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INTRODUCTION

In [3] the author gives a very down-to-earth construction of an
embedding of an arbitrary reduced commutative ring R into a Baer ring R”®
by an R-compatible ring homomorphism. However, the mapping property
claimed in [3] does not hold in the generality stated there: an extra
condition on the ring is necessary.

In this paper our main task is to correct that result.

We achieve this goal in Theorem 2.2 where we prove that Rg R? is a
universal embedding if and only if every R-compatible homomorphism
h:R— S from R to a Baer ring S satisfies condition (B): for all given
elements r, by, .., b, (t=1) of R, if r belongs to all minimal prime ideals
containing b;, 1<i<¢, then A(r) belongs to all minimal prime ideals
containing A(b;), 1 <i<t, and in Theorem 2.12 where several other
conditions are given. We also show that if R is reduced, a polynomial ring
over R automatically satisfies these conditions.

In Section 3 we construct a ring which fails to satisfy the conditions of
Theorem 2.12 hence proving that the correction is necessary.

We are indebted to K. Prikry for pointing out a gap in the proof in [3]
which eventually led to this Note and to M. Hochster for the hospitality
and valuable discussions during the preparation of this Note.

SECTION 1

In this section let us briefly recall from [3] some notation, definitions,
and the construction of R%.

First of all, we shall deal with commutative rings with unit. If a is an
ideal of the ring R, a~ = {re R|ra=0} is the annihilator of a and is an
ideal. Sometimes we shall write Anna instead of a*. For an element a of R,
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we shall denote by (a) the principal ideal Ra. An element e of R such that
e’ = e is said to be an idempotent. Finally, p (resp. m) will denote a prime
{resp. maximal) ideal of R.

DeriNiTION 1.1, A Baer ring is a ring such that the annihilator of every
principal ideal is principal and generated by an idempotent element.

DermNiTioN 1.2, Let R, R’ be rings. A homomorphism 4: R — R’ from R
to R’ is said to be R-compatible if whenever (a)* =(b)~, @, be R, then
(h(a))* = (h(b))* in R

When (a)~ is principal and generated by an idempotent, this idempotent
is uniquely determined by a, and we denote it ¢*. We write a° for 1 —a*.
Note that a is idempotent <> a=a° <> a* =1 ~ a. Therefore Definition 1.2
can be rephrased as follows:

(C). his an R-compatible ring homomorphism implies that if a* exists,
then h(a)* exists and, in fact, A{a)*=h(a*) (since (a)*=(a*)=
(1—a®)* = hla)" =h(1 —a*)" = (1 —h(a*))").

If R is a Baer ring, then a'=btwa*=b*e1—a*=
1—b*<e(l—a*)-=(l—b*)*" and a~ =(1 —a*)*, b+ =(1 —b*)". Then
(C)e> h{a*) generates A{a)* and h(b*) generates h(b)*, and since a* = b*,
h(a*)=h(b*) and h(a)* = h(b)*.

DerFiNITION 1.3. An R-compatible homomorphism between two Baer
rings is termed a Baer homomorphism.

Construction of R® following [3, Theorem 1]

Let R be a reduced ring. Set X=Min(R) (ie., the set of all minimal
prime ideals of R endowed with the inherited Zariski-topology). For any
xe€ X, p, will denote the minimal prime ideal of R corresponding to the
point x. Set #=11,.x (R/p,) where R/p, is an integral domain. It is not
difficult to prove that # has the strongest Baer property, that is, the
annihilator of every ideal is principal and generated by an idempotent (see
[4, Theorem 4.117). In particular, # is a Baer ring.

Of course, the map i: R — #, where for each x i(r),=r+p., is injective
since R is reduced and is R-compatible. However, as # can be very big if
Min(R) is not finite, in [3] we aimed to find a smaller Baer ring in
between. The construction goes as follows. Let us think of R as sitting
inside £, ie., identify R with (R} < #. Hence an element re R is a family
(r. }.ex where r,=r+p,. Set

1 if rép,

{
=), cxeR where ro=1 )
( x). eX ! {0 lf i‘pr
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and then let #* =1—r°. The operations —* and —° are all to be carried in
A. Note that if re R and r° or r* exists in R, then i(r)°=1i(r°) and
i(r)* =i(r*); hence i is an R-compatible monomorphism. Note also that
{r)* = (r*) in Z. Now let us consider R%, the subring of # generated by the
clements 7, r*, re R. It is shown in [3, Theorem 1] that R? is a Baer ring.
However, the universal property for the map i: R— R? does not hold
under such a general hypothesis on R. Some restriction is needed.

In the next section we shall provide the appropriate correction and, in
Section 3, we shall exhibit an example of a ring failing to satisfy the extra
condition.

In particular we shall prove (see Theorem 2.2)

THEOREM. The following conditions on a reduced ring R are equivalent.

(1) For every R-compatible homomorphism 4: R - S from R to a
Baer ring S there is an induced Baer homomorphism 2*: RZ — S such that
for all re R, h*(i(r))=h(r) and h*(i(r)° )= h(r)".

(2) For every integer 1> 1 and elements r, b, .., b, of R, if r belongs
to all minimal prime ideals of R containing b,, 1 <i<t, then A(r) belongs
to ali minimal prime ideals of S containing A(b;), 1 <i<t.

SECTION 2

In this section our aim is to restate Theorem 1 in [ 3] correctly. Heading
to this goal let us investigate in detail what is needed for the “universal”
mapping property to hold.

The question is: Given a reduced ring R so that one can construct R, is
it true that, for every Baer ring S and for every R-compatible ring
homomorphism 4:R—S, & factors through the R-compatible
monomorphism i: R — R?? In other words, is there a Baer homomorphism
h*: R® - S which extends A? If that were true as stated in [3], it should
also be true that whenever Y g 747 =0 in R%, then Y qoie 4(r;) h(a;)° =0
in S and we shall see that this is not so in general (see Sect. 3).

To gain a better insight into the matter let us provide another construc-
tion of R”

Let {X,lae R} be a family of indeterminates indexed by R. Set
T= R[Xa [ ae R]//(Xi - Xa’ XaXb - ‘X’ab)a. beR" Hence T=R+ ZaeR Rxa
where x2=x, and x,x,=x,, a, be R. Let us observe that R” is nothing
clse than R[a°|ae R] since a* =1 — a° and, therefore, there exists a surjec-
tive R-homomorphism #: T —>»R[a°|ae R] given by t(x,)=a°. Note that
(ab)* =a’b°. Of course,

Ker(t)={r+r,x, + - +r,x, €T|r+ra5+ - +r,a,=0}.
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Set j=Ker(7). We obtain Scheme 1. (Note: | denotes lowercase German
jay.)

Comment. We first get a map /# from the polynomial ring R[X,|ae R]
to S by X, h(a)®. Since h(a)® is idempotent, / kills X? — X,: and, since
(h(ab))® = (h(a) h(b))® = h(a)® g(b)°, K kills X, — X, X,. Hence # induces
h.T—S.

Since {: T/i — R® is an isomorphism, the existence of 4#: R® — § will
follow from the existence of A*: T/j —» S which makes the above diagram
commute. Clearly, #* exists if and only if 7 kills j.

As it is sufficient to show that A kills generators of i, let us write the
elements of | as a sum of “simpler” elements.

LEMMA 2.1. In T every element can be written as a sum of expressions
involving mutually orthogonal idempotents in the sense we make precise
below in formula (3).

Proof. Pick an element x of T, hence x=r-14+r,x, + --- +7,x, . AS

xi=x,, xi=x, and x¥=1—x,, hence x;x¥=0 and x_+x¥ =1 Also
I=TI7, (x5 +x%) or

— . -J1 .. jm
1= Z X
(1o Jm) €2™

—t
~—

where 2= {0, *) and any two elements in this sum with distinct indices are
mutually orthogonal. Therefore, each x}, (v=0, * and i=1, .., m) can be
written as

Yo v L] = Ji v dint Y yhol ...y 2
x, X R Z | xalz xé!—l xa; xa:—l xam !'-
ULy woos Jio s Jm} €277

pa—
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which implies that

x= ) ryo.xi..xi QED. (3)

ULy s Jm) € 27

In particular, an element x of 7 with a fixed representation as in (3)
belongs to j if and only if X r; .., @}---a/z=0 which implies that each
term of the sum is 0.

Then, the question of whether # kills j reduces to the question of whether

Ifras---a®b¥-..b* =0, thenis f(ra5 ---a® b¥ - b*) =0,

--al
; : 4)
ie. is A(r)- ( 11 h(a,->°) -(_H 1- h(bm) —o0.

i=1 =1

re ( Ii[ af) . < ]—l[ b*) = 0 <> For every minimal prime ideal p of
i / R, cither rep or at least one a;e p
or at least b, ¢ p; ie., for every
minimal prime ideal p of R, either

ra,---a;ep oratleast one b; ¢ p.

That is,

r- < I1 e ) . ( [1o j*> = 0 <> Every minimal prime ideal of R which

i=1 J=1

contains b, ..., b, (1= 1) also

contains ra, ---a, (s=1).

We have thus shown

THEOREM 2.2. Let R be a reduced ring. The following conditions are
equivalent:

(1) R is a universal Baer extension of R.

(ii) For every R-compatible homomorphism h: R — S from R to a Baer
ring S, there exists a Baer extension h*: R® — S of h.

(iii) Forallr,b,, ... b, (t=1)elements of R, if r belongs to all minimal
prime ideals of R containing b;, 1 <i<t, then h(r) belongs to all minimal
prime ideals of S containing h(b,), 1 <i<t.
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Throughout we shall refer to (iii) as to condition (B).
Let us head to a characterization of such rings R.

PROPOSITION 2.3. Let R be a ring, t an element of R, and R, the
localization of R at the element t. Then

(1) The natural map @: R - R, is R-compatible.
(2) If R is reduced, then for all u,ve R
(2) v/le(u/1)' in R,<ve(tu)t in R.
(B) (/1) =@/ 1)t in R,< (tu)* = (tv)~ in R.
(3) If R is a Baer ring, then ¢ is a Baer homomorphism.

Proof. (1) It is enough to recall from [2, Proposition 3.14] that

S~ !'(Ann M) = Ann(S~'M) for all finitely generated R-modules M.

(2)—a. Let us assume that ve(m)* in R, ie, v(tu)=0. Then
@(v(tu)) = (v/1)(tu/1)=0/1 and #/1 invertible imply v/1 € (¥/1)*. Conver-
sely, let v/1e(u/1)*" in R,. Then t*(zu)=0 in R for some integer k >0
implies (rou)*=0. Therefore vtu=0 as R is a reduced ring, ie., ve (fu)"
in R. (2)— B. It follows from (1) and (2) — .

(3) It foliows from (1) and Definition 1.3 as it is easy to check that
R, is a Baer ring as well.

COROLLARY 24. An R-compatible homomorphism h: R — R’ between
two reduced rings R, R’ induces an R-compatible map h,: R, — Rj,, for all
elements t of R.

Proof. Let us remark that in R,, Ann(b/t)=Ann(b/1) as 1/1 is inver-
tible. Thus we have to prove that if Ann(b/1)=Ann(c/1) in R,, then
Ann(h(v)/1)= Ann(h(c)/1) in S,,,, for all b/1, ¢/1 in R,. By Proposition
23: (2)—p, Ann(b/1)=Ann(c¢/1)< (tb)* =(tc)* which  implies
(h(tb))~ = (h(ic))* by the R-compatibility of 4, and this means
Ann(A(b)/1)= Ann(h(c)/1) by Proposition 2.3: (2) — B already mentioned.

DEerFmNtTION 2.5. An ideal 1 of R is said to be a B-ideal if for all elements
u, vt of R, u==v* and uet, then vrei.

ExaMpLEs. The ring itself, the zero ideal, a minimal prime ideal, and, of
course, any intersection of them are B-ideals.

DEFINITION 2.6. A B-ideal of a Baer ring is termed a Baer ideal.

DrFmvITION 2.7. A dense ideal b of R is an ideal with b* = (0).
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A few properties of B-ideals, Baer ideals, and dense ideals strictly related
to our goal are

ProprosiTiON 2.8. (1) A B-ideal of a reduced ring is radical.

(1) An ideal of a Baer ring is a Baer ideal if and only if it is an inter-
section of minimal prime ideals of the ring.

(2) An ideal of a reduced ring R is a B-ideal if and only if it is the
kernel of an R-compatible ring homomorphism having R as a source.

(2') An ideal of a Baer ring S is a Baer ideal if and only if it is the
kernel of a Baer homomorphism from S to a Baer ring S'.

(3) Ifb=(by,..b,) is a finitely generated ideal of a reduced ring R,
then b is not dense (ie., b*#(0))<>3JaeR— {0} such that ab,=0,
1<i<t< V(b)={peMin(R)|p2b} # .

Proof. (1) For an element x of a reduced ring R we have (x")* = x",
hence if x" e, then xet since i is a B-ideal, i.e, i is radical.

(2) Let i be a B-ideal of R. Set R= R/i. Claim: The natural map
n: R - R is R-compatible.

In fact, let r, u € R be such that r* =u~. Two cases are possible. 1st Case.
If r (or u)ei, then u (or r)ei, hence R=F"=i~. 2nd Case. Assume r¢1i
and 7+ #it. Then there exists an element fe R such that 7-r=0 and
f-##0; that is, trei and ruéi, a contradiction since r'=u-=
(tr)t = (tu)* for all re R, because R is reduced (see Proposition 2.3).
Conversely, let ¢: R— R be an R-compatible homomorphism. Set
i=Ker ¢. Let r, ue R have the property that r—=u'. If rei, then
R’ = (¢r)* = (pu)* which implies gu=0 hence uei. Note that we do not
need R to be reduced in this part.

For the proof of (1') see {81, for the proof of (3) see {1]. (2) follows
from (2).

DErFINITION 2.9. An R-compatible homomorphism A: R— S from a
reduced ring R to a Baer ring S is said to satisfy condition (B.) if

(B.) For all elements b, ..., b, (¢ 1) of R, if no minimal prime ideal
of R contains b;, 1 <i<t, then no minimal prime ideal of S contains 4(b;),
I<igue

Since no minimai prime ideal of R contains b,, 1<i<t<>the ideal
b=(b,, .., b,) is dense, condition (B.) says that under 4 a finitely generated
dense ideal of R expands to a dense ideal of S.

Remark 2.10. Of course, if an R-compatible homomorphism A: R— §
from a reduced ring R to a Baer ring S satisfies condition (B), then it
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satisfies condition (B.), since no minimal prime ideal contains 5,,
I <i<t<1 belongs to all minimal prime ideals containing b,, | <i<t.

THeOREM 2.11. Let R be a reduced ring, S a Baer ring, and h: R — § an
R-compatible homomorphism. TFAE

(1)  h satisfies condition (B).
(it) A Ry— Sy satisfies (B) for all feR.
(iit) he Ry— Sy, satisfies (B:) for all fe R.

Proof. (ii) = (iii) for all fe R by Remark 2.10. (iii) = (i). If (B) fails, we
get elements r, b,, .., b, (t=1) in R such that r belongs to all minimal
prime ideals of R containing b,, .., b, but A(r) does not belong to a
minimal prime ideal q of S containing h(b,), ..., #b,). In the ring R,,
b,/1,..,b,/1 do not belong to any minimal prime ideal. By B.} for
(R,, Sy, h,) the images A,(b,)/1, .., h,(b,)/] are not in any minimal prime
ideal of S,,,. But q-S,,, gives a minimal prime which contains Ah,{5,)/1,
1 <i< 1. a contradiction.

()= (i1). Given r/f™, b,/f™, 1 <i<t, elements of R, to show that if //™
belongs to all minimal primes containing b,/f™, 1 <i<t, then h(r)/h{f)”
belongs to all minimal primes of S, ,, containing 4(b,)/A(f)™, 1 <i<¢, is
equivalent to showing that if r/1 belongs to all minimal primes containing
b;/1, 1<i<t, in R, then h(r)/1 belongs to all minimal primes containing
h(b)/1, 1<i<t, in S, ).

If not, choose a minimal prime ideal q of S, containing /(b;)/
(1 <i<t)and not containing A(r)/L.

Claim. Every minimal prime ideal of R which contains b,, 1<i<z,
contains rf. Assume not and let p be a minimal prime ideal containing 5,,
1<i<1, and not rf. Then f¢ p implies pR,is a minimal prime containing
bi1 (i=1,2,..,t); hence pR, contains r/l. This implies frrepe
(fr¥epe=frep, a contradiction. Therefore, every minimal prime of S
which contains A(b;), i=1. .., r, contains A(rf )= h(r) h(f), a contradiction
since q¢ does not contain A(f) A(r) and is a minimal prime containing A(b;),
i=1 ., Q.ED.

For the next result we need some notation. Let R be a reduced ring.
For an element r of R, set Y=Min(R,), while X=Min(R). Let
X,={xeX/r¢p,.}. There is a canonical homomorphism 5 from X, to Y.
Let p: 1T cx RP.—=T1.cx R/, be the restriction map.

THEOREM 2.12. There are natural isomorphisms (R®),=(R®);, =
(Rr)BEp(RB)p(i(rH'
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Proof. Let p® be the restriction of p to R® so that p®: R® —» p(R?). Set
i=Ker(p?®). i consists precisely of the elements of R? vanishing on Y,
whence j=i(r)* = J,(i(r)")*. Therefore the induced map p%,,: (R®),, —
(p(R®)) i(ry) 1s an isomorphism. Let j: R, -1,y R,/p, be the map for R,
which corresponds to the map i for R defined earlier. The maps p;,, and
in the commutative diagram below

R, s T] (R./p,)
| S @y ]

¥

(l_[ R//p)c) —_p&)< l_[ R//px>
i(r) p(i(r))

xe X xe X,

i

are easily seen to be isomorphisms. (Here, if gell..x R/p,,
Y(g/1)(n(x))=g(x)/1; R,/p,. is identical with (R/p.),.) By definition,
(R,)? is the subring of T,y R,/p, generated by the elements j(f), fe R,
1/j(r), and (j(f)/j(r)*)°, fe R, or by the elements j(f), fe R, 1/j(r), and
(JUA)Y i) =(i(fr)°, feR. The image of this subring under y~' in
(Tec x, R/P.)piiry is the subring generated by p(j (), f€ R, p(j(fr))° =
pLi(f)°], ie., (R,)? viewed in ([ T.c x, R/P,) ) is the subring generated by
p(i(f)), feR, 1/p(i(r)), and p[i(f)°], fe R, which is exactly p(R®), i)
Therefore we have got the isomorphisms (R,)?=p(R?),i,) =
(‘RB)i(r) = (RB)r .

ProrosiTioN 2.13.  If all R-compatible homomorphisms h: R— S from a
reduced ring R to a Baer ring S satisfy condition (B), then all R-compatible
homomorphisms k: R, — T from R, to a Baer ring T satisfy (B).

Proof. Choose an element r of R and let k2R, — T be such a
homomorphism. Note that k(r/1) is invertible in T. First we get an R-com-
patible map h: R »¢ R, —* T, hence there exists h*: R® - T such that
h* si=ko@=h. By localizing R® at i(r) we get a map ¢*: R, — (R®),,, by
the universality of R, and also a map (R?),,, — T since A(r) is invertible in
T. Hence by the isomorphism (R?),,,~ (R,)” established earlier we obtain
a map (R,)? — T which says that k satisfies (B).

Our task is at end since we can prove

THEOREM 2.14. TFAE on a reduced ring R.

(1) Every R-compatible homomorphism h: R — S from R to a Baer
ring S satisfies condition (B).

(2) R 5 RZ®is a universal R-compatible embedding.
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(3) A proper B-ideal of R, has no dense finitely generated subideal, for
all v in R

(4) A prime B-ideal of R, has no dense finitely generated subideal, for
all r in R.

(5) Every R-compatible map R, — K satisfies condition (B.) for ail
fields K and r in R.

Proof. (1)< (2) by Theorem 2.2. (1)=>(3), {1)=(5) are easy to prove.
(3)=(4) is trivial.

(4)=>(1). Let us assume that (4) holds. We want to prove that every
R-compatible map A: R — S, S Baer ring, satisfies condition (B). Claim: 1t
suffices to show that an R-compatible map R, — S’ satisfies condition (B-}
for all Baer rings S’ and r in R.

Assume not and let #: R, — S’ fail to satisfy condition {(B,).Then there
exists a finitely generated dense ideal of R, which does not expand to a
dense ideal in S’. Say b= (b,, ..., b,). Choose a minimal prime ideal q of &
containing h(b;), 1<i<t Claim: h~'(q) is a B-ideal of R,. If nor,
let x*=yt in R, and xeh(q), y¢h '(q). Since h is R-compatible, we
have h{(x)-=h(y)*, a contradiction because h(x)eqe h(x)- & a, but
h(yy¢aeh(y): =h(x)-<q.

(5} (1). If not, let ~: R— S fail to satisfy conditicn (B), i.e., there
exist elements 7, b,,..., b, in R such that r belongs to all minimal primes of
R containing b,, 1 <i<t, but A(r)¢q a minimal prime ideal of S which
contains A(b,), 1 <i<t By localizing at r and A{(r) and then taking the
fraction field X of S)(,,/qS,,,, we obtain an R-compatible map

R, — Sh(r) - Sh(r)/iqSh(r) —K

which maps the finitely generated dense ideal (4, ..., b,) to {0), a contra-
diction.

Next is a result, interesting in itself, which implies that for a reduced ring
R, the embedding R[X] ¢ R[X]? is automatically universal.

THEOREM 2.15. Let R be a reduced ring. Then in R[X],, fe R[X], every
finitely generated dense ideal contains a nonzeroditisor.

Proof. Suppose that do/f",..,d/f*eR[X], have no common
annihilator. Then the elements d,/1, i=0,1,..,r, have no common
annihilator. Claim: If N>sup{degd,, 0<i<r}, then ¥/ ,d; X"/1 is a
nonzerodivisor. Proof. Say g/f’ kills it. Then G=f*g kills D=3"/_,d, X"
in R[X], for some sufficiently large k. .

It suffices to show that if G kills 3/_, 4, X" in R[X] then G kills each
d0<i<r), for then G/1=0 in R[X], Let Cs, C, be the ideals
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of R generated by the coefficients of G and D respectively.
GD=0=Cg;-Cp,=(0). (If not, choose a minimal prime ideal p of R such
that p 2 C;-Cp, that is, p 3 ¢, - ¢, for some coefficient ¢, of G and some
coefficient ¢, of D. Then GD # 0 mod p, a contradiction.) C; - C,,=(0),
however, implies that C;-C, = (0) since C,,c Cp, 0<i<r. Hence Gd;=0
fori=0,1,..,r ie, G/1 kills d/1 in R[X] for all i. Thus G/1 =f*g/1 =0/1
in R[X];, ie., g/1=0/1in R[X],. Q.E.D.

COROLLARY 2.16. For a reduced ring R, then embedding R[X] s R[X]%
is universal.

Proof.  Assume not and let h: R[X],— S fail to satisfy Theorem 2.14:
(4). Let d=(d,, .., d,) be a finitely generated dense ideal of R[ X 1, which
expands to a nondense ideal. There exists a minimal prime ideal q of S
containing h(d,), .., h(d.), whence h'(q) contains d=(d,, ..., d,) which
contains a nonzerodivisor by Theorem 2.15. But 4 is R-compatible and,
therefore, A(6)" = h(1)- =(0)<q, a contradiction since #(J) € q.

SECTION 3

In this section we shall exihibit a ring which fails to satisfy condition
(B.) and hence the conclusion of Theorem 2.12 does not hold for it.
Therefore, Theorem 1 as stated in [3] is not correct.

We shall construct a reduced quasilocal ring (R, m,,) and elements x,
yem, such that x*ny*=(x,y)~=(0), but every element of m, is a
zerodivisor. It is then immediate that R, — K_/m, is an R-compatible
map from R, to a field K, which does not satisfy (B.) or (B). Hence
R, < R% does not have the universal mapping property and this is not the
universal Baer embedding of R,,.

LEMMA 3.1. Let (R, m) be a quasilocal reduced ring with x, yem such
that
(1) Annxn Anny = (0).
(2) If s|x™ and s|y", then s is a unit.
Let uem. Set R'=R[Z]/i where j={weRIZ]/AN such that (xw)",
(yw)¥e(uZ)}. Then
(a) R’ is quasilocal and reduced.
(b) inR=(0) and hence RG R’ and myG .
(c) The image of Z in R’ is not zero, uZ=0 in R, and hence u is a
zerodivisor in R’
(d) In R (1) and (2) hold for the images of x and y.
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Proof. (a) Let e R’ be such that ¥’ =0, hence x'€j in R [Z] for some
i, that is, (a'x)", (2'y)"e(uZ). Set N=max(in, im). Then (zx)",
(ay) € (uZ), whence x€j, ie, #=0. That proves (a) since R’ is clearly
guasilocal.

{b) We need to check that {~ R=1{(0). Pick an element rein R.
Then (#x)", (r1)" € (uZ). Elements of (uZ) have constant term 0, whence
(rx)*=(ry)¥=0, ie, rx=ry=0, since R is reduced. Therefore
re Ann x nAnn y = (0) hence r=0.

(¢} If Zej, then (Zx)'=uZ-h(Z) and (Zy)"=uZ- -h,(Z} and,
therefore, u|x” and u|y”, i.e., u is a unit. This is a contradiction since u € m.
Thus, Z¢i and the image of Z in R’ is not zero.

(d) (1) Suppose f(Z)eAnn X~ Ann§ in R'. Then f(Z )-x€i and
f(Z)-vejin R]Z}, hence (f(Z)-x)" e (uZ) and (f( )y -1)Y e (uZ) Set
N"=max{2N, 2N'}. Then (f(Z) x)"" and (f(Z)y)" belong 1o (uZ), iz.
f(Z)ej hence f(Z)=01in R

(2) If 7(Z)|x" and f(Z)|7" in R, then x"—f(Z)g(Z)ei and
v —f(ZYh(Z) e}, that is, for sufﬁmently large N ((x"—f(Z) glZ)) - x)' =
uZ -k(Z); ((x"—=f(ZYZ))-y)" =uZ -ky(Z); (3" —SLZINZ)) x)" =
uZ -1,{Z) and ((y"—f(Z)(Z))-y)* =uZ - t,(Z). Substituting 0 for Z we
obtain, in R, {(v" —f(0)g(0)) x)¥=0, ie. {(x"—f(0)g{0)) x=0, and
((x"—f(0)g(0)) ¥)¥ =0, ie., (x"—f(0) g(0)) y =0, that is, (x"—/(0)g(0})
eAnnxnAnny=(0), hence x"—f(0)g(0)=0 in R. Therefore f{G)
divides x".

Similarly " =71(0) h(0)=f(0)]»". Hence f(0) is a unit in R and,
therefore, f{Z) is a unit in R Z] and, of course, f{Z} is a unit in R,

Lemva 3.2, Let (R, m} be a quasilocal, reduced ring. Let x, yem be
such that

{1) Ann xnAnn y=(0)
(2) six" and s|y" = s is a unit of R

Then R< R, where R is quasilocal, reduced with mpc mpg, (1) and (2}
hold in R, and every element of my is a zerodivisor in R,.

Proof. Let A be an ordinal with first element 0 such that 4 — {0} is in
1-1 correspondence with m. Construct a chain of rings R; indexed by the
ordinal A by transfinite induction. Let Ry = R. If i > 0, there are two cases.
If 4 is a limit ordinal, let S, ={),.; R, and then use Lemma 3.1 to enlarge
S, to a ring R; in which u; is a zerodivisor and the conditions specified in
the conclusion of the Lemma hold. If 4 has an immediate predecessor
pu=0, use Lemma 3.1 likewise to enlarge R, to an R; such that u; is a
zerodivisorin R, . Let R, =), .4 R;. Q.ED.
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Finally, consider a chain Rc R, < --- where R,, = (R,), in the sense
of Lemma 3.2, and set R,=|J,»¢ R, where Ry;=R. Then R, has the
following properties:

(1) It is quasilocal and reduced.
(2) There exist x, y e m, such that Ann x N Ann y = (0).
(3) Every element of m,, is a zerodivisor.

As an example of a ring to start with take R=K{X, Y], K a field.

For the ring (R,, m,), the canonical projection n: R, —> R /m, =K,
is R-compatible in that a— =b" in R, =a-=b*, m, is a prime B-ideal
containing the finitely generated dense ideal (X, Y), hence by Theorem 2.12
the map R, — R2 is not universal.
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