then $R' = (\phi r)^+ = (\phi u)^+$ which implies $\phi u = 0$ hence $u \in i$. Note that we do not need R to be reduced in this part.

For the proof of (1') see [8], for the proof of (3) see [1]. (2') follows from (2).

Definition 2.9. An R-compatible homomorphism $h: R \to S$ from a reduced ring R to a Baer ring S is said to satisfy condition (B) if

(B) For all elements b_1, \ldots, b_t (t \geq 1) of R, if no minimal prime ideal of R contains b_i, $1 \leq i \leq t$, then no minimal prime ideal of S contains $h(b_i)$, $1 \leq i \leq t$.

Since no minimal prime ideal of R contains b_i, $1 \leq i \leq t \iff$ the ideal $b = (b_1, \ldots, b_t)$ is dense, condition (B) says that under h a finitely generated dense ideal of R expands to a dense ideal of S.

Remark 2.10. Of course, if an R-compatible homomorphism $h: R \to S$ from a reduced ring R to a Baer ring S satisfies condition (B), then it
satisfies condition \((B_0)\), since no minimal prime ideal contains \(b_i, 1 \leq i \leq t\) belongs to all minimal prime ideals containing \(b_i, 1 \leq i \leq t\).

Theorem 2.11. Let \(R\) be a reduced ring, \(S\) a Baer ring, and \(h: R \rightarrow S\) an \(R\)-compatible homomorphism. TFAE

1. \(h\) satisfies condition \((B)\).
2. \(h_f: R_f \rightarrow S_{h(f)}\) satisfies \((B)\) for all \(f \in R\).
3. \(h_f: R_f \rightarrow S_{h(f)}\) satisfies \((B)\) for all \(f \in R\).

Proof. (ii) \(\Rightarrow\) (iii) for all \(f \in R\) by Remark 2.10. (iii) \(\Rightarrow\) (i). If \((B)\) fails, we get elements \(r, b_1, ..., b_t (t \geq 1)\) in \(R\) such that \(r\) belongs to all minimal prime ideals of \(R\) containing \(b_1, ..., b_t\) but \(h(r)\) does not belong to a minimal prime ideal \(q\) of \(S\) containing \(h(b_1), ..., h(b_t)\). In the ring \(R_r, b_1/1, ..., b_t/1\) do not belong to any minimal prime ideal. By \((B)\) for \((R_r, S_{h(r)}, h_r)\) the images \(h_r(b_i)/1, ..., h_r(b_t)/1\) are not in any minimal prime ideal of \(S_{h(r)}\). But \(q \cdot S_{h(r)}\) gives a minimal prime which contains \(h_r(b_i)/1, 1 \leq i \leq t\), a contradiction.

(i) \(\Rightarrow\) (ii). Given \(r/f^m, b_i/f^m, 1 \leq i \leq t\), elements of \(R_f\), to show that if \(r/f^m\) belongs to all minimal primes containing \(b_i/f^m, 1 \leq i \leq t\), then \(h(r)/h(f)^m\) belongs to all minimal primes of \(S_{h(f)}\) containing \(h(b_i)/h(f)^m, 1 \leq i \leq t\), is equivalent to showing that if \(r/1\) belongs to all minimal primes containing \(b_i/1, 1 \leq i \leq t\) in \(R_f\), then \(h(r)/1\) belongs to all minimal primes containing \(h(b_i)/1, 1 \leq i \leq t\), in \(S_{h(f)}\).

If not, choose a minimal prime ideal \(q\) of \(S_{h(f)}\) containing \(h(b_i)/1, 1 \leq i \leq t\) and not containing \(h(r)/1\).

Claim. Every minimal prime ideal of \(R\) which contains \(b_i, 1 \leq i \leq t\), contains \(r/1\). Assume not and let \(p\) be a minimal prime ideal containing \(b_i, 1 \leq i \leq t\), and not \(r/1\). Then \(f \notin p\) implies \(pR_f\) is a minimal prime containing \(b_i/1, i \in \{1, 2, ..., t\}\); hence \(pR_f\) contains \(r/1\). This implies \(f^k r \in p \Rightarrow (fr)^k \in p \Rightarrow fr \in p\), a contradiction. Therefore, every minimal prime of \(S\) which contains \(h(b_i), i = 1, ..., t\), contains \(h(rf) = h(r)h(f)\), a contradiction since \(q\) does not contain \(h(f)h(r)\) and is a minimal prime containing \(h(b_i), i = 1, ..., t\). Q.E.D.

For the next result we need some notation. Let \(R\) be a reduced ring. For an element \(r\) of \(R\), set \(Y = \text{Min}(R_r)\), while \(X = \text{Min}(R)\). Let \(X_r = \{ x \in X : r \notin p_x \}\). There is a canonical homomorphism \(\eta\) from \(X_r\) to \(Y\). Let \(\rho: \prod_{x \in X} R/p_x \rightarrow \prod_{x \in X} R/p_x\) be the restriction map.

Theorem 2.12. There are natural isomorphisms \((R^B_r) = (R^B)^{\eta(r)} \cong (R_r)^B \cong \rho(R^B_{\rho(\eta(r))})\).
Let \(\rho^B \) be the restriction of \(\rho \) to \(R^B \) so that \(\rho^B: R^B \to \rho(R^B) \). Set \(j = \text{Ker}(\rho^B) \). \(j \) consists precisely of the elements of \(R^B \) vanishing on \(Y \), whence \(j = i(r)^{\perp} = \bigcup \sigma(i(r))^{\perp} \). Therefore the induced map \(\rho^B_{\hat{\iota}(r)}: (R^B)_{\hat{\iota}(r)} \to (\rho(R^B))_{\rho(\hat{\iota}(r))} \) is an isomorphism. Let \(j: R_r \to \prod_{\sigma \in \sigma} R_{x}/p_{\sigma(x)} \) be the map for \(R_r \) which corresponds to the map \(i \) for \(R \) defined earlier. The maps \(\rho_{\hat{\iota}(r)} \) and \(\psi \) in the commutative diagram below

\[
\begin{array}{ccc}
R_r & \xrightarrow{\psi} & \prod_{\sigma \in \sigma} (R_{x}/p_{\sigma(x)}) \\
\downarrow & & \downarrow \\
(R_{r})^{B} & \xrightarrow{\rho_{\hat{\iota}(r)}} & \left(\prod_{\sigma \in \sigma} R_{x}/p_{\sigma(x)} \right)_{\rho(\hat{\iota}(r))}
\end{array}
\]

are easily seen to be isomorphisms. (Here, if \(g \in \prod_{\sigma \in \sigma} R_{x}/p_{\sigma(x)} \), \(\psi(g/1)(\eta(x)) = g(x)/1 \); \(R_{x}/p_{\eta(x)} \) is identical with \((R_{x}/p_{\sigma(x)})_{\hat{\iota}} \).) By definition, \((R_{r})^{B} \) is the subring of \(\prod_{\sigma \in \sigma} R_{x}/p_{\sigma(x)} \) generated by the elements \(j(f), f \in R_{r} \), and \((j(f))^{\hat{\iota}(r) \perp} \), \(f \in R_{r} \), or by the elements \(j(f), f \in R_{r}, 1/j(r) \), and \((j(f))^{\hat{\iota}(r) \perp} \), \(f \in R \). The image of this subring under \(\psi^{-1} \) in \((\prod_{\sigma \in \sigma} R_{x}/p_{\sigma(x)})_{\rho(\hat{\iota}(r))} \) is the subring generated by \(\rho(j(f)), f \in R_r, \rho(j(fr))^{\hat{\iota} \perp} = \rho[i(f)]^{\hat{\iota} \perp} \), i.e., \((R_{r})^{B} \) viewed in \((\prod_{\sigma \in \sigma} R_{x}/p_{\sigma(x)})_{\rho(\hat{\iota}(r))} \) is the subring generated by \(\rho(i(f)), f \in R_r, 1/\rho(i(r)) \), and \(\rho[i(f)]^{\hat{\iota} \perp} \), \(f \in R \), which is exactly \(\rho(R^B)_{\rho(\hat{\iota}(r))} \). Therefore we have got the isomorphisms \((R_{r})^{B} \cong \rho(R^B)_{\rho(\hat{\iota}(r))} \cong (R^B)_{\hat{\iota}(r)} \).

PROPOSITION 2.13. If all \(R \)-compatible homomorphisms \(h: R \to S \) from a reduced ring \(R \) to a Baer ring \(S \) satisfy condition (B), then all \(R \)-compatible homomorphisms \(k: R_{r} \to T \) from \(R_{r} \) to a Baer ring \(T \) satisfy (B).

Proof. Choose an element \(r \) of \(R \) and let \(k: R_{r} \to T \) be such a homomorphism. Note that \(k(r/1) \) is invertible in \(T \). First we get an \(R \)-compatible map \(h: R \to \phi R_{r} \to T \), hence there exists \(h^{\phi}: R^B \to T \) such that \(h^{\phi} \circ i = k \circ \phi = h \). By localizing \(R^B \) at \(i(r) \) we get a map \(\phi^{*}: R_{r} \to (R^B)_{\hat{\iota}(r)} \) by the universality of \(R_{r} \) and also a map \((R^B)_{\hat{\iota}(r)} \to T \) since \(h(r) \) is invertible in \(T \). Hence by the isomorphism \((R^B)_{\hat{\iota}(r)} \cong (R^B)_{\hat{\iota}(r)} \) established earlier we obtain a map \((R_{r})^{B} \to T \) which says that \(k \) satisfies (B).

Our task is at end since we can prove

Theorem 2.14. TFAE on a reduced ring \(R \).

(1) Every \(R \)-compatible homomorphism \(h: R \to S \) from \(R \) to a Baer ring \(S \) satisfies condition (B).

(2) \(R \subseteq R^B \) is a universal \(R \)-compatible embedding.
(3) A proper B-ideal of R, has no dense finitely generated subideal, for all r in R.

(4) A prime B-ideal of R, has no dense finitely generated subideal, for all r in R.

(5) Every R-compatible map $R, \rightarrow K$ satisfies condition (B_2) for all fields K and r in R.

Proof. (1) \iff (2) by Theorem 2.2. (1)\implies (3), (1)\implies (5) are easy to prove. (3)\implies (4) is trivial.

(4)\implies (1). Let us assume that (4) holds. We want to prove that every R-compatible map $h: R, \rightarrow S$, S Baer ring, satisfies condition (B). Claim: It suffices to show that an R-compatible map $R, \rightarrow S'$ satisfies condition (B_2) for all Baer rings S' and r in R.

Assume not and let $h: R, \rightarrow S'$ fail to satisfy condition (B_2). Then there exists a finitely generated dense ideal of R, which does not expand to a dense ideal in S'. Say $h = (b_1, ..., b_t)$. Choose a minimal prime ideal q of S' containing $h(b_i), 1 \leq i \leq t$. Claim: $h^{-1}(q)$ is a B-ideal of R.

If not, let $x^\perp = y^\perp$ in R, and $x \in h^{-1}(q), y \notin h^{-1}(q)$. Since h is R-compatible, we have $h(x)^- = h(y)^\perp$, a contradiction because $h(x) \in q \implies h(x)^- \notin q$, but $h(y)^\perp \notin q \implies h(y)^\perp = h(x)^- \subseteq q$.

(5)\implies (1). If not, let $h: R, \rightarrow S$ fail to satisfy condition (B), i.e., there exist elements $r, b_1, ..., b_t$ in R such that r belongs to all minimal primes of R containing $b_i, 1 \leq i \leq t$, but $h(r) \notin q$ a minimal prime ideal of S which contains $h(b_i), 1 \leq i \leq t$. By localizing at r and $h(r)$ and then taking the fraction field K of $S_{h(r)/q}S_{h(r)}$, we obtain an R-compatible map

$$R, \rightarrow S_{h(r)}, R, \rightarrow S_{h(r)/q}S_{h(r)} \rightarrow K$$

which maps the finitely generated dense ideal $(b_1, ..., b_t)$ to (0), a contradiction.

Next is a result, interesting in itself, which implies that for a reduced ring R, the embedding $R[X] \subset R[X]^B$ is automatically universal.

Theorem 2.15. Let R be a reduced ring. Then in $R[X], f \in R[X]$, every finitely generated dense ideal contains a nonzerodivisor.

Proof. Suppose that $d_0/f^n, ..., d_r/f^r \in R[X], f$ have no common annihilator. Then the elements $d_i/1, i = 0, 1, ..., r$, have no common annihilator. Claim: If $N > \sup\{\deg d_i, 0 \leq i \leq r\}$, then $\sum_{i=0}^r d_i X^N/1$ is a nonzerodivisor. Proof. Say g/fj kills it. Then $G = f^k g$ kills $D = \sum_{i=0}^r d_i X^N$ in $R[X]$, for some sufficiently large k.

It suffices to show that if G kills $\sum_{i=0}^r d_i X^N$ in $R[X]$ then G kills each $d_i (0 \leq i \leq r)$, for then $G/1 = 0$ in $R[X], f$. Let C_G, C_d be the ideals
of R generated by the coefficients of G and D respectively. $GD = 0 \Rightarrow C_G \cdot C_D = (0)$. (If not, choose a minimal prime ideal p of R such that $p \not\subseteq C_G \cdot C_D$, that is, $p \not\subset c_1 \cdot c_2$ for some coefficient c_1 of G and some coefficient c_2 of D. Then $GD \not\equiv 0 \mod p$, a contradiction.) $C_G \cdot C_D = (0)$, however, implies that $C_G \cdot C_d = (0)$ since $C_d \subset C_D$, $0 \leq i \leq r$. Hence $Gd_i = 0$ for $i = 0, 1, \ldots, r$, i.e., $G/1$ kills $d_i/1$ in $R[X]_f$ for all i. Thus $G/1 = f^k g^l/1 = 0/1$ in $R[X]_f$, i.e., $g/l = 0/l$ in $R[X]$. Q.E.D.

Corollary 2.16. For a reduced ring R, then embedding $R[X] \subset R[X]^B$ is universal.

Proof. Assume not and let $h: R[X]_f \to S$ fail to satisfy Theorem 2.14: (4). Let $d = (d_0, \ldots, d_r)$ be a finitely generated dense ideal of $R[X]_f$ which expands to a nondense ideal. There exists a minimal prime ideal q of S containing $h(d_0), \ldots, h(d_r)$, whence $h^{-1}(q)$ contains $b = (d_0, \ldots, d_r)$ which contains a nonzerodivisor δ by Theorem 2.15. But h is R-compatible and, therefore, $h(\delta)^{-1} = h(1)^{-1} = (0) \subseteq q$, a contradiction since $h(\delta) \in q$.

Section 3

In this section we shall exhibit a ring which fails to satisfy condition (B_z) and hence the conclusion of Theorem 2.12 does not hold for it. Therefore, Theorem 1 as stated in [3] is not correct.

We shall construct a reduced quasilocal ring (R_ω, m_ω) and elements $x, y \in m_\omega$ such that $x^* \cap y^{-1} = (x, y)^- = (0)$, but every element of m_ω is a zerodivisor. It is then immediate that $R_\omega \to K_\omega/m_\omega$ is an R-compatible map from R_ω to a field K_ω which does not satisfy (B_z) or (B). Hence $R_\omega \subset R'_\omega$ does not have the universal mapping property and this is not the universal Baer embedding of R_ω.

Lemma 3.1. Let (R, m) be a quasilocal reduced ring with $x, y \in m$ such that

1. $\text{Ann } x \cap \text{Ann } y = (0)$.
2. If $s \mid x^n$ and $s \mid y^n$, then s is a unit.

Let $u \in m$. Set $R' = R[Z]/j$ where $j = \{w \in R[Z]/\exists N \text{ such that } (xw)^N, (yw)^N \in (uZ)\}$. Then

(a) R' is quasilocal and reduced.
(b) $j \cap R = (0)$ and hence $R \subset R'$ and $m_R \subset m_{R'}$.
(c) The image of Z in R' is not zero, $uZ = 0$ in R', and hence u is a zerodivisor in R'.
(d) In R' (1) and (2) hold for the images of x and y.

A NOTE ON BAER RINGS

Proof. (a) Let \(\bar{x} \in R' \) be such that \(\bar{x} = 0 \), hence \(x \in j \) in \(R[\bar{Z}] \) for some \(i \), that is, \((x',x) = (x'y')^m \in (uZ)\). Set \(N = \max(m, im) \). Then \((zx)^N, (zy)^N \in (uZ)\), whence \(x \in j \), i.e., \(\bar{x} = 0 \). That proves (a) since \(R' \) is clearly quasilocal.

(b) We need to check that \(j \cap R = (0) \). Pick an element \(r \in j \cap R \). Then \((rx)^N, (ry)^N \in (uZ)\). Elements of \((uZ)\) have constant term 0, whence \((rx)^N = (ry)^N = 0\), i.e., \(rx = ry = 0 \), since \(R \) is reduced. Therefore \(r \in \text{Ann } x \cap \text{Ann } y = (0) \) hence \(r = 0 \).

(c) If \(Z \in j \), then \((Zx)^N = uZ \cdot h_1(Z)\) and \((Zy)^N = uZ \cdot h_2(Z)\) and, therefore, \(u \mid x^N \) and \(u \mid y^N \), i.e., \(u \) is a unit. This is a contradiction since \(u \in m \). Thus, \(Z \notin j \) and the image of \(Z \) in \(R' \) is not zero.

(d) (1) Suppose \(f(Z) \in \text{Ann } x \cap \text{Ann } y \) in \(R' \). Then \(f(Z) \cdot x \in j \) and \(f(Z) \cdot y \in j \) in \(R[\bar{Z}] \), hence \((f(Z) \cdot x)^N \in (uZ)\) and \((f(Z) \cdot y)^N \in (uZ)\). Set \(N'' = \max\{2N, 2N'\} \). Then \((f(Z) \cdot x)^N \) and \((f(Z) \cdot y)^N \) belong to \((uZ)\), i.e., \(f(Z) \in j \) hence \(f(Z) = 0 \) in \(R' \).

(2) If \(f(Z) \mid x^N \) and \(f(Z) \mid y^N \) in \(R' \), then \(x^N - f(Z) h(Z) \in j \) and \(y^N - f(Z) h(Z) \in j \), that is, for sufficiently large \(N\) ((\(x^N - f(Z) g(Z) \)) \cdot x)^N = uZ \cdot k_1(Z); ((\(y^N - f(Z) g(Z) \)) \cdot y)^N = uZ \cdot k_2(Z); ((\(y^N - f(Z) h(Z) \)) \cdot y)^N = uZ \cdot t_1(Z)\) and \((y^N - f(Z) h(Z)) \cdot y)^N = uZ \cdot t_2(Z)\). Substituting 0 for \(Z \) we obtain, in \(R, ((x^N - f(0) g(0)) \cdot x)^N = 0 \), i.e., \((x^N - f(0) g(0)) \cdot x = 0 \), and \((y^N - f(0) g(0)) \cdot y)^N = 0 \), i.e., \((y^N - f(0) g(0)) \cdot y = 0 \), that is, \((x^N - f(0) g(0)) \in \text{Ann } x \cap \text{Ann } y = (0) \), hence \(x^N - f(0) g(0) = 0 \) in \(R \). Therefore \(f(0) \) divides \(x^N \).

Similarly \(y^N - f(0) h(0) \Rightarrow f(0) \mid y^N \). Hence \(f(0) \) is a unit in \(R \) and, therefore, \(f(Z) \) is a unit in \(R[\bar{Z}] \) and, of course, \(f(Z) \) is a unit in \(R' \).

Lemma 3.2. Let \((R, m)\) be a quasilocal, reduced ring. Let \(x, y \in m \) be such that

1. \(\text{Ann } x \cap \text{Ann } y = (0) \).
2. \(s \mid x^N \) and \(s \mid y^N \Rightarrow s \) is a unit of \(R \).

Then \(R \subseteq R_1 \), where \(R_1 \) is quasilocal, reduced with \(m_{R_1} = m_{R_1} \), (1) and (2) hold in \(R_1 \), and every element of \(m_{R_1} \) is a zerodivisor in \(R_1 \).

Proof. Let \(\lambda \) be an ordinal with first element 0 such that \(A \setminus \{0\} \) is in 1-1 correspondence with \(m_{R_1} \). Construct a chain of rings \(R_\lambda \) indexed by the ordinal \(A \) by transfinite induction. Let \(R_0 = R \). If \(\lambda > 0 \), there are two cases. If \(\lambda \) is a limit ordinal, let \(S_\lambda = \bigcup_{\mu < \lambda} R_\mu \) and then use Lemma 3.1 to enlarge \(S_\lambda \) to a ring \(R_\lambda \) in which \(u_\lambda \) is a zerodivisor and the conditions specified in the conclusion of the Lemma hold. If \(\lambda \) has an immediate predecessor \(\mu \), use Lemma 3.1 likewise to enlarge \(R_\mu \) to an \(R_\lambda \) such that \(u_\lambda \) is a zerodivisor in \(R_\lambda \). Let \(R_1 = \bigcup_{\lambda \in A} R_\lambda \). Q.E.D.
Finally, consider a chain $R \subset R_1 \subset \cdots$ where $R_{n+1} = (R_n)_1$ in the sense of Lemma 3.2, and set $R_\omega = \bigcup_{i \geq 0} R_i$ where $R_0 = R$. Then R_ω has the following properties:

1. It is quasilocal and reduced.
2. There exist $x, y \in m_\omega$ such that $\text{Ann } x \cap \text{Ann } y = (0)$.
3. Every element of m_ω is a zerodivisor.

As an example of a ring to start with take $R = K[[X, Y]]$, K a field.

For the ring (R_ω, m_ω), the canonical projection $\pi: R_\omega \to R_\omega/m_\omega = K_\omega$ is R-compatible in that $a^- = b^-$ in R_ω implies $\overline{a^-} = \overline{b^-}$, m_ω is a prime B-ideal containing the finitely generated dense ideal (X, Y), hence by Theorem 2.12 the map $R_\omega \to R_\omega^B$ is not universal.

REFERENCES