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Abstract. Inprevious work [8] we described a technique for translating a general class of equational
rewriting systems called regular systems [3] to constructor-based systems. This paper extends the
previous results by showing that the translation technique described in [8] is much more generally
applicable under a slight restriction of rewriting in the translated version of the system. The three
additional classes we consider are those of semiregular systems (a generalization of regular
systems), canonical systems, and arbitrary call-by-vaiue confluent systems. It is shown that in
each case the translation preserves the defining characteristics and normal forms of the class.

1. Intreduction

Among the many examples of the use of fii:t-order term-rewriting systems :.-
functional programming[1, 3, 7, 11], only a few [1, 3] use systems that do not require
argument patterns in function definitions to be built from a special class of constructor
symbols. The reason for the popularity of constructor-based definitions is the
simplicity and efficiency with which they can be implemented. In [8] we described
a technique which can “‘compile” any program in the broadest class (regular systems)
considered by Hoffmann-O'Donnell [3] to an equivalent constructor-based program.
The basic idea involved can be seen by examining the following two equations,
which are a part of an equational LISP interpreter in [2].

(1) eval(cons(x, y), z) =apply(eval(x, y), y, z),

(2) apply(eval(car, z), cons(x, y), z1) = car(eval(x, z1)).

The interesting point is that “eval” is used both as a function in equation (1),
and as a constructor of data patterns in equation (2). The distinction between
constructors and defined functions appears to have mainly computational/construc-
tive significance, and increased clarity and economy of expression is often gained
by ignoring it. For example, the interpreter mentioned above is quite close in
appearance to McCarthy’s original equations defining the semantics of LISP. These
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gains are achieved at the cost of a considerable increase in the complexity of
implementation, especially in pattern matching since it is not necessarily known
whether an application needs to be evaluated.

ASwEsa

In regular systems, although such dual use of symbols is permitted, the two kinds
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must not overlap. It is therefore easy to eliminate dual use by introducing new
constructor symbois for symbois with duai use, and new equations to detect and
convert the constructor-like occurrences to the new symbols. The technique can be
used in the form of a preprocessor to achieve the generality of regular systems with
a constructor-based implementation, at the cost of an expansion in the total size of
patterns that is quadratic in the worst case, but relatively small in realistic cases
such as the LISP interpreter mentioned abecve. Recent programming systems based
on term rewriting [1] are beginning to use classes of rewriting systems more general
than regular systems. It is therefore of interest to investigate how far the translation
technique can be generalized.

As the two main lemmas in 81 (restated
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2) show, the translated system

is able to faithfully mimic the behavior of the original system, whether the latter is
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of the translated system. In the case of regular systems, the translation was shown
to preserve regularity. Preservation of ihe defining characieristics of a ciass of sysiems
is clearly a desirable, and often sufficient condition for applicability. We shall
therefore use it as the primary criterion. Semiregular systems are the first and simplest
new class we consider. For our purposes, the essential aspect of regularity is
nonoverlapping left-hand sides. The other rules defining regularity, such as the
linearity of left-hand sides, can be viewed as being intended to ensure the Church-
Rosser property. The class can therefore be broadened to semi-regular systems by
retaining the nonoverlapping rule, and replacing the others by the property they

are intended to ensure. In Section 3, we show that the translation preserves the
pronertv of semireoularitv. Canonical (confluent tprrmnaﬁno\ svcteme are 2 nm'lplv
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used and well-behaved class that does not guarantee nonoverlappmg lefi-hand sides.
It turns out that a!thuusu wuuuu.uy is not preserv'ed oy the translation under
arbitrary rewriting, it is preserved if rewriting in the translated system respects a
weak ordering on the new equations. Since the compieteness of mimicry mentioned
above is valid only under arbitrary rewriting, a notion of “sufficiently complete
mimicry” is needed for this case. We use the obvious one - .quiring that all normal
forms of the original system can be produced in the new one. These results for
canonical systems are proved in Section 4. Arbitrary confluent systems constitute
the most general class one could consider. It is not surprising that in such a general
setting, none of the results for the previous classes hold. However, in the practically
important case where the original system follows a call-by-value evaluation strategy,

the transiation does preserve conﬂuence and normal forms under the same weak
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2, Existing results

We first recall some terminology and notation—with small changes—from [8]. If
2 is a ranked alphabet, Ts will denote all ground 2-terms. Terms may include
nullary variables. Given a term f(¢,,..., &), the occurrences of function symbols
in t,,..., & are said to be inner occurrences. A rewriting system R (based on 3)
is simply a set of rules, where each rule is a pair (I, r) of 2Z-terms. A path P is a
nonempty string of integers used to “‘address™ subterms of a term. The empty string
addresses the term itself, the string ““23™ reaches the third argument of the second
argument, etc. We use ¢/ P to denote the subterm of ¢ reached by P, and ([P =w]
to denote the result of replacing that subterm by the term w. The catenation of paths
P and Q will be denoted by P.Q. The rewrite relation - and its reflective transitive
closure -»* will have their usual significance in rewrite systems.

In relation to a given system R, we partition 2 into the two seis C and F of
constructors and defined functions respectively, where F contains all those symbols
which occur at the head of some left-hand side ! of a rule in R, and C contains
the rest. The translation of any system R can now be stated. Let 3’'= 3 u{c/|f e F}.
Let ¢’ denote the term ¢ with every inner occurrence of f € F replaced by ¢, and "
the term with all occurrences so replaced. The translation R’ of R is the smallest
system satisfying the following two assertions:

(1) if{l, r)e R, then (I',r)e R"; ‘

(2) whenever a proper subterm u of a ieft-hand side in R has a symbol from F

at its head, then (4, u")e R'.

We shall partition R’ into R} and Rj, where the former contains rules mandated
by (1) and the latter those by (2). 2’ can be partitioned into C' and F' in the way
described for 2, and the new symbols ¢, are all in C’, i.e., they are constructors.
The following lemmas are proved in [8], where H is a homomorphism that
projects terms in Ts. back to Tz by simply replacing all new symbols ¢, with the
corresponding f.

Lemma 2.1. Given tand u in Ts., t->u in R' only if H(t) >* H(u) in R.
Lemma 2.2. Giventand uin Ts, t->uin Ronly ift >*uin R'.

These lemmas show that for any rewriting system R, R’ exactly mimics R as seen
“through”™ H. It is therefore a little surprising that R’ does not necessarily preserve
any particular property of R such as confluence or sequentiality. The difficulty is
created by reductions via RS which are invisible when seen through H but which
may divert the computation sequence in strange ways. One therefore needs to show
separately that properties that are considered essential are preserved by the transla-
tion. For regular systems it is easy to prove [8] that if R is a regular system, then
R’ is aregular constructor system. Regularity is basically an easily decidable sufficient
condition for confluence, which (defined as a property of any rewrite relation -)
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states that whenever ¢t »* u, and ¢t -»* u, for any term ¢, there is a term v such that
u, >* v and u, »* v. This property ensures the uniqueness of normal forms (the
Church-Rosser property) and is usually taken to be essential for computational use
of rewriting. Confluence is not preserved by our translation in general, as in the
example below.

System R System R System R}
S(g(x), h(»))>0  flcg(x),cn(x))>0  g(x)>c(x)
f(1,2)-6 f(1,2)-0 h(x)- c4(x)
g(x)->1 g(x)->1

h(x)->2 h(x)->2

We can reduce f(g(0), h(0)) to at least two normal forms, namely, f(1, ¢,(0)) and
0. The trouble is that a reduction using a rule in R} (e.g., h(0) - c,(0)) commits the
resulting term to the enclosing redex of Rj. If the other non-constructor components
of the redex refuse to ‘“‘cooperate™ by also reducing via R, a deadlock results as
in this example. Demanding a context-sensitive strategy for deciding the next redex
to reduce destroys the effectiveness of the translation by reintroducing all the
complexity of non-constructor systems.

3. Semiregular systems

The difficulty in the example above is created by the overlap between the patterns
f(g(x), h(y)) and h(x), producing a so-called critical pair. This is made precise in
the following.

Definition 3.1. R is said to be overlapping iff for some left-hand sides L I' (I=1'is
possible), u=1/P is a proper subterm of I, u is not a variable, and Unify(y, I')
succeeds returning substitution a. The term /[ P = ua] is called a superposition of |
and /'

Confluent nonoverlapping systems have relatively simple rewriting behavior even
when they are not regular in the technical sense; we therefore call such systems
semiregular. In the rest of this section, R is assumed to be semiregular. Since there
are no syntactic conditions describing semiregularity, its preservation must be proved
by showing directly that the translation R’ for a semiregular R is confluent. Actually,

a slightly weaker property is proved because confluence may not be preserved for
all terms in Ts..

Definition 3.2. A term u € Ty. is said to be reachable (via R') iff 3t € Ts such that
t>*uin R'.

In actual application, any rewriting process in a transforiced program can only
start with a reachable term, so it is enough if rewriting sequences starting with
reachable terms are confluent, as they are for semiregular systems.
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Lemma 3.3. If t is reachable, and H(t)=u->v in R, then 3w such that t »* w in R’
and H(w)=v.

Proof. Suppose the equation (J, r) is used in R to derive u-> v. Then there is a P
such that u/P=la, and v = u[ P = ra]. The symbol at the head of t/P cannot be
of the form ¢, by the assumptions of reachability and nonoverlapping R. If I contains
any non-constructor subterms, the corresponding subterms of ¢/ P can be reduced
if necessary by the rules of R} so that t/ P becomes an instance of I’ and the rule
(I', r) can be used to achieve the desired result. [

Lemma 34. If t, w are reachable and u= H(t) = H(w), then there is a reachable v
such that t >* vand w>*vin R'.

Proof (sketch). It is easy to see that for any reachable ¢, H(t) »* t in R}. Therefore
u ->*t and u »* w in R}. Since the system R} is always terminating and confluent,
v is simply the normal form of u in R;. O

Theorem 3.5. Rewriting sequences for reachable terms in R' are confluent if R is
semi-regular.

Proof. Let t be reachable, and ¢t >* u and ¢t >* v in R’. By Lemma 2.1, there are
derivations H(t) »* H(u) and H(t) >* H(v) in R. Since R is confluent, 3w such
that H(u) >* w and H(v) >* w in R. By Lemma 3.3, there are w; and w, such that
u->*w, and v >*w, in R’, and w= H(w,) = H(w,). By Lemma 3.4, there is a w’'
such that w, >*w'and w,>*w'in R. O

Since a constructor system is trivially nonoverlapping, this theorem proves that,
in essence, semiregularity is preserved by our translation method.

4. Canonical systems

In addition to confluence, a canonical system is also assumed to be terminating
(or Noetherian) which simply means that there are no infinite rewriting sequences
in any of these systems. This class is particularly familiar in the context of theorem
proving, and the famous Knuth-Bendix completion method [6] can be often used
to mechanically transform a nonconfluent terminating system to an equivalent
canonical one. In this section we describe a slight restriction of the notion of rewriting
in a translation R’ under which canonicity is shown to be preserved.

Arbitrary rewriting sequences in the translation of an overlapping confluent system
are not always confluent, as shown by the example in Section 2. However, in practice
it is not necessary to consider arbitrary sequences. In particular, the translation R’
of a system R is naturally parti‘ioned into Rj and Rj, and the rules in the two parts
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need not be considered equal. Actual computation is accomplished by the rules in
R} with the rules in R} playing the auxiliary role of preparing redices for R;. We
therefore consider a weakly ordered version of R’ in which the rules in R} are
preferred over those in R5. This gives rise to restricted notions of ordered rewriting
steps and sequences which we denote by ~» and ~+* respectively.

Definition 4.1. t~+¢[P=w] in R’ iff one of the following two conditions hold

(1) t>t[P=w]in R};

(2) t/P is not a redex in R} and ¢t-> t[P=w] in R].
In other words, if a term is a redex in both R} and Rj, it can only be reduced by
the former rule.

Notions such as confluence and reachability in R’ must now be redefined using
ordered rather than arbitrary rewriting. The restriction to ordered rewriting is not
a particularly onerous one even for parallel implementations since rules in R} are
apt to be implemented in a special way (e.g., with tagging) anyway. However, the
simulaticn of R under ordered rewriting is significantly less complete for overlapping
systems. Recall that Lemmas 2.1 and 2.2 are stated for arbitrary not ordered rewriting
in R'. Lemma 2.1 continues to hold for ordered rewriting as a special case, tut
Lemma 2.2 does not hold for instances of superpositions (defined in Section 3). In
addition to the preservation of canonicity, we must therefore show that the normal
forms of R can be produced (modulo H) by ordered rewriting in R’. Both proofs
hinge on the following lemma, which is a weaker version of Lemma 3.3.

Lemma 4.2, If 1, is reachable by ordered rewriting and H(t,) >* t, in R, then there
isaueTs such that ty~*u in R and t, »* H(u) in R.

The proof of this lemma requires the following auxiliary result.

Proposition 4.3. If ¢ is reachable by ordered rewriting and H(t)- u in R, then there
is a term v such that t~~*vin R' and H(t)> v in R.

Proof. Suppose the subtzrm z = H(¢t)/ P is replaced in the reduction H(t)-»>u. If z
is not an instance of any superposition, then t~»* u. Otherwise, suppose z is an
instance of a superposition of / and I, where the subterm I/ Q unifies with I'. Clearly,
there is a w such that H(¢)/ P.Q - w in R. The proposition can now be reconsidered
for this reduction. The process of lengthening the path in H(f) cannot go on
indefinitely, therefore a redex in H(¢) that is not an instance of a superposition will
be reached eventually, yielding the required reduction H(t)-»vin R. O

The most convenient way to prove Lemma 4.2 is to use a principle called Noetherian
induction [4], which is stated as follows. Suppose T is a set of terms and - is a
Noetherian (terminating) rewrite relation over T. Let - denote the transitive (not
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reflexive) closure of - and, for any te T, let A(¢t) denote the set {u|t»* u}. A
predicate P over terms will be said to be -»-complete iff Vi e T. [Vue 4*(¢). P(u)]=>
P(t). The principle simply states that any -»-complete predicate holds for all of 7.
The idea is essentially to use normal forms as the basis cases and extend the predicate
over the rest of the set by using the well-foundedness of +*. Specialized for our
purposes, the principle states that a predicate P holds for the set of all terms
reachable by ordered rewriting (which is Noetherian) if it can be shown to be
~s.complete for that set.

Proof of Lemma 4.2. Lemma 4.2 can be expressed in the form of the predicate P(r)
defined as

VueTs. H(t)»*u = 3veTs st [t~* v and u -»* H(v)].

To show that this P is ~-complete, suppose H(t} »* w. If H(t) = u, there is nothing
to prove; otherwise, by Proposition 4.3, there is a w such that t~* w and H(t)-
H(w) in R. Since - is confluent, there is a z such that u »* z and H(w) »* z. Since
we 47(¢) (for ~), we may assume that there is a vsuch that wa»* p and z »* H(v),
thus completing the proof. []

With Lemma 4.2, the normal forms of R and R’ (via ordered rewriting) are easily
shown to be essentially identical.

Theorem 4.4. For any term te Ts, t »* u and u is irreducible in R iff t~* v, v is
irreducible in R’ and H(v) = u.

Proof. The “if” part is immediate from Lemma 2.1. To see the “only-if "’ part, given
t >* u in R with u irreducible, we have t~* ¢’ in R’ and H(v') = u by Lemma 4.2.
This v’ can be reduced to its normal form v by ordered rewriting and H(v)=u by
Lemma 2.1. 0O

Termination is obviously preserved by the translation, so preservation of
canonicity reduces to the preservation of confluence.

Theorem 4.5. If R is canonical, then ordered rewriting sequences for any term reachable
by ordered rewriting are confluent.

Proof. Suppose ¢ is reachable by ordered rewriting starting with term x€ Ts and
t~* y and t~* v. Suppose x’ is the normal form of x in R and u’ and v’ are the
normal forms of u and v by ordered rewriting in R'. By Theorem 4.4, x'= H(u') =
H(v"). Since u’ and v’ are reachable and irreducible, ¥’ =0’ by Lemma 34. O
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8. Systems with confluent innermost rewriting

The next class we consider contains systems that are not confluent in the usual
sense, This amounts to making a virtue of necessity since our translation does not
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preserve confluence in any useful sense for arbitrary confluent systems if the arbitrary
rewriting relation in the original system must be simulated. The only useful applica-
tion of the translation for nonterminating and overlapping systems we are aware of
occurs when the original system uses a call-by-value or innermost-redex-first
operational semantics. Only this restricted rewriting relation—which we shall call
innermost rewriting—need therefore be confluent in both the original and translated
systems. This condition is not comparable with the arbitrary confluence condition
in that neither implies the other. For example, innermost rewriting is confluent in
the system {f(g)~1, f(g)->2, g- g}, while arbitrary rewriting is not. Coaversely,
arbitrary rewriting is confluent in {f(g)- f(h), f(g)->f(k),f(h)->1,f(k)>1,h~>
h, k- k}, but innermost rewriting is not. Less contrived examples of these phenomena
no doubt occur in practice. The properties of this case are rather similar to those
of semiregular systems. Lemmas 2.1, 2.2, 3.3 and 3.4 hold when restated for (ordered)
innermost rewriting.

Let -» denote innermost reduction in R and ~» denote ordered innermost reduction
in R, where —» is assumed to be confluent. The definition of reachability is now

based on ~», The proofs of the following lemmas are not difficult, and are only
sketched here.

Lemma S.1. Given t and u in Ty, t~>u in R’ only if H(t) »* H(u) in R.

Proof. Similar to the proof of Lemma 2.1. [

Lemma 5.2. Giventand uin Ts, t->uin R only if t~* u in R'.

Proof. The restriction to ordered rewriting in ~~ is no restriction in simulating an

innermost reduction in R since the subterms of such a redex cannot be redices of
R). The rest follows as in the proof of Lemma 2.2. O

The proofs of the next two lemimas depend on the following proposition.

Proposition 5.3. If t is reachable and t/ P has a symbol of the form c, at its head,
then t/ P is an instance of a right-hand side in R5.

Proof. Easy by induction on the length of the derivation reaching t. O
Lemma 54. Ift is reachable, and H(t)=u-»v in R, then 3w such that t~>*w in R’
and H(w)=vo.

Proof. Suppose #/P is the redex used to derive - v. The symbol at the head of
t/ P cannot be of the form ¢, by Proposition 5.3, given the assumptions of reachability
and ordered rewriting. The rest follows as in the proofs of Lemmas 3.3 and 5.2. O
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Lemma 8.5. If 1, w are reachable and u = H(t)= H{w), then there is a term v such
that t~* v and w~* v in R'.

Proof. Suppose x and y are the normal forms of ¢ and w in R} with the proviso
that only the redices permitted to be reduced by ordered rewriting are considered.
We claim that x =y is the required v. The only way to contradict this is to assume
that there is a P such that the symbol at the head of x/P is of tne iorm ¢, while
that at the head of y/P is f itself. Let P be a maximal path which satisfies these
conditions. Then by Proposition 5.3, y/ P must be a rede-. of R;. Since the corre-
sponding redex in the precursors of x/ P was reduced and since P is maximal an::
x and y are reachable, y/P cannot be a redex of R{, thus contradicting the
assumption that y is in normal form with respect to ordered reduction in R;. [0

Theorem 5.6. The relation ~> for reachable terms in Ts. is confluent.

Proof. Similar to the proof of the Theorem 3.3, replacing Lemmas 2.1, 2.2, 3.3 and
3.4 by Lemmas 5.1, 5.2, 5.4 and 5.5. [

6. Conclusions

Considering its relatively narrow origin, cur translation technique turns.czi‘io
be surprisingly robust for very different classes of rewriting systems under ordered
rewriting (ordered rewriting is the same as arbitrary rewriting for semiregular
systems). The main shortcoming of the technique is that certain important properties
of the original system may not be fully preserved. A good example is sequentiality
[5,9]; a regular system may be strongly sequential even though the corresponding
constructor system is not, if the former does not belong to a special class called
simple systems.

The utility of the present technique is yet to be tested in practice, but it seems to
offer the same advantages of simplicity and generality for first-order rewriting that
combinators [10] do for A-calculus dialects.
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