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This paper introduces an event-study method that incorporates the possibility of a random event
date. Consistent with empirical evidence, we assume an event may affect not only the conditional
mean of a security’s return, but also its conditional variance. We compare the statistical power
and efficiency of our maximum-likelihood method with the standard application of traditional
event-study methods to multiday security returns. Assuming a two-day event period, our empirical
resulis provide evidence that the multiday approach is robust. We use our maximum-likelihood
method to investigate the valuation effects of stock splits and stock dividends.

1. Introduciion

In an efficient financial market, security prices adjust insianianeously to
reflect unanticipated information. Event studies focus on how firm-specific
events affect the returns to the firm’s securities. Often, an event’s calendar date
is uncertain. The date the Wall Street Journal announces an event need not
correspond to the date the event affects security prices. The potential for
event-date misspecification arises whenever price data are reported more
precisely thar information about the event date.

Brown and Warner’s (1980) simulation analysis with monthly common
stock return data establishes that if the time at which a specific event occurs is
kinown, commonly used event-study methods detect abnormal performance
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adequately. When the event date is unceriain, however, these common meth-
ods often fail to reject the null hypothesis of no abnormal performance when
abnormal perforruance is present. The use of daily common stock return data
in event studies increases the possibility of event-date misspecification and,
concommitantly, reduces the statistical power of commonly used methods.

This paper introduces and implements an event-study method that permits
event-date uncertainty. The method’s specification incorporates the possibility
of a random event date. Further, we assume an event may affect not only the
conditional mean of a security’s return, but, consistent with empirical cvi-
dence, its conditional variance as well. Resulting likelihood-ratio tests provide
a statistically powerful means of detecting the presence of these events and
measuring their impact on underlying security returns efficiently. We also
compare this new method with the event-study methods in common use.

The problem of event-date uncertainty is usually addressed by applying
traditional event-study methods io multiday security returns. Information is
lost by aggregating security returns, however, and efficiency and statistical
power are consequently reduced. We establish that in the presence of event-date
uncertainty, applying common event-study methods to multiday security re-
turns provides method-of-moments estimates of security-price performance. A
comparison of our method with this approach comes down to a comparison of
maximum-likelihood estimation wiii. method-of-moments estimation. In gen-
eral, maximum-likelihood estimation provides the more efficient and powerful
tool. For two-day returns, however, these gains are small, which is evidencs
that the multiday approach is robust.

Eveat-study methods often ignoic the possibility of increases in security-
return variance around events. We corroborate Christie’s (1983) argument that
errors of inference may result if a researcher assumes no increase in variance
around an event when variance actually increases. Intuitively, the researcher
may erroneously interpret actual changes in variance as evidence of security-
price performance. By incorporating the possibility of increases in variance
around events, our method provides a more accurate assessment of security-
price performance,

We illustrate the applicability and advantages of our method by using ii 0
investigate the response of common stock returns to announcements of stock
splits and stock dividends. We use Grinblatt, Masulis, and Titman’s (1984)
sample of pure stock-split and stock-dividend announcements that are uacon.
taminated by other firm-specific information on the announcement dates. As
noied by Grinblatt, Masulis, and Titman, on average, a firm’s common siock
price increases significantly when a stock split or a dividend is announced,
even though these announcements do not directly affect the firm’s future cash
fiows. Given uncertainty about the event date, Grinbiatt, Masulis, and Titman
apply standard event-study methods to muitiday common stock returns. For
comparison, we apply our maximum-likelihood method and investigate vari-
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ous hypotheses about the valuation effects of stock splits and stock dividends.
Our results confirm Grinblatt, Masulis, and Titman’s conclusions.

The plan of this paper is as follows. In section 2, we describe a security-
return-generating process that incorpcrates the possibility of event-date uncer-
tainty. We consider the maximum-likelihood estimation of this model in
section 3. We use Dempster, Laird, and Rubin’s (1977) EM algorithm to
implement thc proposed test procedures efficiently. We also discuss various
implications of our specification, including the impact of event-date uncer-
tainty on reported increases in daily security-return varance around certain
events. For example, we find that event-date uncertainty accounts for ap-
proximately 24% of the estimated increase in the variance of standardized
excess event-period returns in the Grinblatt, Masulis, and Titman sample of
stock splits and stock dividends. In section 4, we use simulation techniques
based on observed security-return data, as in Brown and Warner (1680, 1985),
to examine the statistical properties of our method, as well as standard
event-study methods applied to multiday security returns. We use our estima-
tion procedures in section 5 to investigate the valuation effects of stock splits

and stock dividends. Section 6 provides a summary and conclusions.

2. The model

We couch our analysis, without loss of generality, within a mean-adjusted
retarns framework {Masulis (1978)]. That is, we examine whether security
returns in the event period are statistically different from returns in the
estimation period, without taking into account marketwide movements or the
systematic risk of the securities.

For each day ¢ in the estimation period, we assume that the return to the ith
secarity, r,, is normally distributed with mean j,; and variance o7

re~N(p;, 0?).

Tor ihe evemi-period, howover, we model an altermadve return-generating
process that reflects the informational impact of the event. Our specification of
this process permits the possibility of a random event date.

In characterizing event-period returns, we assume there is no possibility of
an event occurring outside the event period. We standardize notation by
assuming the cvent period is symmetric around the presumed event date, day
0. That is, we denote the event pericd as (—¢,...,0,..., +¢). To set parame-

ters for event-date uncertainty, for each day 7 in ihe even. period, we define
6,=1 if the event occurs on day ¢,

=0 otherwise.

JFE-E
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'The random variable 8, indicates whether the event occurs on day ¢ of the
event pericd. For example, standard event-study methods assume

6=1 if =0,
=0 otherwise.
Assuming that exactly one event occurs during the event period, we define
pP,= Prob[0,= 1,8=0,s€(—c,..., +¢), s# t], t=-c,...,+c.

Thus, p, is the probability that the event occurs on day ¢, and only one event
can occur during the event period. The standard event-study method can be
embedded within this framework by assuming that p,= 1.

We specifv the event-period security-return-generating process permitting

the possibility of event-date uncertainty as follows. If an event does not occur
on day ¢ of the event period, we assume that

7,16,=0~N(n,,e2).

LU Rt A

This is precisely the estimation-period security-return-generating process. Al-
ternatively, if an event occurs on that day,

=1~ N(pi+Ao,,eSzoi2),

where A4 is the abnormal performance introduced by the event. We assume

a all o

that ihe abnormal performance is proportional to the security return’s estima-
tion-pericd standard deviation, which allows abnormal performance to differ
across firms. Since 4 is a standardized return, it is not a measure of the mean
€ileci oi an event per se. We also allow the security return’s event-period
volatility to differ, 82 1, from its estimation-period volatility. This is con-
sistent with the empirical evidence of Beaver (1968), Christie (1983), Kalay
and Lowenstein {1985), and o12e=s th. ¢ the variance of a security’s return can
increase substantiaily around certain types of events. We assume 4 and 82 are
cross-sectional constants.

We detect empirically the impact of the event under investigation by
esiimating the parameters 4 and 82 By estimating the parameters
(P_cs---s P.—1), We estimate the probability of the event ocourring on alter-
nate days within the event period. As a result, ihis specificatic~ makes it
possibie 10 measure security-price performance in the presence of event-date
uncertainty.

)
-
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3. Estimation

We assume independence of the event’s effect across firms. That is, there is
no c!ustermg in event dates. In addition, we assume that pehmmtnn-mannri

a 8\

security returns are independent over time, as are event-period security returns
conditional upon the eveiit vccurring on a particular date. As we show later,
however, unconditional returns within the event period will not be indepen-
dent over time.

We illustrate our estimation procedure by considering initially an event
study consisting of a singie security, whose subscript we omit temporarily. We
assume m security returns in the estimation period, and, as before, 2¢ +1
returns in the event period.

The following two-stage procedure is used:

Stage 1. Using data from the estimation period only, compute th.
maximum-likelihood estimates of p and ¢

a 1 A 1 ay2
#’;?’; and °‘='m—_-fg('}—#)-

Stage 2. Proceed as if p and o2 are estimated without sampling error. That
is, assume that in the event period p=ji and 6% =4°. Using data from th:
2vent period, compute maximum-likelthood estimates of the (2¢ + 2)-vector of
parameters { 4,82 p_,,..., p._, ).

This iwo-stage method can be compared with standard event-study proce-
dures. Using estimation-period returns, we establish a benchmark. Empirically
we then contrast the sampie returns in the event period with this benchmark to
ascertain anv statistically significant deviations.

We use a hypothesns-testmg framework to assess security-price performance.
The null hypothesis, H,, specifies no change in the return-generating process
between estimatior. and event periods. By contrast, the alternative hynothesis,
H,, specifies that the posited change in the return-generating process occurs
during the event period. Formally, the joint hypothesis is:

H,: 4=0,8%=1, H,: ~H,.

We commiit 2 type ¥ error w*en we reject H when in fact i, is true. This
€rror correspondc to declaring that the event has an effect on secuniy returns
when in faci it does not. A Hkelihoog-ratio iesi will ko the probabiiiy o (hI
error to a prespecified level. In section 5, we investigate various extensions
and modifications of this hypothesis-testing framework using the Griablatt,

Masulis, and Titman stock-split and stock-dividend data.
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3.1. Implications of the model
Let x be the (2c + 1)-vector of standardized excess daily returns to the
single security across the event perviod:
x,=(r,—f)/6. t=-c,....+c.
Under our assumptiocns,

x|0,=0~N(0,1), x,6=1~N(4,8?).

Let f(x|¢) denote the conditional distribution of x given §=(4__, ...,
0y,...,6..). That is, f(x|@) represents the distribution of the security’s
standardized excess daily event-period returns conditional on the event owcur-
ring on a particular date. This conditional distribution is multivariate normal.
It can be shown that its mean vector is 4@, with corresponding covariance
matrix (82— 1)087 + I,_, ,. Therefore, the joint disiribution of x, f(x), is a
mixture of multivariate normal distributions

J‘(£)=f‘,f(£|€)dP(:Q)s

where P(-) represents the distribution function of 8.
By our earlier aremments, it follows that

f(x)= % palz),

= —¢

where

g(x)=f(x16,=1)

- _._1_.. x> _(”x,— 4)2 ﬁ 1 exD — fiz
Jas? TR N P35
s+t

Generalizing to n firm:, the marginal distribution of x,,, the standardized
excess event-period return to firm i on day ¢, is given by

RS T G ) M 1 x2
flxnl—P,chp—T'ﬂi‘m)f\/—i—;exp——z-,
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The marginal distributions of the firms’ standardized excess daily event-period
returns are not normal, are not identically distribuied, and are not indepen-

g‘_z::t. -4
sewiile

Uponr integration, we have

E(x;,) =pA,
' s,t=—¢,..., +c,

var(x,.,) =1 +A2(p,“P,2) +Pt(82m 1)’ S#Ft,
cdi=1,...,n.

cov(x,s, X;,) = - 42 s Pes

Under this specification, we have a negative covariance in standardized excess
daily event-period returns. Moreover, the variance of the standardized excess
daily returns within the event period is no longer unity.

Evidence in many svent studics is consistent with increases in a security’s
variance around events. For example, Christie (1983) presents evidence that
the variance around certain types of events can increase by a factor of almost
two.! Our results suggest that not only may the event itself induce the reported
increase in variance, but given event-date uncertainty, this empiricai regularity
may be due io the mixing of heterogeneous populations. Later empincal
analysis investigates these determinants of increased event-period return vari-
ance.

3.2. Maximum-likelihood estimation

Suppose we have standardized excess daily event-period return data on »
securities corresponding to » firms:

Xy '-xl . toe X +¢

e
[

Xn Xn-c Tt Xn+e

where x,, is the standardized excess return for the it security on event dav ¢,
i=1...,n t=—r,... +c The joint density of x is given by

f(é) = l_:[lf(-lc:) where f(’_cn) = Z ptgt('fii)"

=-c

'For an analysis of the implications of variance increases for event-study methods, see Brown
and Warner (1985), especially pp. 22-25.
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The logarithm of the corresponding likelihood function is given by

nL(z)= ¥ Infix).

i=1

Maximizing In L(x) as a function of the parameter vector (A4, 82
Doy Peey) gives corresponding maximum-likelihood estimates. We use
Dempster, Laird, and Rubin’s (1977) EM algorithm.? Not only is the al-
gorithm simple to apply, it provides further insights into measuring security-
price performance in the presence of event-date uncertainty.’

Setting the partial derivatives of the logarithmic likelihood function for the
parameters to be estimated equal to zero gives necessary conditions for the
maximum-likelihood estimates. In the appendix, we establish that these likeli-
hood equations may be rewritten as

pre=(m) T pm ), t= g, e, 1)

=]

n +¢

A=) L T il )

i=] t=—¢

n +c

§2** = (”)_l Z Z p**[t|.§i-](x,-,—A**)2. (3)

i=l t=~¢

Here, (A**.8%** p** ..., p**) denotes the vector of maximum-likelihood
estimates, and p**[¢|x;] repiesents the posterior probability of the event’s
occurring on day ¢ given data for firm i at these maximum-likelihood esti-
mates.

“The EM algorithm provides maximum-likelihood estimates without recourse to the numerical
computation of nrst- and second-order partial derivatives. The algorithm is appropriate for
cstimation problems involving incomplete data. In our case, the event date is not certain. For
further details on the EM algorithm see Everitt and Hand (1981) and Titterington, Smith, and
Makov (1985).

*We performed experiments to investigate the convergence properties of the EM algorithm. The
Newton-Raphson algorithm was cousidered for corroborative purposes. Given that the possibility
of multiple maximums is always present, neither algorithm is guaranteed te converge to the global
maximum. Using simulated data, which assumed that ihe event did not induce an increase in
security-return variance, 82 =1, with 100 firms, n = 100, a five-day event period, that is, ¢ = 2,
three <eis of parameier values, and ten sets of starting values, we compared the two methods. In
every case the EM algorithm converged to a unique solution within 20 iterations and in many
cases far fewer. For some starting values the Newton-Raphson algorithm did noi converge;
however, for plausible starting values the algorithm converged quickly, and in every case where
convergence was obtained, it converged to the EM algorithm’s solution.
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This statement of the algorithm provides an intuitive interpretation. Eq. (1)
states that r¥* is the average posterior prebability of the event occurring on
event day ¢, t= —c,..., +c. Eq. (2) estimates 4 with a weighted average of
the returns where the weighting reflects the posterior probability of the event
occurring, and eq. (3) estimates 82 with the corresponding weighted average of
the sum of squared deviations from A**.

Egs. (1), (2), and (3) provide the basis of the EM algorithm. From initial
parameter estimates, we compute an initial estimate of p**[t|x,] for

= —¢,...,+c, i=1,2,..., n, and use this estimate in egs. (1), (2), and (3) to
update the parameter estimates. We repsat the procedure until we obtain
satisfactory convergence. Since 0 < p**[-|-]< 1, it follows that 0 <p** < 1.
t=—c,...,+c,and L' p¥*=1. That is, at each step of the algorithm the
estimates fall within the parameter space of the preblem.

3.3. Multiday estimation

Applying standard event-study procedures to multiday security returns
provides method-of-moments estimates. Our subsequer* analysis will compare
these multiday estimates to the maximum-likelihood estimates.

Recalling that

E(x,)=pA, t=-c,...,+c,

it follows that

E( ) x,.ﬁ,)=A,

=-c

and it can be shown that*

-+
var( 3 x,-,)-—2c+82.

=-c

* Intuitively, our model assumes that exactly one event occurs during the eveni period, imp’iying
that the random variable ¥£,°._ _x;, is the sum of the 2¢ + 1 independent nogmai random variables,
2¢ of which have unit variance, wheieas the remaining one has variance §°.
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Defining
1 n
x,=(n)"" ) x,;, = -c,..., +¢,
i=1

+c
s2 = sample variance( D x!-,),
t=—c

201

+c
= E X
t=-c
we have that
E(x,)=pA, it=-c,...,+c,
E(X)=4,
E(s?) =2c+ 82

~

The multiday estimators (A, 62, P D._1) are given by

A=X,
p=Xx/%, =-c,...,+c—1,
822522

In general, method-of-moments estimators are not efficient. For example,
although X" _p,=1, there is no assurance that a particular p, is positive.
However, the multiday estimates provide adequate starting values for the
numerical maximizaticn cf the logarithmic likelihood function. In a majority
of cases, we require oniy four or five iterations to achieve convergence.

<. Empirical nropertics of test procedures

Given event-date uncertainty, we contrast the empirical properties of our
maximum-likelihood method with the standard multiday event-study method
in detecting and measuring an event’s abnormal perfermance. For illustrative
purposes, we consider a two-day event period, (0, +1). This specification
allows us to explore a number of the implications of event-date uncertainty.

A two-day event period is the shortest period that permits event-date
ancertainty. We minimize the potential gains of our maximum-likelihood
procedure by assuming this period. Longer event periods, consistent with very
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imprecise event dates, are found in regulatory studies and other accounting,
tax, and indusirial organization studies. The longer the event period, the less
powerful and efficient the multiday approach. Intuitively, the longer the even:
pericd, the more information is lost when event-period security returns are
aggregated For a (2¢ + 1)-day event study with » firms SE(4) = /(2¢ + 1) /n,

whereas without event-date uncertainty, the optimal estimator of 4 has
standard deviation vl /n . Therefore, the maximum gain in efficiency of A%
over A is bounded by 2¢ X 100%. Efficiency gains of the maximum-likelihood
estimator may then be expected to grow linearly wita the length of the event
period. In unreported simulations, we contrast the competing methods for
event periods of varying lengths up to 31 days. The limited empirical evidence
is consistent with greater gains in the maximum-likelihood procedure’s ef-
ficiency for longer event periods. With over 30 parameters to estimate, how-
ever, extensive computational effort is required to implement our method.
Nevertheless, for a particular event study, our method permits a researcher to
investigate security-price performance efficiently within an event period longer
than two days.

When an event’s abnormal performance, A, is small, the competing meth-
ods will have difficulty discerning its presence. For small levels of A4, the
relevant measure of comparison is a method’s power. Therefore, we perform a
power siudy to compare the methods for 4 =0.0,0.2,0.4,0.6,0.8,1.0. Aiierna-
iively, when an event’s abnormal performance is large, both methods should
detect it. Under such circumstances, the power of both methods will be near
unity. For large levels of A4, the relevant measure of comparison is the relative
efficiency of the corresponding parameter estimates. To compare the efficiency
of ihe multiday estimates with our maximum-likelihood estimates, we perform
a simulation analysis for 4 = 1.0,2.0,3.0.

4.1. Simulation methodology

To assess the performance of the competing methods, we use simulation
techniques based on actual security-return data [Brown and Warner
(1980, 1985)] as well as pure simulated data.’> Our data source is the University
oi Chicago’s Center for Research in Security Prices (CRSP) daily return file
for the period 1962-1983. This provides common stock returns for 4,645 firms,
with up to 5,652 daily records for each firm. Not all firms exist, however, for
the entire 22-vear period. Also, extensive periods of data arc missing for some
firms, and there are spor: dic omissions for others. Qur samnling scheme takes
into account these missing data.

5The data are generated using pseudo random numbers [Wichman and Hiil (1982)] with the
appropriate mixture of multivariate normal distributions.
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We assume that 250 days of security-return data are available for each event
study. We designate the first 239 days as the estimation period and the
remaining 11 days as the event period.® Our sampling plan gives an equal
probability of selection to every group of 250 contiguous observations on the
CRE™ dany retuia £le, provided no observations are missing irom the event
period and no more than two observations are missing from the estimation
period. This screening minimizes problems associated with missing data,
without biasing the results of our simulation experiments. We select sets of 250
daily returns to a particular firm according to a geometric random variable
with parameter 0.0025 so that, on average, one set of 250 daily returns in every
400 available is selected. This sampling plan is equivalent to simple random
sampling without repiacement, and yet is easier to implement when using
blocks of firm-specific data.

With this screening procedure, we make two independent passes throngh the
entire CRSP daily return file aiid generate 59,669 sets of 25C daily returns.
These returns data should not exhibit abnormal performance systematically.
For each set of daily returns, we use estimation-pcriod daia to estimate
corresponding means and standard deviations with which to standardize
event-period returns. We select event periods at random from our population
of 59,669 event periods to form the basis for our power and efficiency studies.

4.2. Power

A test’s power indicates its ability to detect abnormal performance. Other
things being equal, a more powerful test is preferred to a less powerfui one.
Brown and Warner (1980) establish thai imprecise information about the
timing of an event can result in a dramatic decrease in the power of standard
event-study methods.

To concentrate on the effect of event-date uncertainty, we set §2=1 and
consider the hypothesis structure

Hy: 4=0, Hy: A+#0.

The power of a test, for a given significance level a, 0 <a <1, is the
probability of rejecting the null hypothesis when the alternative is true. That
is, a method’s power at a level of abnormal performance 4 = a is given by

IT(a) = Prob[rejecting Hy|4 = a].

®Since we restrict attention to a two- -day event pericd, we actually use only ihe first two davs of
this longer event oeriod in the analysns that follows. C omputanonal Kimitations prevent an

exiensive investigation of sccurity-price performance givcn event-date uncertainty within an
eleven-day event period.



C.A. Ball and W.N. Torous, An event-study nicthui’ Jowing for event-date uncertainty 135

Given our assumptions, we can derive the theoretical power function
corresponding to applying standard event-study meihods to multiday security
returns. For a two-day event period, (0, +1), we have

xo + xl it N(A,?-).
For an event study consisting of » firms, it follows that
Xo+ X; ~ N(4,2/n),

or equivalently,

JA73 (5o + %) ~ N(fi7Z4,1).

Using the test statistic

Z,=n/2 (550"‘ X,),

the iwo-sided critical regicn at an a% significance leve! is given by Z, such
that

(Zl)2 > (Za/z)z’

with Z, , implicitly defined by 1 - ®(Z_ .)=a/2 where &(-) denotes the
standard normal cumuiative distribution function. Therefore, the power of
standard event-study methods in the presence of event-date uncertainty is
given by

I1(a) = Prob[(2,)* > (Z,,) 14 = a

= @(—Za/2+a\/172_) + ®(~Za/2—a\/;177).

Assuming n = 25 firms, we tabulate this theoretical power function in table 1
for significance levels of 1% and 5% at various levels of abnormal nerformance.
These results provide a benchmark for our empirical power study.

We cannot deiive explicitly the power of the test corresponding to our
maxiiaum-likelihood method. The appropriate test statistic is given by

Z,=A* /SE(A4*),

where A* is the maximum-likelihood estimate of abnormal performance and
SE(A*) is the standard error of A*, suijeve ¢ uic a‘%tﬁptisn that 8%2=1.
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Table 1
Theoretical power function for multiday event-study method using Z, as the test statistic.

We assume a 25-firm event study with a two-day eveat period and report the theoretical power

function for the multiday estimator A for levels of abnormal performance A4 =

0.0,0.2,0.4,0.6,0.8,1.0. The test statistic Z, = .'Irn_/_f( X + X)), where n is he number of firms ia

the event study and X, and X, denote, respectively, the security’s mean standardized excess return
on event days 0 and 1.

Level of

abnormal

performance Significance level = 5% Significance level = 1%
A=00 5.0% 1.0%

4=02 10.89% 3.13%
A=04 29.30% 12.27%
A=06 56.41% 32.48%
A=08 80.74% 59.97%
A=10 94.24% 83.14%

Asymptotically, under the null hypothesis Hy,: 4 =0, the test statistic Z, is
standard normally distributed.

For comparison, we use simulated data to calcnlate empirical power func-
tions corrcspoading to both test statistics Z, and Z,. We assume an event
study consisting of n =25 firms. For each firm, we introduce abnormal
performance of 4 standard deviations, 4 = 0.0,0.2,0.4,0.6,0.8,1.0, with equal
probability on one of the first two days of the eveat period,” and determine
whether abnormal performance is detected by a particular test statistic. We
consider both 1% and 3% levels of significance. For eack level of abnormal
performance, we repeat this experiment 500 times and record the percentage
of times the null hypothesis is rejected.

We present the results of our empirical power study in table 2. By compar-
ing table 1 with the ‘multiday method’ columns of table 2, we see that the
empirical power function of Z; corresponds well to its theoretical counterpart
at both the 1% and 5% significance levels. For example, for 4 =04, Z,
theoretically rejects the null hypothesis of no abnormal performance 29.30% of
the time at the 5% significance level, whereas for the pure simulated data the
null hypothesis is rejected 28.20% of the time, and for the CRSP simulated
data it is rejected 28.00% of the time. Also, the maximum-likelihood test is
more powerful than the test based on multiday security returns, particularly at
the 1% significance level. For the CRSP simulated data, the percentage gain in

7By assuming that the event occurs with equal probability on each of the svept dates we
maximize the unconditional variance of the individual returns. Specifically, var(xg) = var(x; ) =
1+ .4%(p — p*) where o is the probability ihat the event occurs on day zero. Also, cov{xg, x;) =
—A%p(1 - p). The relative power gains and «fficiency of the maximum-likelihood procedure are
expected to be weakest when p=0.5. )
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Tebl- 2

Empirical power functions for multiday and macimum-tlekboud methods using both pure
simulated an2 TRSP simulated data.

This power stidy assumes a 25-firm event study with a two-day event period and abnormal

performance of 4 =0.0,0.2,0.4,0.6,0.8,1.0. We consider both 1% and 5% significance levels. For

each value of 4, we repeat the experiment 500 times and record the percentage of times the null

hypothesis, Hy: 4 =0, is rejected using the multiday and maximum-likelihood estimation proce-

dures for both pure simulated data and CRSP simulated data. In addition, we report the

percentage gain in efficiency of the maximum-likelihood estimation procedure over the multiday
approach. For this study p =05 and 82 = 1.0

Significance level = 5% Significance level = 1%
Level of Maximum-  Percentage Maximum- Percentage
abnormal Multiday  likelihood incraase Multiday  likelihood increase
performance method meinod in power method method in power
Pure simulated data
A=00 46 6.8 — 0.6 1.0 —
A=02 112 134 196 2.6 38 46.2
A=04 28.2 324 149 174 18.2 46.8
A=06 57.8 60.2 42 356 43.6 225
A=08 820 86.0 49 61.2 74.8 222
A=10 931.6 95.2 L7 82.8 919 9.9
CRSP simulated data
4=00 58 2 - 14 20 —
A=02 11.8 22 34 26 4.0 53.8
A=04 280 298 6. 2.6 16.4 70.8
A=06 574 60.6 5.6 322 40.8 26.7
A=08 si.e 85.8 59 60.0 724 20.7
A=10 94.8 96.8 21 82.8 92.6 11.8

the maximum-likelihood method’s power at 4 = 0.4 is 6.4% at the 5% signifi-
cance level and 70.8% at the 1% significance level. Although the percentage
gain increases as the assumed level of abnormal performance decreases, the
absolute gain in power is less pronounced. When an event’s abnormal perfor-
mance is minimal, the power gain from being able to isolate the event date is
less significant. Further, for the assumed two-day event period, both the
maximum-likelihood and multiday approaches tend to detect abnormal perfor-
mance adequately as its assumed level increases. For 4 = 1.00, both methods
reject the null hiypothesis of no abnormal performance at the 5% significance
level approximately 95% of time with either the pure or CRSP simuiated data.

4.3. Efficiency

When an event is unanticipated, the magnitude of abnormal performance
measures the event’s wealth effects. The more efficiently an event-study method
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estimates abnormal performance, the more accurately we can measure these
wealth effects. We use simulated data to compare the relative efficiency of the
multiday estimates of abnormal performance with our maximum-likelihood
estimates in the presence of eveni-date uncertainty. To concentrate on ei-
ficiency, we consider highly abnormal performance, which both metnods
should detect.

To emphasize event-date uncertainty, we assume initially that §2=1. We
introduce abnormal performance of 4 = 1.0,2.0,3.0 standard deviations with
equal probability on one of the first two days of the event period. Event
studies consisting of 20, 40, 60, 80, and 100 firm. are considered. For each
event study, we apply standard event-study methods to the wo-day event-
period returns to provide multiday estimates of abnormal performance, A. We
-also apply our maximum-likelihood method to provide maximum-likelihood
estimates of abnormal performance, 4%, and the probability of the event
occurring on day 0, p*. We repeat this procedure 500 times to derive the
sampling distributions of 4, 4%, and p*.

We tabulate our results for both the pure and the CRSP simulated data in
tables 3 and 4, iespectively. The results in the two tables are quantitatively
very close. The maximum-likelihood estimators 4* and p* are unbiased in all
cases, as is the multiday estimator A. For example, assuming CRSP simulated
data, for an event study consisting of n = 60 firms with 4 =20 and p=0.5,
from table 4 we note that the mean of 4* is 2.0160, the mean of p* is 0.4976,
and the mean of A4 is 2.0161. The standard deviation of A* is markedly less
than the standard deviation of 4 in all cases, however, with greater gains in
efficiency for higher levels of abnormal performance. For example, from table
4, for an event study consisting of # = 60 firms, maximum-likelihood estima-
tion is approximately 41.4% more efficient than multiday estimation when
A = 1.00, but approximately 89.8% more efficient when A = 3.00. Intuitively,
ihe greater the abnormal performance, the greater the ioss of information
when security returns are aggregated.

To investigate the performance of the EM algorithm when security—return
variance increases around an event, we perform a simulation using CRSP data
assuming 4 =290 for $2=1.0,1.5.2.0. The results are shown in table 5.
Multiday estimates A, b, and 82 and maximum-likelihood estimates allowing
a changing conditional variance A**, p**, and §** as well as maximum-likeli-
hood estimates restricang 82 =1, 4* and p* are considered. The multiday
estimates and the unrestricted maximum-likelihood estimates both appear to
be unbiased throughout. For example, for §2 = 1.5, the mean of .4** is 2.0023,
the mean of p** is 0.3007, and the mean of 4 is 2.0090.

The standarg cewiations of the maximum-iikelihood estimate of abnormal
performance are smztier than the standard deviations of the multiday estimate
in all cases, however. For 82 = 1.5, the standard deviation of A** is 0.1240 and
ihe standard deviation of A4 is 0.1565.
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Table 3

Efficiency tests with pure simulated dat2 assuming no increase in condiional evemt-period
variance.

This eﬂic:ency study provides summary statistics on the maximum-likelibood estimetors 4* and
p* assuming 8% =1 as well as the multiday estimator 4 and the test statistic £y = 4% /SE(4%),
where SE( A*) is obtained from the inverse Hessian matrix at the maximum-likelihood estimates.
We report information on event studies consisting of 20, 40, 60, 80, and 100 firms with o two-dav
event period whose returns are subject to abnormal perfc mance Sf 4 =1.0,2.0,3.0 standard
deviations with p = 0.5. In all cases the number of simulations is 500. The data are generated
using pseudo-random numbers with the appropriate mixture of multivariate normal distributions.

Statistic Minimum Maximurm Mean Std. dev. Skewness Kurtosis
Case §: 4 = 3.0, p = 0.5, Number of simulations = 500
Number of firms = 20
A 21163 39124 3.0150 0.3108 -0.118 - 0.140
A* 23933 3.6690 3.0044 0.2166 0.002 -0.09%
p* 0.1497 0.8370 0.4878 0.1126 -0.076 ~0.135
z, 10.5400 16.4010 13.3810 0.9900 ~0.022 —-0.072
Number of firms = 40
A 2.3031 3.6892 3.0011 0.2226 ~0204  -0.143
A* 2.5110 3.3929 2.9975 0.1619 -0.112 -0.211
P* 02972 0.7718 0.4973 0.0757 0.205 0.001
Z, 15.7180 21.4170 18.8840 1.0458 ~0.125 ~-0.198
Number of firms = 60
A 2.3498 3 6368 3.01i6 0.1309 ~0.150 0.159
A* 2.6659 3.3780 3.0030 0.1283 0.027 - 0.038
p* 0.3277 0.7182 0.4978 0.0682 0.131 -0.201
Z, 20.5240 26.1360 23.1720 1.0144 0.021 -0.038
Number of firms = 80
£ 2.5337 3.4000 29676 0.1503 0.033 0.059
A* 2.6816 3.3188 2.3575 1128 -0.028 -0.182
I 0.3508 0.6627 0.5045 a 0547 0.099 -0.381
Z, 23.8060 29.6380 26.7070 1.0313 —-0.038 - 0.180
Number of firms = 100
i 2.6047 3.3644 2.9947 0.1397 -0.013 -0.07
A® 2.7081 3.2608 2.9916 0.0978 0.071 -0.228
p* 0.3133 0.6719 0.4950 0.0554 -0.020 0.256
Z, 26.8700 32,5030 29.7990 0.9992 0.061 -~0.234

Case2: A=2.0,p=C... Ver.uerof simulatioss = 500
Number of firms = 20

A 1.1612 2.8672 1.9554 0.3124 0022 ~-0.270
A= 11100 2.5627 1.9765 £.2332 —-0.098 ~0.000
p* 0.0757 0.9125 04967 0.1335 0.150 0.362
Z, 45555 11.3650 8.5922 1.1153 -0.119 ~-0.020
Number of firms = 40
A 1.3436 2.7276 20177 0.2273 -0.180 0.032
A* 1.4286 2.5489 2.0046 0.1517 0.(}67 0.287
p* 0.2172 0.7566 0.5028 0.0860 -0.002 -0.624

Z, 8.4529 15.9490 12.3410 1.089% 0.044 G.243
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Statistic Minimum Maximum Mean Std. dev. Skewness Kurtosis
Case 2: A = 2.0, p = 0.5, Number of simulations = 500
Wumber of firms = 50
A 1.4699 2.6587 2.0027 0.1820 0.256 0.232
A* 1.5503 2.4546 2.0003 0.1355 0.004 0.033
p* 0.2617 0.6820 0.5022 0.0756 -0.209 - 0.062
Z, 11.4090 18.7250 15.0820 1.1165 —-0.017 -0.005
Number of firms = 80
A 14730 2.5257 1.9052 0.1643 -0.014 0.205
A 1.4720 2.3128 1.9958 0.1191 -0.191 0.573
p* 0.2924 0.7044 0.0543 0.0059 $.081 — 0282
z, 12.3640 20.3840 17.3740 1.1361 -0.213 0.588
Number of firms = 100
A 1.5941 2.3409 1.9988 0.1405 0.049 -0.187
A* 1.6067 2.2877 1.9963 0.1046 -0.073 0.235
p* 0.3521 0.6915 0.5001 0.0560 0,121 —-0.134
z, 15.2140 22.5460 19.4330 1.1164 —0.089 0.239
Case 3: A = 1.0, p = 0.5, Number of simulations = 500
Number of firms = 20
A -0.0466 1.9316 0.9767 0.3066 0.110 0.236
A* -0.2398 1.7340 0.9718 0.2565 —0.186 0.777
p* 0.0000 1.6000 0.5005 0.2232 0.022 -0.353
Z, -0.8694 7.3942 3.8152 1.1600 0.025 0.290
Number of firms = 40
A 03254 1.7180 £.9860 0.2299 0.173 0.287
A 0.3522 1.5554 0.9911 0.1862 -0.011 -0.185
p* 0.0000 0.9240 0.4898 (.1408 —0,145 0.075
z, 1.7323 9.3113 5.4937 1.2249 0.064 —-0.216
Number of firms = 60
A 0.5036 1.4733 0.9922 0.1754 -0.017 -0.303
A* 0.5404 1.4328 0.9900 01502 —0.065 —-0.189
Fa 0.1240 0.9600 0.5033 0.1159 0.142 0.277
Z, 35006 103720 6.7203 1.1923 0.030 -0.225
Number of firms = 80
A 0.5199 1.5122 1.0030 0.1576 0.113 -0.098
A* 0.5535 1.4203 0.9982 0.1272 0.123 0.246
F 0.2029 0.8460 0.5021 0.1041 —0.000 -0.019
Z, 3.8702 11.7130 7.8307 1.1827 0.192 0.213
Number of firms = 100
A 0.5376 1.4845 0.9988 0.1467 0.027 0127
A* 0.627¢ 1.3152 0.9958 0.1164 —0232 3.185
p* 0.1707 0.74%4 0.4563 0.0877 —0.385 0.373
7. 4.5022 12.0540 8.7242 1.2036 —-0.161 0.074
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Tabie 4
Efficiency tests with CASP simulatsd data assuming no increase in conditional event-period
variance.

This efﬁcnency stud) provides summary statistics on the maximum-likelihood estimators 4* and
p* assuming 82 =1 as well as the multiday estimator A and the test statistic Z, = A* /SE( A%},
where SE(A4*) is obtained from the inverse Hessian matrix at the manmum—hkehhood estimates.
We report information on event studies consisting of 20, 40, 60, 80, and 130 firms with a two-day
event period whose returns are subject to abnormal performance of 4=10,20,3.0 standard
deviations with p = 0.5. In all cases the number of simulations is 500. The data are generated from

the CRSP daily return file.
Statistic Minimum Maximum Mean Std. dev., Skewness Kurtosis
Case 1: A = 3.0, p = 0.5, Number of siz:ulations = 500
Number of firms = 20
A 1.9995 42453 3.0096 0.2963 0.078 0.637
A 20807 3.9333 3.0085 0.2139 0.190 1.113
p* 0.1757 0.8409 0.5030 01144 $.004 -0.192
z, 2.03%3 17.5640 13.4120 0.9930 0.155 1.149
Number of firms = 40
A 2.2283 3.8763 3.0031 0.2260 0.097 0.536
A* 2.5622 3.5013 3.0112 0.1496 0.296 0.382
r* 0.2651 0.7753 8.4992 0.0779 —-0.021 0.082
Z, 16.0950 22.1100 18.9870 09622 .283 0.36G
Nuisiber of firms = 60
A 2.4761 3.6231 3.0136 0.1736 0.094 0.067
A* 2.6590 3.3812 30174 0.1259 0.018 —(.062
r 0.3123 0.7493 0.5006 0.0689 0.165 0.055
z, 20.4520 20.1590 23.3020 0.9924 £.005 -0.051
Number of firms = 80
A 2.4537 3.5472 3.0185 0.1655 —0.065 0.401
A* 2.6700 3.3696 3.0219 0.1152 0.029 0.182
p* 0.3194 0.6548 04977 0.0553 -0.117 0.013
z, 23.7490 30.1050 26.9480 1.0483 0.020 0.185
Number of firms = 100
A 2.6455 3.4480 30194 0.1424 0.117 -0.149
A* 2.7198 3.3675 3.0226 0.1102 0.059 0196
p* 0.3587 0.6634 0.5012 0.0520 -0.067 —0.25%
Z, 27.0510 33.6230 30.1360 1.0438 0.044 0.191
Cose 2: A = 2.0, p = 0.5, Number of simulatons = 500
Number of firms = 20
A 1.2037 3.3178 2.0163 03213 0.406 0.377
A* 1.3614 2.8142 20385 0.24513 {.365 0.324
p 0.0865 0.8666 0.4916 0.1226 0.002 —-0.033
Z, 5.4701 12.5320 8.8539 1.1768 0.308 0.276
Number of firms = 40
A 2.3204 17134 20285 0.2267 0.195 0.035
A* 1.4841 2.6490 2.06205 0.1733 0.223 0.230
r* (0.2290 0.7540 0.5042 0.0834 ~0.103 0.144

Z, 8.6410 16.6320 12.4150 1.1808 0.179 0.199
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Table 4 (continued)
Case 2: A = 2.0, p = 0.5, Number of simulations = 560
Number of firms = 60
A 1.5398 2.5221 20161 0.1817 w138 03!
A* 1.6278 2.4643 2.0160 0.1297 0.2%7 0
p* 0.2866 06986 04976 0.0691 ~0023
2, 11.9160 18,8340 15.1700 1.0780 8.217 0038
Numbeor of firms = €0
A 1.519 24283 20135 0.1576 -~ 0083 - 0.145
A* 1.6823 2.4361 26170 31139 0091 6.109
p* 0.3039 0.688%0 04014 00622 = Q089 0137
2, 14,3510 21.5500 17.5299 1.0970 D069 0098
Wamber of fitzs = 100
4 1.6106 24520 20149 0.1386 -0.138 -0 100
A" 1.7253 2.345% 20210 0.0101 0013 - 0585
P 0.3307 066475 0.5025 0.0564 ~0.263 ~0.113
Z, 16.4390 23.0790 19,6840 1.0919 - 0011 - 0052
Case 3. A = 1.0, p = 0.5, Number of simularions = 500
Number of firms = 20
A 0.1584 1.9846 1.0367 0.2983 -0008 0042
& wible 17500 09813 NI%4 0086 0143
P 0.0000 1.0000 0.5071 021858 - 0.091 ~0.335
FA 0.8400 7.4R90 1 R8N0 1.1536 0246 0012
Number of firms = &0
A 0.5422 1.7788 101 02138 0.229 - 0.251
A* 05179 1.6153 0.953% 0.1822 0.290 - 0030
p* 00681 0.9909 0.5069 0.1520 Q0K D17
2, 26507 96383 5.2892 1.1767 0.359 omn
Number of firms = 60
A 0.4198 1.5196 10254 0.1861 -0.172 0.147
A% 0.5119 1.5351 0.9650 01564 0002 0.178
p* 0.0488 0.9042 0.5058 0.1241 0.4l4 0.333
Z, 3.2199 11.1580 6.5546 15380 0.0%1 0150
Numeber of firms = %0
A 0.59%66 16311 10210 0.163% 0.256 0.080
A* 0 3666 1.8472 0.9647 01387 0.230 0.199
P 0.1632 0.8485 0.5052 0.1066 -0.019 0.176
2, 40320 213 7.5657 1.2728 1.319 D278
Number of firms = 100
A 0.5605 1.3595 1.0101 0.1352 5075 - 0.104
A 05704 12042 0.957% 0.1218 0.145 ~0.055
»* 0.1981 6.7534 0.5103 0.0519 -0023 0.001
Z, 46843 11.7960 83825 1.2424 0.189 —-0.085
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Tabie §

Efficiency tests with CRSP simulated date assuming an inmcrease in conditicsal evemt-penod
varance.

Semmary statistes are given for the muluday estumators £ 2 wad § the unrestricted

masimum-lkebhood estimators A%, p*®, and & **, and the maximum-Bkebbood estumators 4°

and p* subject to the constraint 8° = §. We report mformanon on event studies consisting of 100

Grms with a two-day event period whose returns are subiect o ahaormsl purformamee of £ ~ 20

standard deviations with p = 0.5, Theee levels of variance, 8% = 20.1.5.1.6 are cxnmined. i off

Seatstic Minisenm Mavimem boan Sed. dev Shewpess Kurtoss
8220
A 1.5492 24218 1.9942 0.4424 ~ 06158 - 0072
A 16383 26044 20637 21410 ¢.251 0 434
A 1.5229 26477 20122 13 ¢ 283 G126
§is 0.8931 96838 20872 6 938 3.521 20,254
&2 05233 90844 1.9962 1.0097 2878 14,498
P 0.319¢ G.7012 0 4989 0 0603 @015 - 009
" ©.32%6 0.6928 0.4878 0.0549 0.165 Q.108
F 03347 6,756 44975 0.0652 0 269 0.181
80w i3
A 1.5656 23998 20023 0.1240 0.028 .33t
A* 1.6731 2.4040 20370 0.1248 0.150 0.131
A 1.5278 24662 2.0090 0.1565 0.164 0.215
§iu 0.6228 6.3708 1.5280 0.6870 3.143 14.761
&2 0.2574 6.460% 1.4958 0.7301 2103 &.745
P 0.3548 0.6540 0 56007 0.0598 0.019 -0.421
" 03599 0.6560 0.5009 0.0574 - 0001 -0.399
) 03377 0.7164 £ 4008 G041 - 008 - 0.403
82-10
A 17332 22613 20156 0.0994 - 0,048 -0.238
A* 1.7346 227174 20171 0.1037 6022 ~0.266
A 1.6297 2.3755 20139 0.1369 0.067 ~ .47/
giew 0.3415 3.9509 1.0016 0.3526 2617 13.838
2 0.0390 4.8187 0.9993 0.5633 1602 7.45%
p** 0.3215 0.6818 0.4967 0.0557 0.037 0.341
p* 0.3281 G.6817 0.496% 6.0556 6039 0.282
F 02881 0.6589 0.4947 0.0605 0.607 ~0.006

The relative efficiency of the maximum-likeliicou estimates tends to de-
crease with increasing §°. For example, whereas maximum-likelihood estima-
tion is approximately 59.3% relatively more efficient when 82=135, it is
approximately 44.7% relatively more efficient when 8% = 2.0. Intuitively, the
more variable event-day returns, the more difficult it is to measure abnormal
performance accurately.

For a two-day event study with n firms, SE(A) = /(1 +8%)/n . Without

?

event-date uncertzinty tie opiimal estimator of A has standard deviation
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V82/n . Therefore, the maximum gain in efficiency of A** over A is bounded
by (1,/8%) X 100%. As 82 increases this hound decreases to zero. In particular,
for 82=2 the bound is 50% and for §2=1.5 the bound is 66.7%. For the
parameter values selected in this simulation the efficiency of the maximum-
likelihood estimator A** is very close to these bounds.

As expected, for §2=1.0, the maximum-likelihood estimator allowing a
changing conditional variance and the maximum-likelihood estimator assum-
ing 82=1.0 provide comparable performance. For example, in th:s case the
mean of A** is 2.0156 with a standard deviation of 0.0994 and the nican of 4*
is 2.0171 with a standard deviation of 0.1037. For §2> 1, however, the
maximum-likelihood estimates of 4 (bui not p) assuming erroneously that
62 = 1.0 appear upward biased. For example, for §2 = 2.0, the mean of A* is
2.0637 and the mean of p* is 0.4978. Increases in security-return variance
around an event may be interpreted erroneously as evidence of abnormal
performance.

5. Valuation effects of stock splits and stock dividends

We use our maximum-likelihood method to investigzte empirically the
valuation effects of stock splits and stock dividends in the presence of
event-date uncertainty. Grinblatt, Masulis, and Titman’s (1984) empirical
evidence is consistent with positive siock-price reactions, on average, to
announcements of stock splits and stock dividends that are uncontaminated
by other contemporaneous firm-specific announcements.

The valuation effects of stock splits and stock dividends obtain even though
these announcements do not directly affect the future cash flows of the firm.
As Brennan and Copeland {1987) argue, however, a firm declaring a stock split

increases the number of its shares outstanding, thereby imposing additional

transaction costs on its shareholders, Since low share prices are costly, high-

value finus can sign. .redibly by declaring a stock split. Furthermore,
Grinblatt, Masulis, and :itman observe larger announcement effects for stock
dividends than stock splits. Tiiese differences are consistent with the so-called
retained earnings hypothesis. That is, given legal resirictions on retained
earnings and since for stock dividends the value of the newly issued shares is
subtracted from rctained earnings, firms thav expect pcor earnings will find it
costly to mimic the stock-dividend signals of firms that expect good earnings.

3.1. Empirical results

In contrasting the multiday estimates of security price performance with
maximume-likelihood estimates, we restrict our attention iv Gitnlatt, Masulis,
and Titman’s pure sample of 84 stock dividends and 244 stock splits that are
unconiaminated by other contemporaneous firm-specific anncuncements. Be-
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Table 6

Descriptive statistics on dailv stock returns in the Grinblatt, Masulis, and Titman (1484) pure
sampl. of stock-split and stock-dividend announcements.

Mean Std. dev.

Panel A: Entire sample (n = 328}
Day 0 return 0.8342 1.6570
Day 1 return 0.6916 1.5739
Two-day return 1.52587 22517

Standard error of the mean two-day raturm = (.1243

Panel B: Stock splits (n = 244)

Day 0 retumn 0.7445 1.5381
Day 1 return 0.5463 1.522%
Two-day return 1.2908 2.1679

Standard error of the mean two-day return = 0.1355

Panel C: Stock dividends (n = 84)

Day 0 return 1.0945 1.9493
Day 1 return 1.1136 16702
Two-day return 2.2G81 2.3624

Swandard error of the mean two-day return = 0.2436

cause of event-date uncertainty, Grinblatt, Masulis, and Titman apply the
mean-adjusted returns method to a two-day (day O and day +1) announce-
ment :eturn. Day 0 is defined as the earlier of the trading day before the issue
date of the Wall Street Journal in which the event is announced or the
declaration date of the event on the CRSP daily master file. The corresponding
estimation period is taken to be days 4 through 43 following day 0.

For comparison, we apply the mean-adjusted returns method to standard-
ized excess returns within the two-day event period (0, +1). Table 6 prescuis
the results for both individual-day and multiday returns. Note that this table
reports mean returns, not mean standardized returns, so the results are not
comparable with those in tables 7 and S. Panel A reports results for the entire
sample, and panels B and C give results for stock splits and stock dividends,
respectively. The empirical results are conmsistent with significant positive
excess standardized returns to both stock splits and stock dividends, the
valuaticn effects being larger for dividends. The variance of excess standard-
ized event-period returns also appears tc b larger for divider.ds.

Our maximum-likelihood procedures provide a more powerful and efficient
means to investigate valuation effects in the presence of event-date uncer-
tainty. We initially restrict 32 = 1. In table 7 we present maximum-likelihood
estimates of abnormal performance, A*, maximum-likelihood estimates of the
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Table 7
Maximum-likelihood estimates of abnormal performance for the Grinblatt, Masulis, and Titman
(1984) pure sample of stock-split and stock-dividend announcements assuming no increase in
conditional event-period variance.
We report .nformation on the maximum-likelihood estimators 4* and p* subject to the constraing
8% = 1. We employ the Gnnbiau, Masulis, and Titman (1984) ¢ aly sewsn data for firms declaring
stock dividends and stock splits. We examine the entite sampie of stock splits and stock dividends,
the sample of stock splits only, and the sample of stock dividends only. The likelihood-ratio
statistic x2(stat) tests the null hypothesis H,: 4 =0 against the aliernative H,: 4 = 0. Under
the null hypothesis this statistic is distributed x? with one degree of freedom. In addition,

Z* = 4* /SE( 4%).
Entire sample Stock splits Stock dividends

Statistic n=1328 5= 44 o= 84

A® 14773 1.2643 20673
SE(4*) 0.0583 0.0688 0.1117
i 0.5378 0.5688 04738
SE( p*) 00300 0.0494 0.0654
7z 25.34 18.38 18.51

In L(A® p*) - 1394.0866 - 686.9141 - 388.4368
x3(stat) 515.6817 270.3216 283.5916

probability of the event occurring on day 0, p*, their corresponding asymp-
totic standard errors, and the corresponding maximized value of the logarith-
mic likelihood function. We also give values of the likelihood-ratio statistic for
testing

Hy: A=0, H,: A4=0,

assuming 6° = 1. Tie appropriate iikeiihood ratio test statistic is twice the
difference of the maximum value of the logarithmic likelihood function under
H, and its maximum value under H,. Since we are restricting only one
parameter, under the null hypothesis of no abnormal performance, the likeli-
hood-ratio statistic is 2<ymptoticaily distributed x> with one degree of free-
dom. At the 1% significance level, we can reject the null hypothesis of no
abnormal perforraance dve to stock spiiis und stock dividends. For the entire
sample, the sample of stock splits only, and the sample of dividends only, the
corresponding observed values of the likelihood-ratio test statistic exceed 6.63,
the critical value of a x? random variable with one degree of freedom at the
1% significance level.

Table 8 shows the results of applying our maximum-like:thood procedures
with no restrictions on the conditional variance of excess standardized event-
period returns. In addition to maximum-likelihood estimates of abnormal
performance, 4**, and the probability of the event occurring on day 0, p**,
we present maximum-likelihood estimates of the variance measure, 82**_ The
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Table 8

Maximum-likelihood estimates of sbpormal performence for the Grinblatt, Masulis, and Tieman
{1984) pure sample of stock-splhit and stock-dividend announcements allowing 2a worease o
conditionat event-period varance.

We report information on the unrestricted nmmmm—h&eixham estmators 4°*, p** and §°°°, s
well as the multiday estimators A, B, and § - the Grinblant, Masulis, and Titman
{1984) daily retwn data ?m firms declaring s@m& dividends and stock splits. We ¢xamine the
e@&mm&@f&t&kwﬁmmﬁﬁmﬁ@m&m&emﬁﬁm splits ouly, and the sample
of stock dividends oanly. Two likelibood-ratio stalstics are repotted: xigstat)? tests Hy: 8% =1
against H,: 85*’#! w&&. ;g%sw;@ tests Hy: 4 =0 & =1 against Hy: = Hy. Under their
iy vpotheses, x*(stat)® is distributed x° with cne degree of freedom, while xistat)”
sz&zsmbuwé x with two degrees of freedom. In addition, Z%* = 4%* /SE( 4*%)

€& Smpedy

Entire samnle Stock sphts Seock divideuds

Statistic = 329 n = 244 a = 84
A 1.5287 1.2908 2.2081
A 1.2846 10854 1.881S
SE( 4**) 0.1089 0.1218 0.2231
B 0.5467 0.576% 0.4957
p** 0.5066 6.5309 0.4620
SE( p**) 0.0481 0.0604 0.0789

2 440699 31,6999 4.5810
Five 3.5797 3.3200 3.7993
SE(82**) 0.2923 0.3124 0.6402
Ze* 11.80 g.o1 843
In L(4™*, P8 -1233.9638 882 9261 ~345.1344

‘(stat)* 320.2456 zm 1350 86.6048
x (stat)® 835.8873 477.4466 370.1564

N Zfoctestmgl-!ﬁ &% =1 against H,: 8% = 1.
*x? for testing Hy: A = QazulagamstH ~ H,.

asymptotic standard errors of the maximum-likelihcod estimates, the corre-
sponding maximized value of the logarithmic likelihood function, and the
multiday estimaies used as starting values are also presented. Given our
previous results, we can test statistically for changes in the variance of excess
standardized event-period returns due to the announcement of stock spiits and
stock dividends:

H,: 8*=1, H,: §=1,

"*ben the level of abnormal performance, 4, is unrestricted. The resulting

11 ihood-ratio statistics, which are asymptotically distributed x* with one
degree of freedom under the null hypothesis, are tabulated in t~ bie 8. For the
entire sample, the sample of stock splits only, and the sample of stock
dividends only, we can reject at the 1% significance level the null hypmheus of
no change in the conditional variance of excess standardize eveni-peiivd
returns. We also assess the valuation effects of stock splits and stock dividends
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by examining
HO: A=0, 82=1, HA: ~H0.

Since we are restricting two parameters, under the null hypothesis the likeli-
hood-ratio statistic is asymptotically distributed x? with two degrees of
freedom. The corresponding likelihood-ratio statistics are alsc tabulated in
table 8. For the entire sample, the sample of stock splits only, and the sample
of stock dividends only, the corresponding observed values of the likelihood-
ratio statistic exceed 9.21, the critical value of 2 x? random variable with two
degrees of freedom at the 1% significance level. Therefore, at the 1% signifi-
cance level we reject the null hypothesis, providing empirical evidence con-
sistent with either abnormal performance or increases in the conditional
variance of excess standardized event-period returns brought about by the
announcement of stock splits and stock dividends.

Event-date uncertainty contributes to the increase in the variance of stan-
dardized excess event-period daily returns. From our previous analysis, we
have that

var(x,) =1 'i'*‘lz(Po‘Pg) +py(82-1).

This increase in variance is factored into two components: A%(p,— p?),
reflecting uncertainty in event daws, and py(82— 1), reflecting the actual
increase in the conditional variance. Using the entire sample of stock spli:s
and dividends and corresponding maximum-likelihood estimates, we estimate
that event-date uncertainty accounts for 23.99% of the increase in the variance
oi standardized excess event-period returns, whereas the announcement
acoounts for 76.01% of the increase. In this particular case, event-date uncer-
tainty contributes significantly to the cobserved increase in the variance of
refurns,

By comparing the results of tables 7 and 8, we investigate Christie’s (1983)
conditional hynothesis inherent in cvent studies. Christie argues that the use of
the wrong standard deviation, estimation period rather than event period,
leads to serious errors of inference. It is important to include estimation of &2
when estimating A. Assuming that an event conveys information, we may then
investigate whether the information has a significant effect on security prices.
Our empirical results reinforce Christie’s arguments. Table 7 reports the test
statistic Z* = 4* /SE(A4¥), the ratic of A* to its standard error, and table 3
reports the test statistic Z** = A** /SE{ 4**) the ratio of A** to its stan-
dard error. The statistic Z** tcsts for the presence of abnormal per-
formance without restricting 2. Under the null hypothesis of no abnormal
performance, that is, 4 =0, Z** is asymptotically distributed standard nor-
mal. By contrast, the statistic Z* tests for the presence of abnormal perfor-
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mance subject to the resiriction that 8§2=1. If 82 1, then vnder the null
hypothesis of no abnormal performance, 4 =0, Z* is not asymptoticallv
distributed standard normal.

Since we reject statistically the restriction that stock splits and stock
dividends do not affect the conditional variance of standardized excess event-
period returns, inferences about the valuation of stock splits and stock
dividends assuming the validity of this restriction are misieading. For example,
using the entire sample of stock splits and stock dividends, from panel A of
tablc 7 we have Z*=25.34, whereas from panel A of table 8 we have
Z** =11.80. The value of the Z* statistic is much larger, suggesting erro-
neously much more statistically significant valuation effects.

A further comparison of tables 7 and & reveals that abnormel performance
estimates assuming no increase in the conditional variance of standardized
excess event-period returns are upward biased. For example, for the entire
sample of stock splits and stock dividends, 4* =1.4773 and A** = 1.2846.
Furthermore, the corresponding standard errors are suspect. Given that the
conditional variance increases, asymptotic standard errors assuming no in-
crease in the conditional variance are inappropriate. For the entire sample of
stock splits and stock dividends, the standard error of 4* is 0.0583 and the
standard error of A** is 0.1089. Again, ignoring increases in the conditional
variance of standardized excess event-period returns suggests erronecusly
much more siatistically significant valuation effects.

5.2. A comparison of stock-split and stock-dividend valuation effects

In comparing valuatics cffccts of siock spihiis and stock dividends, we take
into account throughout any increases in thc conditional variance of standard-
1zed excess event-peried returns caused by ihe announcements. To examine
the differences in abnormal performance caused by the announcements of
stock splits and stock dividends, we consider

HO: A =Adiv5 HA: Asp].it¢‘4div'

split

To derive the appropriate test statistic, we appeal to asymptotic maximum-
likelihood theory and note that

A% — AR ~ N( Ay — Ay, SE(A58)" + SE(455)7).

where SE(A%¥) and SE(4}}) are obtained from the appropriaie diagonal
elements of the corresponding inverse of the negative Hessian matrix evaluated
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at the maximum-likelihood estimates. Hence, the appropriate iest statistic is

k%
= spin — Adi N(A 4 1),
z /QE(AQ**\Z 3+ SEf 4% \2 ( split div® )
VIR A T S Agiy )

We reject the null hypothesis at the a% significance level if

VARS Zm/z.

The observed value of the test statistic is —3.1320 and we reject the null
hypothesis at the 1% significance level. Therefors, the announcement of a
stock dividend induces greater abnormal performance than the announcement
of a stock split.

We test for differences in the conditional variance of excess standardized
event-period returns by examining

H,: 6,lt 8&,,, H,:

Sp * 0dw

spht
Again, appealing to asymptotic maximum-likelihood theory, the appropriate
test statistic is
§2x% _ 82 :: #
Z = —‘_—-fg'h—“_—..__..._—_—._—_—____—'—‘-‘—' had N(a;“' - 8;\"])'

ln"/ a¥, . e : N
VSESgic ) + SE(0gs *)

The observed value of the test statistic is 0.6934 and we cannot reject the null
hypothesis. The empirical evidence is consistent with the increase in security-
return variance around the announcement of a stock split not differing from
the increase around the announcement of a stock dxv:depd

To investigate differences in the timing of the announcements, we consider
Hot  Poie=Pavs  Hal  Poiic # Paiv-
The appropriate test statistic is now given by

Popiit — Parv”
SE( pspht) + SE( ;V* )

N( Psptit — Paiv» 1)

The observed value of this test statistic is —0.6678 and s» the null hypothesis

of no difference in the timing of stock-split and stock-dividend announcement
cannot be rejected.
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6. Summary and conclusions

Standard event-study methods are vuineyaple te crrors w the specification
of event ume. We model the effect on security returns of the arrival of
unanticipated information, incorporating explicitly the possibility of random
event dates. The EM algorithm provides an efficient technique for implement-
ing the model’'s maximum-likelthood estimation. Given event-date misspecifi-
cation, this method is statistically more efficient than traditional event-study
methods. Simulation studies using both artificial and actual return data
confirm the power of our proposed estimation procedure when the event date
is uncertain and demonstrate its ability to detect the effects of vnandcipated
information efficiently.

Appendix
The corresponding likelihood equations are given by
3hlL(§) n -1 ’
a5 = & (fx)) " (8lx) - 8(x)) =0, (A1)
i i=1
t=—-¢,....,c—1,
BlnL(.x_r) n —lr te . ’]
—= 2 (f(x)) | ¥ paix)x,—4)6 1{=0. (A2)
vt i=1} Lt=—c J
313!.(:::)

—5r Y (f(x))”

i=1

x| T bl (xam 4264 " - (2697

t=-c

=0. (A.3)

By Bayes theorem

P[6,=1)x]=(f(x)) ' (p&(x)).

This expression :epresents the posterior probability that an event tgok -place
on day 7 given thc data for th ith firm. Denote the maximum-likelihood
estimates by (A**, 82%* p** ... p*%)and set p**[¢}x,] = P[f,=1{x,] at the
maximum-likelihood estimates.
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Since

+c dn L(x)

L} ...
,Ecpt apl 0,

appealing to eq. (A.1) gives that

n

n= Y {f(x))” 8x).

i=1

From eq. (A.1) we have that

d1n L(x)
¥ ___ =
pl 3p‘ 0’
or
Y (£(x)) (pr*g(x)) = 7‘ (A7 (p2r*gL2)),
i=1 i=1
Z p**[tix,] =p** T (f(x; n g.(x).
i=1 i=1
giving

(1) p,**=(n)'12"2p**[tlz.~], t=—c,...,
i=1

L4

where implicitly

Z pE¥=1.

I=—c

From eq. (A.2) it follows that

% ()

t=—c

+c ; ]
Z P *gz(ii)xit !
i

n r

{==

+c 1
L o g,(;c,-)A*J,
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or
n +c
E 2 p**e)x,]x;, = na**,
i=l t=~¢
and hence
n +c
(2) A = (”)—l E Z P**Etl-!i]xu-
i=] t=—¢
From eq. (3) we have that
n +c
Zl(f(!.‘:i))—l[ Z Pr**gt(li)(xn—A")z]
i= t=-—c
ud -1
= 2 (f(x)) [ Z pr*g,(x) 82**]
i=1 t=—¢
or
',' +c
Y ¥ pxx, - 4%%) = no?e,
i=m] t=—¢
and
n +c
(3) &=*=)'Y T p**ox](x, - 4**)
im] j=—¢
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