A Note on Baer Rings

MARIA CONTESSA

Department of Mathematics, 3220 Angell Hall, The University of Michigan, Ann Arbor, Michigan 48109-1003

Communicated by I. N. Herstein

Received October 7, 1986

Introduction

In [3] the author gives a very down-to-earth construction of an embedding of an arbitrary reduced commutative ring R into a Baer ring R^B by an R-compatible ring homomorphism. However, the mapping property claimed in [3] does not hold in the generality stated there: an extra condition on the ring is necessary.

In this paper our main task is to correct that result.

We achieve this goal in Theorem 2.2 where we prove that $R \subseteq R^B$ is a universal embedding if and only if every R-compatible homomorphism $h: R \to S$ from R to a Baer ring S satisfies condition (B): for all given elements $r, b_1, ..., b_t$ ($t \ge 1$) of R, if r belongs to all minimal prime ideals containing b_i , $1 \le i \le t$, then h(r) belongs to all minimal prime ideals containing $h(b_i)$, $1 \le i \le t$, and in Theorem 2.12 where several other conditions are given. We also show that if R is reduced, a polynomial ring over R automatically satisfies these conditions.

In Section 3 we construct a ring which fails to satisfy the conditions of Theorem 2.12 hence proving that the correction is necessary.

We are indebted to K. Prikry for pointing out a gap in the proof in [3] which eventually led to this Note and to M. Hochster for the hospitality and valuable discussions during the preparation of this Note.

SECTION 1

In this section let us briefly recall from [3] some notation, definitions, and the construction of R^B .

First of all, we shall deal with commutative rings with unit. If α is an ideal of the ring R, $\alpha^- = \{r \in R \mid r\alpha = 0\}$ is the annihilator of α and is an ideal. Sometimes we shall write Anna instead of α^{\perp} . For an element α of R,

we shall denote by (a) the principal ideal Ra. An element e of R such that $e^2 = e$ is said to be an idempotent. Finally, p (resp. m) will denote a prime (resp. maximal) ideal of R.

DEFINITION 1.1. A *Baer ring* is a ring such that the annihilator of every principal ideal is principal and generated by an idempotent element.

DEFINITION 1.2. Let R, R' be rings. A homomorphism $h: R \to R'$ from R to R' is said to be R-compatible if whenever $(a)^{\perp} = (b)^{\perp}$, $a, b \in R$, then $(h(a))^{\perp} = (h(b))^{\perp}$ in R'.

When $(a)^{\perp}$ is principal and generated by an idempotent, this idempotent is uniquely determined by a, and we denote it a^* . We write a° for $1-a^*$. Note that a is idempotent $\Leftrightarrow a=a^{\circ} \Leftrightarrow a^*=1-a$. Therefore Definition 1.2 can be rephrased as follows:

(C). h is an R-compatible ring homomorphism implies that if a^* exists, then $h(a)^*$ exists and, in fact, $h(a)^* = h(a^*)$ (since $(a)^{\perp} = (a^*) = (1 - a^*)^{\perp} \Rightarrow h(a)^{\perp} = h(1 - a^*)^{\perp} = (1 - h(a^*))^{\perp}$).

If R is a Baer ring, then $a^{\perp} = b^{\perp} \Leftrightarrow a^* = b^* \Leftrightarrow 1 - a^* = 1 - b^* \Leftrightarrow (1 - a^*)^{\perp} = (1 - b^*)^{\perp}$ and $a^{\perp} = (1 - a^*)^{\perp}$, $b^{\perp} = (1 - b^*)^{\perp}$. Then $(C) \Rightarrow h(a^*)$ generates $h(a)^{\perp}$ and $h(b^*)$ generates $h(b)^{\perp}$, and since $a^* = b^*$, $h(a^*) = h(b^*)$ and $h(a)^{\perp} = h(b)^{\perp}$.

DEFINITION 1.3. An R-compatible homomorphism between two Baer rings is termed a Baer homomorphism.

Construction of R^B following [3, Theorem 1]

Let R be a reduced ring. Set $X = \operatorname{Min}(R)$ (i.e., the set of all minimal prime ideals of R endowed with the inherited Zariski-topology). For any $x \in X$, \mathfrak{p}_x will denote the minimal prime ideal of R corresponding to the point x. Set $\mathscr{R} = \prod_{x \in X} (R/\mathfrak{p}_x)$ where R/\mathfrak{p}_x is an integral domain. It is not difficult to prove that \mathscr{R} has the strongest Baer property, that is, the annihilator of every ideal is principal and generated by an idempotent (see [4, Theorem 4.11]). In particular, \mathscr{R} is a Baer ring.

Of course, the map $i: R \to \mathcal{R}$, where for each $x i(r)_x = r + \mathfrak{p}_x$, is injective since R is reduced and is R-compatible. However, as \mathcal{R} can be very big if Min(R) is not finite, in [3] we aimed to find a smaller Baer ring in between. The construction goes as follows. Let us think of R as sitting inside \mathcal{R} , i.e., identify R with $i(R) \subset \mathcal{R}$. Hence an element $r \in R$ is a family $(r_x)_{x \in X}$ where $r_x = r + \mathfrak{p}_x$. Set

$$r^{\circ} = (r_{x}^{\circ})_{x \in X} \in \mathcal{R}$$
 where $r_{x}^{\circ} = \begin{cases} 1 & \text{if } r \notin \mathfrak{p}_{x} \\ 0 & \text{if } r \in \mathfrak{p}_{x} \end{cases}$

and then let $r^* = 1 - r^\circ$. The operations $-^*$ and $-^\circ$ are all to be carried in \mathcal{R} . Note that if $r \in R$ and r° or r^* exists in R, then $i(r)^\circ = i(r^\circ)$ and $i(r)^* = i(r^*)$; hence i is an R-compatible monomorphism. Note also that $(r)^\perp = (r^*)$ in \mathcal{R} . Now let us consider R^B , the subring of \mathcal{R} generated by the elements $r, r^*, r \in R$. It is shown in [3, Theorem 1] that R^B is a Baer ring. However, the universal property for the map $i: R \to R^B$ does not hold under such a general hypothesis on R. Some restriction is needed.

In the next section we shall provide the appropriate correction and, in Section 3, we shall exhibit an example of a ring failing to satisfy the extra condition.

In particular we shall prove (see Theorem 2.2)

THEOREM. The following conditions on a reduced ring R are equivalent.

- (1) For every R-compatible homomorphism $h: R \to S$ from R to a Baer ring S there is an induced Baer homomorphism $h^{\#}: R^B \to S$ such that for all $r \in R$, $h^{\#}(i(r)) = h(r)$ and $h^{\#}(i(r)^{\circ}) = h(r)^{\circ}$.
- (2) For every integer $t \ge 1$ and elements r, b_1 , ..., b_t of R, if r belongs to all minimal prime ideals of R containing b_i , $1 \le i \le t$, then h(r) belongs to all minimal prime ideals of S containing $h(b_i)$, $1 \le i \le t$.

Section 2

In this section our aim is to restate Theorem 1 in [3] correctly. Heading to this goal let us investigate in detail what is needed for the "universal" mapping property to hold.

The question is: Given a reduced ring R so that one can construct R^B , is it true that, for every Baer ring S and for every R-compatible ring homomorphism $h: R \to S$, h factors through the R-compatible monomorphism $i: R \to R^B$? In other words, is there a Baer homomorphism $h^\#: R^B \to S$ which extends h? If that were true as stated in [3], it should also be true that whenever $\sum_{\text{finite}} r_i a_i^\circ = 0$ in R^B , then $\sum_{\text{finite}} h(r_i) h(a_i)^\circ = 0$ in S and we shall see that this is not so in general (see Sect. 3).

To gain a better insight into the matter let us provide another construction of R^B .

Let $\{X_a | a \in R\}$ be a family of indeterminates indexed by R. Set $T = R[X_a | a \in R]/(X_a^2 - X_a, X_a X_b - X_{ab})_{a. b \in R}$. Hence $T = R + \sum_{a \in R} R x_a$ where $x_a^2 = x_a$ and $x_a x_b = x_{ab}$, $a, b \in R$. Let us observe that R^B is nothing else than $R[a^\circ | a \in R]$ since $a^* = 1 - a^\circ$ and, therefore, there exists a surjective R-homomorphism $t: T \longrightarrow R[a^\circ | a \in R]$ given by $t(x_a) = a^\circ$. Note that $(ab)^\circ = a^\circ b^\circ$. Of course,

$$Ker(t) = \{r + r_1 x_{a_1} + \dots + r_m x_{a_m} \in T | r + r_1 a_1^{\circ} + \dots + r_m a_m^{\circ} = 0\}.$$

Set j = Ker(t). We obtain Scheme 1. (Note: j denotes lowercase German jay.)

Comment. We first get a map \check{h} from the polynomial ring $R[X_a|a\in R]$ to S by $X_a\mapsto h(a)^\circ$. Since $h(a)^\circ$ is idempotent, \check{h} kills $X_a^2-X_a$: and, since $(h(ab))^\circ=(h(a)\,h(b))^\circ=h(a)^\circ\,g(b)^\circ$, \check{h} kills $X_{ab}-X_aX_b$. Hence \check{h} induces \check{h} : $T\to S$.

Since $\zeta: T/i \to R^B$ is an isomorphism, the existence of $h^\#: R^B \to S$ will follow from the existence of $h^*: T/i \to S$ which makes the above diagram commute. Clearly, h^* exists if and only if \tilde{h} kills j.

As it is sufficient to show that \tilde{h} kills generators of j, let us write the elements of j as a sum of "simpler" elements.

LEMMA 2.1. In T every element can be written as a sum of expressions involving mutually orthogonal idempotents in the sense we make precise below in formula (3).

Proof. Pick an element x of T, hence $x = r \cdot 1 + r_1 x_{a_1} + \cdots + r_m x_{a_m}$. As $x_a^2 = x_a$, $x_a^\circ = x_a$ and $x_a^* = 1 - x_a$, hence $x_a^\circ x_a^* = 0$ and $x_a^\circ + x_a^* = 1$. Also $1 = \prod_{i=1}^m (x_a^\circ + x_a^*)$ or

$$1 = \sum_{(j_1, \dots, j_m) \in \mathbf{2}^m} \chi_{a_1}^{j_1} \cdots \chi_{a_m}^{j_m}, \tag{1}$$

where $2 = \{0, *\}$ and any two elements in this sum with distinct indices are mutually orthogonal. Therefore, each $x_{a_i}^{\nu}$ ($\nu = 0$, * and i = 1, ..., m) can be written as

$$x_{a_{i}}^{v} = x_{a_{i}}^{v} \cdot 1 = \sum_{(j_{1}, \dots, j_{n}) \in 2^{m-1}} x_{a_{1}}^{j_{1}} \cdots x_{a_{i-1}}^{j_{i-1}} x_{a_{i}}^{v} x_{a_{i-1}}^{j_{i-1}} \cdots x_{a_{m}}^{j_{m}}$$
(2)

which implies that

$$x = \sum_{(j_1, \dots, j_m) \in 2^m} r_{j_1 \dots j_m} x_{a_1}^{j_1} \dots x_{a_m}^{j_m}. \quad \text{Q.E.D.}$$
 (3)

In particular, an element x of T with a fixed representation as in (3) belongs to j if and only if $\sum r_{j_1 \cdots j_m} a_1^{j_1} \cdots a_m^{j_m} = 0$ which implies that each term of the sum is 0.

Then, the question of whether \tilde{h} kills j reduces to the question of whether

If
$$ra_1^{\circ} \cdots a_s^{0} b_1^{*} \cdots b_t^{*} = 0$$
, then is $\tilde{h}(ra_1^{\circ} \cdots a_s^{\circ} b_1^{*} \cdots b_t^{*}) = 0$,
i.e., is $h(r) \cdot \left(\prod_{i=1}^{s} h(a_i)^{\circ}\right) \cdot \left(\prod_{i=1}^{t} 1 - h(b_i)^{\circ}\right) = 0$. (4)

But

$$r \cdot \left(\prod_{i=1}^{s} a_{i}^{\circ}\right) \cdot \left(\prod_{j=1}^{t} b_{j}^{*}\right) = 0 \Leftrightarrow$$
 For every minimal prime ideal \mathfrak{p} of R , either $r \in \mathfrak{p}$ or at least one $a_{i} \in \mathfrak{p}$ or at least $b_{j} \notin \mathfrak{p}$; i.e., for every minimal prime ideal \mathfrak{p} of R , either $ra_{1} \cdots a_{s} \in \mathfrak{p}$ or at least one $b_{j} \notin \mathfrak{p}$.

That is,

$$r \cdot \left(\prod_{i=1}^{s} a_{i}^{\circ}\right) \cdot \left(\prod_{j=1}^{t} b_{j}^{*}\right) = 0 \Leftrightarrow \text{Every minimal prime ideal of } R \text{ which}$$

$$\text{contains } b_{1}, \dots, b_{t} \ (t \ge 1) \text{ also}$$

$$\text{contains } ra_{1} \cdots a_{s} \ (s \ge 1).$$

We have thus shown

Theorem 2.2. Let R be a reduced ring. The following conditions are equivalent:

- (i) R^B is a universal Baer extension of R.
- (ii) For every R-compatible homomorphism $h: R \to S$ from R to a Baer ring S, there exists a Baer extension $h^{\#}: R^{B} \to S$ of h.
- (iii) For all $r, b_1, ..., b_t$ $(t \ge 1)$ elements of R, if r belongs to all minimal prime ideals of R containing b_i , $1 \le i \le t$, then h(r) belongs to all minimal prime ideals of S containing $h(b_i)$, $1 \le i \le t$.

Throughout we shall refer to (iii) as to condition (B). Let us head to a characterization of such rings R.

PROPOSITION 2.3. Let R be a ring, t an element of R, and R_t the localization of R at the element t. Then

- (1) The natural map $\varphi: R \to R$, is R-compatible.
- (2) If R is reduced, then for all $u, v \in R$
 - (α) $v/1 \in (u/1)^{\perp}$ in $R_t \Leftrightarrow v \in (tu)^{\perp}$ in R.
 - (β) $(u/1)^{\perp} = (v/1)^{\perp}$ in $R_t \Leftrightarrow (tu)^{\perp} = (tv)^{\perp}$ in R.
- (3) If R is a Baer ring, then φ is a Baer homomorphism.

Proof. (1) It is enough to recall from [2, Proposition 3.14] that $S^{-1}(\operatorname{Ann} M) = \operatorname{Ann}(S^{-1}M)$ for all finitely generated R-modules M.

- $(2)-\alpha$. Let us assume that $v \in (tu)^{\perp}$ in R, i.e., v(tu)=0. Then $\varphi(v(tu))=(v/1)(tu/1)=0/1$ and t/1 invertible imply $v/1 \in (u/1)^{\perp}$. Conversely, let $v/1 \in (u/1)^{\perp}$ in R_t . Then $t^k(vu)=0$ in R for some integer $k \ge 0$ implies $(tvu)^k=0$. Therefore vtu=0 as R is a reduced ring, i.e., $v \in (tu)^{\perp}$ in R. $(2)-\beta$. It follows from (1) and $(2)-\alpha$.
- (3) It follows from (1) and Definition 1.3 as it is easy to check that R_t is a Baer ring as well.

COROLLARY 2.4. An R-compatible homomorphism $h: R \to R'$ between two reduced rings R, R' induces an R-compatible map $h_i: R_i \to R'_{h(i)}$ for all elements t of R.

Proof. Let us remark that in R_t , $\operatorname{Ann}(b/t) = \operatorname{Ann}(b/1)$ as 1/t is invertible. Thus we have to prove that if $\operatorname{Ann}(b/1) = \operatorname{Ann}(c/1)$ in R_t , then $\operatorname{Ann}(h(v)/1) = \operatorname{Ann}(h(c)/1)$ in $S_{h(t)}$, for all b/1, c/1 in R_t . By Proposition 2.3: $(2) - \beta$, $\operatorname{Ann}(b/1) = \operatorname{Ann}(c/1) \Leftrightarrow (tb)^{\perp} = (tc)^{\perp}$ which implies $(h(tb))^{-} = (h(tc))^{\perp}$ by the R-compatibility of h, and this means $\operatorname{Ann}(h(b)/1) = \operatorname{Ann}(h(c)/1)$ by Proposition 2.3: $(2) - \beta$ already mentioned.

DEFINITION 2.5. An ideal i of R is said to be a B-ideal if for all elements u, v of R, $u^{\perp} = v^{\perp}$ and $u \in i$, then $v \in i$.

EXAMPLES. The ring itself, the zero ideal, a minimal prime ideal, and, of course, any intersection of them are B-ideals.

DEFINITION 2.6. A B-ideal of a Baer ring is termed a Baer ideal.

DEFINITION 2.7. A dense ideal b of R is an ideal with $b^{\perp} = (0)$.

A few properties of B-ideals, Baer ideals, and dense ideals strictly related to our goal are

PROPOSITION 2.8. (1) A B-ideal of a reduced ring is radical.

- (1') An ideal of a Baer ring is a Baer ideal if and only if it is an intersection of minimal prime ideals of the ring.
- (2) An ideal of a reduced ring R is a B-ideal if and only if it is the kernel of an R-compatible ring homomorphism having R as a source.
- (2') An ideal of a Baer ring S is a Baer ideal if and only if it is the kernel of a Baer homomorphism from S to a Baer ring S'.
- (3) If $\mathfrak{b} = (b_1, ..., b_t)$ is a finitely generated ideal of a reduced ring R, then \mathfrak{b} is not dense (i.e., $\mathfrak{b}^{\perp} \neq (0)$) $\Leftrightarrow \exists a \in R \{0\}$ such that $ab_i = 0$, $1 \leq i \leq t \Leftrightarrow V^{\circ}(\mathfrak{b}) = \{\mathfrak{p} \in \operatorname{Min}(R) | \mathfrak{p} \supseteq \mathfrak{b}\} \neq \emptyset$.
- *Proof.* (1) For an element x of a reduced ring R we have $(x^n)^{\perp} = x^{\perp}$, hence if $x^n \in i$, then $x \in i$ since i is a B-ideal, i.e., i is radical.
- (2) Let i be a *B*-ideal of *R*. Set $\overline{R} = R/i$. Claim: The natural map $\pi: R \to \overline{R}$ is *R*-compatible.

In fact, let $r, u \in R$ be such that $r^{\perp} = u^{-}$. Two cases are possible. 1st Case. If r (or u) \in i, then u (or r) \in i, hence $\overline{R} = \overline{r}^{\perp} = \overline{u}^{-}$. 2nd Case. Assume $r \notin i$ and $\overline{r}^{\perp} \neq \overline{u}^{\perp}$. Then there exists an element $\overline{t} \in \overline{R}$ such that $\overline{t} \cdot \overline{r} = \overline{0}$ and $\overline{t} \cdot \overline{u} \neq \overline{0}$; that is, tr \in i and $tu \notin i$, a contradiction since $r^{\perp} = u^{-} \Rightarrow (tr)^{\perp} = (tu)^{\perp}$ for all $t \in R$, because R is reduced (see Proposition 2.3). Conversely, let $\varphi: R \to R'$ be an R-compatible homomorphism. Set $i = \text{Ker } \varphi$. Let $r, u \in R$ have the property that $r^{-} = u^{\perp}$. If $r \in i$, then $R' = (\varphi r)^{\perp} = (\varphi u)^{\perp}$ which implies $\varphi u = 0$ hence $u \in i$. Note that we do not need R to be reduced in this part.

For the proof of (1') see [8], for the proof of (3) see [1]. (2') follows from (2).

DEFINITION 2.9. An R-compatible homomorphism $h: R \to S$ from a reduced ring R to a Baer ring S is said to satisfy condition (B_2) if

(B₀) For all elements b_1 , ..., b_t ($t \ge 1$) of R, if no minimal prime ideal of R contains b_i , $1 \le i \le t$, then no minimal prime ideal of S contains $h(b_i)$, $1 \le i \le t$.

Since no minimal prime ideal of R contains b_i , $1 \le i \le t \Leftrightarrow$ the ideal $b = (b_1, ..., b_t)$ is dense, condition (\mathbf{B}_\circ) says that under h a finitely generated dense ideal of R expands to a dense ideal of S.

Remark 2.10. Of course, if an R-compatible homomorphism $h: R \to S$ from a reduced ring R to a Baer ring S satisfies condition (B), then it

satisfies condition (\mathbf{B}_{\circ}), since no minimal prime ideal contains b_i , $1 \le i \le t \Leftrightarrow 1$ belongs to all minimal prime ideals containing b_i , $1 \le i \le t$.

Theorem 2.11. Let R be a reduced ring, S a Baer ring, and h: $R \rightarrow S$ an R-compatible homomorphism. TFAE

- (i) h satisfies condition (B).
- (ii) $h_t: R_f \to S_{h(f)}$ satisfies (B) for all $f \in R$.
- (iii) $h_f: R_f \to S_{h(f)}$ satisfies (\mathbf{B}_\circ) for all $f \in R$.

Proof. (ii) \Rightarrow (iii) for all $f \in R$ by Remark 2.10. (iii) \Rightarrow (i). If (B) fails, we get elements r, b_1 , ..., b_t ($t \geqslant 1$) in R such that r belongs to all minimal prime ideals of R containing b_1 , ..., b_t but h(r) does not belong to a minimal prime ideal q of S containing $h(b_1)$, ..., hb_t). In the ring R_r , $b_1/1$, ..., $b_t/1$ do not belong to any minimal prime ideal. By B_o) for $(R_r, S_{h(r)}, h_r)$ the images $h_r(b_1)/1$, ..., $h_r(b_t)/1$ are not in any minimal prime ideal of $S_{h(r)}$. But $q \cdot S_{h(r)}$ gives a minimal prime which contains $h_r(b_t)/1$, $1 \le t \le t$, a contradiction.

(i) \Rightarrow (ii). Given r/f^m , b_i/f^{m_i} , $1 \le i \le t$, elements of R_f , to show that if r/f^m belongs to all minimal primes containing b_i/f^{m_i} , $1 \le i \le t$, then $h(r)/h(f)^m$ belongs to all minimal primes of $S_{h(f)}$ containing $h(b_i)/h(f)^{m_i}$, $1 \le i \le t$, is equivalent to showing that if r/1 belongs to all minimal primes containing $b_i/1$, $1 \le i \le t$, in R_f , then h(r)/1 belongs to all minimal primes containing $h(b_i)/1$, $1 \le i \le t$, in $S_{h(f)}$.

If not, choose a minimal prime ideal q of $S_{h(f)}$ containing $h(b_i)/1$ $(1 \le i \le t)$ and not containing h(r)/1.

Claim. Every minimal prime ideal of R which contains b_i , $1 \le i \le t$, contains rf. Assume not and let $\mathfrak p$ be a minimal prime ideal containing b_i , $1 \le i \le t$, and not rf. Then $f \notin \mathfrak p$ implies $\mathfrak p R_f$ is a minimal prime containing $b_i/1$ (i=1,2,...,t); hence $\mathfrak p R_f$ contains r/1. This implies $f^k r \in \mathfrak p \Rightarrow (fr)^k \in \mathfrak p \Rightarrow fr \in \mathfrak p$, a contradiction. Therefore, every minimal prime of S which contains $h(b_i)$, i=1,...,t, contains h(rf) = h(r) h(f), a contradiction since $\mathfrak q^c$ does not contain h(f) h(r) and is a minimal prime containing $h(b_i)$, i=1,...,t.

For the next result we need some notation. Let R be a reduced ring. For an element r of R, set $Y = \min(R_r)$, while $X = \min(R)$. Let $X_r = \{x \in X/r \notin \mathfrak{p}_x\}$. There is a canonical homomorphism η from X_r to Y. Let $\rho: \prod_{x \in X} R/\mathfrak{p}_x \to \prod_{x \in X_r} R/\mathfrak{p}_x$ be the restriction map.

THEOREM 2.12. There are natural isomorphisms $(R^B)_r = (R^B)_{i(r)} \cong (R_r)^B \cong \rho(R^B)_{\rho(i(r))}$.

Proof. Let ρ^B be the restriction of ρ to R^B so that ρ^B : $R^B \to \rho(R^B)$. Set $j = \text{Ker}(\rho^B)$. j consists precisely of the elements of R^B vanishing on Y, whence $j = i(r)^\perp = \bigcup_n (i(r)^n)^\perp$. Therefore the induced map $\rho^B_{i(r)}: (R^B)_{i(r)} \to (\rho(R^B))_{\rho(i(r))}$ is an isomorphism. Let $j: R_r \to \prod_{y \in Y} R_r/\mathfrak{p}_y$ be the map for R_r which corresponds to the map i for R defined earlier. The maps $\rho_{i(r)}$ and ψ in the commutative diagram below

$$R_{r} \xrightarrow{j} \prod_{y \in Y} (R_{r}/\mathfrak{p}_{y})$$

$$\downarrow_{i_{r}} (R_{r})^{B} \xrightarrow{y \in Y} \downarrow_{\psi} (R_{r}/\mathfrak{p}_{x})$$

$$\left(\prod_{x \in X} R/\mathfrak{p}_{x}\right)_{i(r)} \xrightarrow{\rho_{i(r)}} \left(\prod_{x \in X_{r}} R/\mathfrak{p}_{x}\right)_{\rho(i(r))}$$

are easily seen to be isomorphisms. (Here, if $g \in \prod_{x \in X_r} R/\mathfrak{p}_x$, $\psi(g/1)(\eta(x)) = g(x)/1$; $R_r/\mathfrak{p}_{\eta(x)}$ is identical with $(R/\mathfrak{p}_x)_r$.) By definition, $(R_r)^B$ is the subring of $\prod_{y \in Y} R_r/\mathfrak{p}_y$ generated by the elements j(f), $f \in R$, 1/j(r), and $(j(f)/j(r)^k)^\circ$, $f \in R$, or by the elements j(f), $f \in R$, 1/j(r), and $(j(f)/j(r))^\circ = (j(fr))^\circ$, $f \in R$. The image of this subring under ψ^{-1} in $(\prod_{x \in X_r} R/\mathfrak{p}_x)_{\rho(i(r))}$ is the subring generated by $\rho(j(f))$, $f \in R$, $\rho(j(fr))^\circ = \rho[i(f)^\circ]$, i.e., $(R_r)^B$ viewed in $(\prod_{x \in X_r} R/\mathfrak{p}_x)_{\rho(i(r))}$ is the subring generated by $\rho(i(f))$, $f \in R$, $1/\rho(i(r))$, and $\rho[i(f)^\circ]$, $f \in R$, which is exactly $\rho(R^B)_{\rho(i(r))}$. Therefore we have got the isomorphisms $(R_r)^B \cong \rho(R^B)_{\rho(i(r))} \cong (R^B)_{i(r)} = (R^B)_{i(r)} = (R^B)_r$.

PROPOSITION 2.13. If all R-compatible homomorphisms $h: R \to S$ from a reduced ring R to a Baer ring S satisfy condition (B), then all R-compatible homomorphisms $k: R_c \to T$ from R_c to a Baer ring T satisfy (B).

Proof. Choose an element r of R and let $k: R_r \to T$ be such a homomorphism. Note that k(r/1) is invertible in T. First we get an R-compatible map $h: R \to {}^{\varphi}R_r \to {}^{k}T$, hence there exists $h^{\#}: R^B \to T$ such that $h^{\#} \circ i = k \circ \varphi = h$. By localizing R^B at i(r) we get a map $\varphi^*: R_r \to (R^B)_{i(r)}$ by the universality of R_r and also a map $(R^B)_{i(r)} \to T$ since h(r) is invertible in T. Hence by the isomorphism $(R^B)_{i(r)} \cong (R_r)^B$ established earlier we obtain a map $(R_r)^B \to T$ which says that k satisfies (B).

Our task is at end since we can prove

THEOREM 2.14. TFAE on a reduced ring R.

- (1) Every R-compatible homomorphism $h: R \to S$ from R to a Baer ring S satisfies condition (B).
 - (2) $R \subseteq R^B$ is a universal R-compatible embedding.

- (3) A proper B-ideal of R_r has no dense finitely generated subideal, for all r in R.
- (4) A prime B-ideal of R_r has no dense finitely generated subideal, for all r in R.
- (5) Every R-compatible map $R_r \to K$ satisfies condition (B_\circ) for all fields K and r in R.
- *Proof.* (1) \Leftrightarrow (2) by Theorem 2.2. (1) \Rightarrow (3), (1) \Rightarrow (5) are easy to prove. (3) \Rightarrow (4) is trivial.
- $(4) \Rightarrow (1)$. Let us assume that (4) holds. We want to prove that every R-compatible map $h: R \to S$, S Baer ring, satisfies condition (B). Claim: It suffices to show that an R-compatible map $R_r \to S'$ satisfies condition (B₂) for all Baer rings S' and r in R.

Assume not and let $h: R_r \to S'$ fail to satisfy condition (B_\circ) . Then there exists a finitely generated dense ideal of R_r which does not expand to a dense ideal in S'. Say $\mathfrak{b} = (b_1, ..., b_t)$. Choose a minimal prime ideal \mathfrak{q} of S' containing $h(b_i)$, $1 \le i \le t$. Claim: $h^{-1}(\mathfrak{q})$ is a B-ideal of R_r . If not, let $x^\perp = y^\perp$ in R_r and $x \in h^{-1}(\mathfrak{q})$, $y \notin h^{-1}(\mathfrak{q})$. Since h is R-compatible, we have $h(x)^- = h(y)^\perp$, a contradiction because $h(x) \in \mathfrak{q} \Rightarrow h(x)^\perp \not\subseteq \mathfrak{q}$, but $h(y) \notin \mathfrak{q} \Rightarrow h(y)^\perp = h(x)^- \subseteq \mathfrak{q}$.

 $(5) \Rightarrow (1)$. If not, let $h: R \to S$ fail to satisfy condition (B), i.e., there exist elements r, $b_1,...,b_t$ in R such that r belongs to all minimal primes of R containing b_i , $1 \le i \le t$, but $h(r) \notin \mathfrak{q}$ a minimal prime ideal of S which contains $h(b_i)$, $1 \le i \le t$. By localizing at r and h(r) and then taking the fraction field K of $S_{h(r)}/\mathfrak{q}S_{h(r)}$, we obtain an R-compatible map

$$R_r \to S_{h(r)} \to S_{h(r)}/\mathfrak{q}S_{h(r)} \to K$$

which maps the finitely generated dense ideal $(b_1, ..., b_t)$ to (0), a contradiction.

Next is a result, interesting in itself, which implies that for a reduced ring R, the embedding $R[X] \subseteq R[X]^B$ is automatically universal.

THEOREM 2.15. Let R be a reduced ring. Then in $R[X]_f$, $f \in R[X]$, every finitely generated dense ideal contains a nonzerodivisor.

Proof. Suppose that d_0/f^{i_0} , ..., $d_r/f^{i_r} \in R[X]_f$ have no common annihilator. Then the elements $d_i/1$, i=0,1,...,r, have no common annihilator. Claim: If $N > \sup\{\deg d_i, \ 0 \le i \le r\}$, then $\sum_{i=0}^r d_i X^{N^i}/1$ is a nonzerodivisor. Proof. Say g/f^j kills it. Then $G = f^k g$ kills $D = \sum_{i=0}^r d_i X^{N^i}$ in R[X], for some sufficiently large k.

It suffices to show that if G kills $\sum_{i=0}^{r} d_i X^{N^i}$ in R[X] then G kills each $d_i(0 \le i \le r)$, for then G/1 = 0 in $R[X]_f$. Let C_G , C_D be the ideals

of R generated by the coefficients of G and D respectively. $GD = 0 \Rightarrow C_G \cdot C_D = (0)$. (If not, choose a minimal prime ideal \mathfrak{p} of R such that $\mathfrak{p} \not\supseteq C_G \cdot C_D$, that is, $\mathfrak{p} \not\supseteq c_1 \cdot c_2$ for some coefficient c_1 of G and some coefficient c_2 of G. Then $GD \not\equiv 0 \mod \mathfrak{p}$, a contradiction.) $C_G \cdot C_D = (0)$, however, implies that $C_G \cdot C_{d_i} = (0)$ since $C_{d_i} \subset C_D$, $0 \le i \le r$. Hence $Gd_i = 0$ for i = 0, 1, ..., r, i.e., G/1 kills $d_i/1$ in $R[X]_f$ for all i. Thus $G/1 = f^k g/1 = 0/1$ in $R[X]_f$, i.e., g/1 = 0/1 in $R[X]_f$.

COROLLARY 2.16. For a reduced ring R, then embedding $R[X] \subseteq R[X]^B$ is universal.

Proof. Assume not and let $h: R[X]_f \to S$ fail to satisfy Theorem 2.14: (4). Let $\mathfrak{d} = (d_0, ..., d_r)$ be a finitely generated dense ideal of $R[X]_f$ which expands to a nondense ideal. There exists a minimal prime ideal q of S containing $h(d_0), ..., h(d_r)$, whence $h^{-1}(\mathfrak{q})$ contains $\mathfrak{d} = (d_0, ..., d_r)$ which contains a nonzerodivisor δ by Theorem 2.15. But h is R-compatible and, therefore, $h(\delta)^{\perp} = h(1)^{-} = (0) \subseteq \mathfrak{q}$, a contradiction since $h(\delta) \in \mathfrak{q}$.

Section 3

In this section we shall exihibit a ring which fails to satisfy condition (B_{\circ}) and hence the conclusion of Theorem 2.12 does not hold for it. Therefore, Theorem 1 as stated in [3] is not correct.

We shall construct a reduced quasilocal ring $(R_{\omega}, \mathfrak{m}_{\omega})$ and elements x, $y \in \mathfrak{m}_{\omega}$ such that $x^{\perp} \cap y^{\perp} = (x, y)^{\perp} = (0)$, but every element of \mathfrak{m}_{ω} is a zerodivisor. It is then immediate that $R_{\omega} \to K_{\omega}/\mathfrak{m}_{\omega}$ is an R-compatible map from R_{ω} to a field K_{ω} which does not satisfy (B_{c}) or (B). Hence $R_{\omega} \subseteq R_{\omega}^{B}$ does not have the universal mapping property and this is not the universal Baer embedding of R_{ω} .

LEMMA 3.1. Let (R, m) be a quasilocal reduced ring with $x, y \in m$ such that

- (1) Ann $x \cap \text{Ann } y = (0)$.
- (2) If $s \mid x^n$ and $s \mid y^n$, then s is a unit.

Let $u \in \mathbb{M}$. Set R' = R[Z]/j where $j = \{w \in R[Z]/\exists N \text{ such that } (xw)^N, (yw)^N \in (uZ)\}$. Then

- (a) R' is quasilocal and reduced.
- (b) $j \cap R = (0)$ and hence $R \subseteq R'$ and $m_R \subseteq m_{R'}$.
- (c) The image of Z in R' is not zero, uZ = 0 in R', and hence u is a zerodivisor in R'.
 - (d) In R' (1) and (2) hold for the images of x and y.

- *Proof.* (a) Let $\bar{\alpha} \in R'$ be such that $\bar{\alpha}^i = \bar{0}$, hence $\alpha^i \in j$ in R Z_j for some i, that is, $(\alpha^i x)^n$, $(\alpha^i y)^m \in (uZ)$. Set $N = \max(in, im)$. Then $(\alpha x)^N$, $(\alpha y)^N \in (uZ)$, whence $\alpha \in j$, i.e., $\bar{\alpha} = \bar{0}$. That proves (a) since R' is clearly quasilocal.
- (b) We need to check that $j \cap R = (0)$. Pick an element $r \in j \cap R$. Then $(rx)^N$, $(ry)^N \in (uZ)$. Elements of (uZ) have constant term 0, whence $(rx)^N = (ry)^N = 0$, i.e., rx = ry = 0, since R is reduced. Therefore $r \in \text{Ann } x \cap \text{Ann } y = (0)$ hence r = 0.
- (c) If $Z \in j$, then $(Zx)^n = uZ \cdot h_1(Z)$ and $(Zy)^n = uZ \cdot h_2(Z)$ and, therefore, $u \mid x^n$ and $u \mid y^n$, i.e., u is a unit. This is a contradiction since $u \in m$. Thus, $Z \notin j$ and the image of Z in R' is not zero.
- (d) (1) Suppose $\overline{f(Z)} \in \operatorname{Ann} \overline{x} \cap \operatorname{Ann} \overline{y}$ in R'. Then $f(Z) \cdot x \in \mathfrak{j}$ and $f(Z) \cdot y \in \mathfrak{j}$ in $R_{\overline{u}}[Z]$, hence $(f(Z) \cdot x)^N \in (uZ)$ and $(f(Z) \cdot y \cdot y)^N \in (uZ)$. Set $N'' = \max\{2N, 2N'\}$. Then $(f(Z) \cdot x)^{N''}$ and $(f(Z) \cdot y)^{N''}$ belong to (uZ), i.e., $f(Z) \in \mathfrak{j}$ hence $\overline{f(Z)} = \overline{0}$ in R'.
- (2) If $\overline{f(Z)} | \bar{x}^n$ and $\overline{f(Z)} | \bar{y}^n$ in R', then $x^n f(Z) g(Z) \in j$ and $y^n f(Z) h(Z) \in j$, that is, for sufficiently large $N((x^n f(Z) g(Z)) \cdot x)^N = uZ \cdot k_1(Z)$; $((x^n f(Z) g(Z)) \cdot y)^N = uZ \cdot k_2(Z)$; $((y^n f[Z] h(Z)) \cdot x)^N = uZ \cdot t_1(Z)$ and $((y^n f(Z) h(Z)) \cdot y)^N = uZ \cdot t_2(Z)$. Substituting 0 for Z we obtain, in R, $((x^n f(0) g(0)) x)^N = 0$, i.e., $(x^n f(0) g(0)) x = 0$, and $((x^n f(0) g(0)) y)^N = 0$, i.e., $(x^n f(0) g(0)) y = 0$, that is, $(x^n f(0) g(0)) \in Ann x \cap Ann y = (0)$, hence $x^n f(0) g(0) = 0$ in R. Therefore f(0) divides x^n .

Similarly $y^n = f(0) h(0) \Rightarrow f(0) \mid y^n$. Hence f(0) is a unit in R and, therefore, f(Z) is a unit in $R \subseteq Z \subseteq X$ and, of course, $\overline{f(Z)}$ is a unit in R'.

LEMMA 3.2. Let (R, m) be a quasilocal, reduced ring. Let $x, y \in m$ be such that

- (1) Ann $x \cap \text{Ann } y = (0)$.
- (2) $s \mid x^n \text{ and } s \mid y^n \Rightarrow s \text{ is a unit of } R$.

Then $R \subset R_1$, where R_1 is quasilocal, reduced with $\mathfrak{m}_R \subset \mathfrak{m}_{R_1}$, (1) and (2) hold in R_1 , and every element of \mathfrak{m}_R is a zerodivisor in R_1 .

Proof. Let Λ be an ordinal with first element 0 such that $\Lambda - \{0\}$ is in 1-1 correspondence with m_R . Construct a chain of rings R_{λ} indexed by the ordinal Λ by transfinite induction. Let $R_0 = R$. If $\lambda > 0$, there are two cases. If λ is a limit ordinal, let $S_{\lambda} = \bigcup_{\mu < \lambda} R_{\mu}$ and then use Lemma 3.1 to enlarge S_{λ} to a ring R_{λ} in which u_{λ} is a zerodivisor and the conditions specified in the conclusion of the Lemma hold. If λ has an immediate predecessor $\mu \geqslant 0$, use Lemma 3.1 likewise to enlarge R_{μ} to an R_{λ} such that u_{λ} is a zerodivisor in R_{λ} . Let $R_1 = \bigcup_{\lambda \in \Lambda} R_{\lambda}$.

Finally, consider a chain $R \subset R_1 \subset \cdots$ where $R_{n+1} = (R_n)_1$ in the sense of Lemma 3.2, and set $R_{\omega} = \bigcup_{i \ge 0} R_i$ where $R_0 = R$. Then R_{ω} has the following properties:

- (1) It is quasilocal and reduced.
- (2) There exist $x, y \in \mathfrak{m}_{\omega}$ such that Ann $x \cap$ Ann y = (0).
- (3) Every element of \mathfrak{m}_{α} is a zerodivisor.

As an example of a ring to start with take R = K[X, Y], K a field.

For the ring $(R_{\omega}, \mathfrak{m}_{\omega})$, the canonical projection $\pi: R_{\omega} \to R_{\omega}/\mathfrak{m}_{\omega} = K_{\omega}$ is R-compatible in that $a^- = b^{\perp}$ in $R_{\omega} \Rightarrow \bar{a}^- = \bar{b}^{\perp}$, \mathfrak{m}_{ω} is a prime B-ideal containing the finitely generated dense ideal (X, Y), hence by Theorem 2.12 the map $R_{\omega} \to R_{\omega}^B$ is not universal.

REFERENCES

- G. ARTICO AND U. MARCONI, On the compactness of minimal spectrum, Rend. Sem. Math. Univ. Padova 56 (1977), 79-84.
- M. F. ATIYAH AND I. G. MACDONALD. "Introduction to Commutative Algebra," Addison-Wesley, Reading, Mass., 1969.
- M. Contessa, Alcune Osservazioni sugli Anelli di Baer, Ann. Univ. Ferrara Sez. VII (N.S) 25 (1979), 219–224.
- M. Contessa, Ultraproducts of PM-Rings and MP-Rings, J. Pure Appl. Algebra 32 (1984), 11–20.
- 5. I. KAPLANSKY, "Rings of Operators," Benjamin, New York, 1968.
- J. Kist, Minimal prime ideals in commutative semigroups, Proc. London Math. Soc. 13 (1963), 31-50.
- 7. J. LAMBEK, "Lectures on Rings and Modules," Ginn (Blaisdell), Boston, 1976.
- T. P. SPEED, A note on commutative Baer rings, J. Austral. Math. Soc. Ser. A 14 (1972), 257–263.
- T. P. SPEED, A note on commutative Baer rings III, J. Austral. Math. Soc. Ser. A 15 (1973), 15-21.