
Journal of Financial Economics 22 (1988) 123-153. North- 

University of Michigorr, Ann Arbor, MI 48109-1234, USA 

alter N. 
University of California, Los Angeles, CA 90024-1481, USA 

Received Jan-uary 1986, tinal version received April 1988 

This paper introduces an event-study method that incorporates the possibility of a random event 
date. Consistent with empirical evidence, we assume an event may affect not only the conditional 
mean of a security’s return, but also its conditional variauce. We compare the statistical power 
and efficiency of our maximum-likelihood method with the standard application of traditional 
event-study methods to muhiday security returns. Assuming a two-day event period, our empirical 
rcsuliti provide evidence that the multiday approach is robust. We use our maximum-likelihood 
method to investigate the valuation effects of stock splits and stock dividends. 

. En 

In an efficient financial market, security prices adjust instanianeous!y to 
reflect unanticipated information. Event studies focus on how firm-speci 
events affect the returns to the firm’s securities. Often, an event’s calendar date 
is uncertain. The date the WsU Str~ Journal announces an event need not 
correspond to the date the event affects security prices. The potential for 
event-date rnisspecification arises whenever price data are reported more 
prccisegy than information about the event date. 

rown and Warner’s (1980) simulation an 
k return data establishes that if the time at c event oaths is 

kxxxvn, commonly used event-study methods 
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adequate1 en the event date is urrcertain, however, these common meth- 
ods often reject the null hypothesis of no abnormal performance when 
abnormal performance is present. The use of daily common stock return data 
in event studies increases the possibility of event-date misspecification and, 
concommitautly, reduces the statistical power of commonly used methods. 

s paper introduces and implements an event-study method that permits 
event-date uncertainty. The method’s specification incorporates the possibility 
of a random event date. Further, we assume an event may a%% not on& the 
conditional mean of a security’s return, but, consistent wi empirical CV+- 
dence, its conditional variance as well. Resulting likelihood-ratio tests provide 
a statistically powerful means of detecting the presence of these events and 
measuring their impact on underlying security returns efficiently. We also 
compare this new method with the event-study methods in common use. 

The problem of event-date uncertainty is usually addressed by applying 
traditional event-study methods to multiday security returns. Information is 
lost by aggregating security returns, however, and efficiency and statistical 
power are consequently reduced. We establish that in the presence of event-date 
uncertainty, applying common event-study methods to multiday security re- 
turns provides method-of-moments estimates of security-price performance. A 
comparison of our method with this approach comes down to a comparison of 
maximum-likelihood estimation ti& method-of-moments estimation. In gen- 
eral, maximum-likelihood estimation provides the more efhcient and powerful 
t . AAl G-b* txw A-3x: 1”1 C”Oo=YU, 

Gi the multiday 
Ea?.-Es, knwnrre thece aainc PIP cmall w&~h ic t=vicI~s~~ aa” 1. w . w. ) &=a “1 a-’ _I urrr-) 6. _ . *__-___ 

ach is robust. 
Event-study me s often ignore the possibility of increases in security- 

return variance around events. We corroborate Christie’s (1983) argument that 
errors of inference may result if a researcher assumes no increase in variance 
around au event when variance actually increases. Intuitively, the researcher 
may erroneously interpret actual changes in variance as evidence of security- 
price performance. IQ8 incorporating the possibility of increases in variance 
around events, our method provides a more accurate assessment of security- 

performzzncc. 
e illustrate the applicability and advantages of our method by using 2 ;o 

investigate the response of common stock returns to announcements of stock 
splits and stock dividends. We use Grinblatt, Masulis, and Titman’s (1984) 
sample of pure stock-split and stock-divL+~r! anngunwmentc that arc=, ~sncm+ * .x. .?I_ __a --___-___-_ Y--Y -_ -___ 
f~-mimied bv other Crm-specific information on the announcement dates. As 

asulis, and Titman, on average, a firm’s common stock 
antly when a stock split or a dividend is announced, 
ouncements do not directly affect the tic’s future cash 

ent date, Srinnlatt, Xasulis and Titman 
to multiday common stock’retums. For 

method and investigate vari- 
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ous hypotheses abottt t 

implement tbc proposed. dz3t p 
implications of our specificati 
tainty on reported increases in 

act of event-data uncer- 

ty adjusts for ap- 
proximately 24% of the estimated 
excess event-period returns in the 
stock splits and stock dividends. In section 4, we use s 

and stock dividends. Section 6 provides a summary and conclusions. 

2. 

We couch our analysis, without toss of generality, wit”hin a mean-adjusted 
retr.us framevork iififa+u& ji97$jj_ _ ..*l.,+L,, narr*.&+., G WllCLMGl 3GUUllLJ 
returns in the event period are statistically rent from returns in the 
estimation period, witbout Wing into account marketwide movements or the 
systematic risk of the securities. 

For each day t in the estimation period, we assume that the return to the ith 
security, rit, is normally distrilbuted with mean pi arid variance 0:: 

r. - N(pi, uf j. 
If 

r-_.- AL _ ____-L --2-d L_____w... . ..A ,A-l.d A” hl~n-rsC~.m zeal,tn_oPnPmt~ 
x-u1 CllC cvclm-paluLl, ll”“G.~l, VVCI u-v. s&an LY.wa-YU’Y I”.--- ~W.-“--’ is 

process that reflects the irrformational impact of the 
this process permits the possibility of a random 

In characterizing event-period returns, we assume t 
an event occurring outside the event period. 
assuming th= event period is symmetric around 
0. ark%* ;c *e dende the event period a _**I.! ‘“3) 
ters for event- ate uncertainty, for each 

O* = 1 if the event occurs on day t, 

= 0 otberwise. 

.M.E.- E 
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variable 8, indicates whether the event occurs on day t of the 
event period. For example, standard event-study methods assume 

a*= 1 if d=O, 

tly one event 

Pt = #$?1,6)s=0,SE(--C ,..., +c), s+t], t= -c ,..., +c. 

the event period. The standard event-study method can be 
this framework by assuming that pO = 1. 

e specify the event-peri security-return-generating process permitting 
the possMity of event-date uncertainty as foliows. If an event does not occur 
on day t of the event period, we assume that 

I;,,lS, = 0 - N(y,, qy. 

s is precisely the estimation-period secur &rek=n-generating process. Al- 
ternatively, if an event occurs on that day, 

where _4 is the abnormal performance introduced by the event. We assume 
‘l.,. rl_ . . 
ZlIdZ 1Ilc: &IMXIIid @CKiXiZiK~ iS i;iGi%XtiGE! tG S,k. ir~iiiii~ I~buirr u wv.la .*- _ ._s Em--.&? ~fdl?rR~E Prt;5pa 

ardized return, it is not a measure of the mean 

e event under investigation by 



__g A = 0, a2 = 1, 
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Iications offhe model 

et 5 be the (2~ -I- Q-vector of andardized excess daily retu 
security across the event pesi 

x, = (rt - fi)/& 

er our assu 

t = -_c 
)...? -i-c. 

x,10, = 1 - N(A, a*). 

stributim of g given @=(e_+..., 
at is, f(xl@) repr nts the distribution of the securiq’s 

returns conditional on the event o4ur- 
s couditional distribution is multivariate normal. 

, with corresponding covariauce 
the joint distribution of ;rr, f(g), is a 

esents the distribution 
r arP3ments, it follows 

function of @. 
that 

er 
excess event- 

istribution of xir, the standardized 



Variant aroun 

two.’ Our results su 
increase in variance, 

analysis investigates 

ance. 

3.2. imum-likelihood estimation 

Suppose we have stand 
securities corresponding t 

where xir is t 
i = I . a,. . D, p1, b= =-r9.**, 9c. 

II +C 

f( ) 3J = Xi) - 
i=P I- -c 

“Fm m adysis of the implications of v 
mer (1985), especially pp. 22-25. 

s, see 
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e corresponding elihood function is given by 

as a function of the ammeter vector (A, 8 2, 

, it provides further insights into measuring 
presence of event-date uncertainty.3 

Setting the partial derivatives cf the logarithmic likelihood function for the 
parameters to be estimat gives necessary conditions for the 

, we establish that these like& 
equations may be rewlitten as 

pt** = (*)-’ ~ P**[tJxi], t = -(I‘,..., +C, 0) 
l-=1 

n +c 

P**[ tlPi]Xj,9 
i=l t---C 

(2) 

n +C 

jp**= fg -1 
(J p**[t~~j](Xi,-A**)2w (3) 

d-1 r==--C 

ere, (A ** J32** . ,pZ,* ,..., p$_*1) denotes the vector of maximum-likelihood 
estimates, and P**[tlxi] represents the posterior probability of the event’s 
occu ay t given data for firm i at these maximum-likelihood esti- 
mates. 

“The algorithm provides maximum-likelih estimates without recourse to the numerical 
computation of nrst- and second-order partial derivatives. The algorithm is appropriate for 
csthnation problems involving incomplete data. In our case, the event date is not certain. For 
further details on the EM algorithm see Everitt and Hand (1981) and Titterington, Smith, and 



estimates fall wi 

3.3. ultiday estimation 

Applying stand 
provides method-of- 

r-dues to m 

these multiday estimates to the m 
Recalling that 

E(xi,)=p~A, t= -c,..., +c, 

it follows that 

e shown that4 
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efining 
n 

i-l 

Sk sample variance 
( 

+C 

t = -_c 
)..., +c, 

+c 

Iil xi, ’ 

f---c 1 

we have that 

qq =ptA i= -_c 
)...) +c, 

(3) =A, 

E(s2) = 2~ + a2. 

The multiday es?imators (a, 8’, 9 +. . “, &_ 1) are given by 

2 = 2, 

~,=x~/~, t= -c ,..., +c-1, 

p_sL2c’_ 

In general, metho -of-moments estimators are not efficient. For example, 
hough c;=‘_ ,br = 1, there is no assurance that a particular it is positive. 

owever, the multiday estimates provide adequate starting values for the 
numerical maximizaticn cf *he logarithmic likelihood function. In a majority 
of chses, we require only four or five iterations to achieve convergence. 

ate uncertainty, we contrast the empirical properties of our 
sod method with the standard multiday event-study method 

easuring an event’s abnormal performance. For illustrative 



period. In unreported s 

hen an event’s abnormal performance, A, is s 
ods will have 
relevant measure of 
power study to compare the met 
;;v~ly, when an event’s abno 
detect it. Under 
unit,y. For large levels rrf A, the rele 
efficiency of the corresp 
or” the multiday estimates with our maximum- 
a simulation analysis for A = 1.0,2.0,3.0. 

4. I. Simulation methodology 

To assess the pe rfolrmance of the competing 

into account these 

‘The data are generated using pseudo random numbers [ 
appropriate mixture of multivariate normal distributions. 
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corresponding mean 
event-per&d return 

is easier to implement when using 

endent passes through the 
sets of 2% daily ret*urkx. 

&Gates its ability to detect abnormal performance. Other 
ual, a more powerful test is preferred to a less powerful one. 

er ~~~~~) establish ao imprecise information about the 
event capl result in a dramatic decrease in the power of stanbard 

f event-date uncertainty, we set a2 = 1 and 

a, octY<1, i 
ternative is true. 

A = a is given by 

att 



CA. II and 

sing e test statistic 

z1= &qqE(+ q), 

e two-~idesl &tical regkx at Si Y 

(4)" k?,,)'9 

with ii!& ~~~~tly deened by l- 
standard normal cumuiative di 
standard event-study methods 
given by 
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Table 1 

Theoretical power function for multiday event-study method using Z, as the test statistic. 

We assume a 25&m event study with a twa;day event period and report the theoretical power 
function for the multiday estimator A for levels of abnormal performance A = 

0.0,0.2,0.4,0.6,0.8,1.0. The test statistic 2, = -in,/2 (Ss, d- .‘cl ), where n is ,he number of 
the event study and & and Z, denote, respectively, the secmity’s mean standardized excess return 

on event days 0 and 1. 

Lev 
abn 
performance Significance level = 5% Significance level = 1% 

A = 0.0 5.0% 1.0% 
A = 0.2 10.89 3.13% 
A = 0.4 29.30% 12.27% 
A=06 56.41% 32.48% 
A = 0.8 80.74 .z 59.97% 
A -1,-o 94.24% 83.148 

,,: A = 0, the test stlatistic Z2 6 

assume an event 
For each firm, we introduce abnormal 

times and record the percentage 

nd~ well to its theoretical counterpart 

ility on each OS the evem dates we 
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Level of 
abnormal 
performance 

A = 0.0 4.6 6.8 - 0.6 I.0 - 

A =0.2 11.2 13. 19.6 2. 3.8 
A -0.4 28.2 32. 14.9 13 18.2 
A -0.6 57.8 60.2 4.2 35. 43.6 
A -0.8 52.0 86.0 4.9 61.2 74.8 
A =l.O 93.6 95.2 i.9 &L.s .._ a 92.0 

A = 0;o 5.8 7' 
'-9 a:" 

___ 1. 2.0 - 
A = 0.2 11.8 3.4 2.6 4.0 53.8 
A = 0.4 28.0 29.8 Q.+ 9.6 16.4 ?0.8 
A -0.6 57.4 60.6 5.6 32.2 40.8 26.7 
.4 =0.8 81.0 85.8 5.9 40.0 72.4 20.7 
A = 1.0 94.8 96.8 2.1 82.8 92.6 11.8 

gain increases as the assurnecl leve 
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ates abnormal performance, the more accurately we can measure these 

rovide maximum- 
robabiity of the event 

times to derive the 

tables 3 and 4, iespcxtively. The results in the two tables are quantitatively 
very close. The maximum-likelkM!estimators A* and p* are unbiased in all 

ultiday estimator A. For example, as 

t the mean of A* is 2.0160, the mean of p* is 0.4976, 

re efficient than mukiday estimation when 

e shown in table 5. 
d estimates allowing 

and a** as well as maximum-likeli- 
‘? and p* are cousldered. The multiday 



2.1163 
2.3933 

A’ 2.3O31 
A* 2.5110 
P* 0.2972 
z, 15.718O 

i 2.3498 
A* 2.6659 
P* 0.3277 
22 20.5240 

L 

i* 

P' 
22 

d 
A* 

P* 
z2 

A 
A* 

P* 
z2 

2.5337 
2.6816 
0.3508 
23.8060 

2.7081 
0.3133 
26.8700 

3.6%% 3.01P6 0.1809 -0.150 
3.3780 3.0030 0.027 
0.7182 0.4978 0.131 
26.1360 23.1?20 0.021 

Niinberoffirz~~=80 

2.9m 0.1503 0.033 
-fine.? 
L. 

0.6627 0. ; 
n-3 1252 
;*&$: 

-0. 

29.638, 26.7O7O 1.0313 -0.038 

NumberofW-1 

3.3 2.9947 0. -0.013 
3.2 2.9916 0. 0.071 
0.6719 0.4958 0. -0.020 
32.5030 29.7990 0.9992 

-0.201 
-0.838 

Case 2: A = 2.0, p = 2._. 

Numberoffims=2Q 

1.1612 2.8672 I.9554 
LIE!9 2.5627 1.9765 
0.0757 
4.5555 

0.2172 0.7566 0.5028 
8.4529 15.9490 12.3410 

.Q32 

.287 
-O.G2 
G-24 j 
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Tme 3 (continued) 

Statistic Minimum Maximum Mean Std. dev. Skewness Kurtosis 

Case 2: A = 2.0, Q = 0.5, Number of simulations = 500 

Number of fkms = 60 

a 1.4699 2.6587 2.0027 0.1820 0.256 0.232 
A* 1.5503 2.4546 2.UOO3 0.1355 0. 0.033 
Q* 0.2617 0.6820 0.5022 0.0756 - 0.209 
22 11,.4ow 18.7250 15.0820 1.1165 -0.017 

Number of fhls = 80 

a 1.4730 2.5257 1.9963 U.1641 - 0.014 0.205 
.P 1.4720 2. 2.9958 0.1191 - 0.191 0.573 
Q* 0.2924 0. 0.0543 G&659 0 <%uryl 

-6213 
- 0.282 

z2 12.3640 20.3840 17.3740 1.1361 0.588 

Number of firms = 100 

A^ 1.5941 2.3409 I.9988 0.1405 0.049 - 0.187 
A* 1.6067 2.2877 1.9963 0.1046 - 0.073 0.235 
P+ 0.3521 0.6915 0.5001 0,0560 0.121 -0.134 
zz 15.2140 92) L&d& CA A 19.4330 1.1164 - 0.089 0.239 

.I 
A* 

Q* 
z2 

ii 0.5199 
A* 0.5536 

Q’ 0.2029 

z2 3.8X2 

- 0.0466 
- 0.2398 

0. 
- 0.8694 

0 a-x.4 
.“_I_ 

0.3522 
0. 
1.7393 

0.5036 
0.5404 
0.1240 
3.5OC6 

0.5376 
0.6279 
0.1707 
4.9xz 

case 3: A = 1.0, Q = 0.5, .3bzbet of simdations = 500 

Numlxx of firms = 20 

1.9316 0.9767 0.3066 0.110 
1.7340 0.9718 0.2565 - 0.186 
1.0000 0.5005 0.2232 0.022 
7.3942 3.8152 1.1600 0.025 

Number of firms = 40 

I.?180 0.9860 0.2299 0.173 
1.5554 0.9911 0.1862 -0.011 
0.9240 0.4898 0.1408 -0.145 
9.3113 5.4937 1.2249 0.064 

Number of Finns = 60 

1.4733 0.9922 0.1754 - 0.017 
1.4328 0.9900 0.1502 - 0.065 
0.9600 (I-5033 0.1159 0.142 

10 3720 6.7X15 1.1923 0.030 

Number of firms = El) 

1.5122 1.0030 0.1576 0.113 
1.4203 0.3982 0.1272 0.M 
0.8460 0.5021 0.1041 - 8.000 - _.^^ 

II. /PAI 7.8307 ?.I827 O.i92 

Number of firms = 100 

1.4845 0.9988 0.1467 0.027 
2.3152 0.9958 OJ164 .-cI9?3 rls-i 
0.74x4 C-4963 0.0877 - 0.365 

12.05 IX?242 1.2836 - Q.?6? 

0.236 
0.777 

- 0.353 
0.290 

0.287 
-0.185 

0.075 
- 0.216 

-0.303 
-0.189 

0.277 
- 0.225 

- 0.098 
0.246 

- 0.019 
0.213 

0.127 
&i&B 
0.373 
0.074 



Table 4 

Efficiency tests with CX§P sim~Iat& data ass g no increase ien condition 
variaIx!e. 

This efficiency study provides s cs on the ma$mum-lik 
p* assuming 6* = 1 as well as timator A^ and the test 
where S&A*) is obtained from matrix at the maximum- 
We report information on event studies consis 
event period whose ret 
deviations with p = 0.5. 

Statistic Minimum um F&an Std. dev. ewness urtosis 

Case I: A = 3.0, p = 0.5, ~~r~~s~~~~at~o~ = SO0 

Number of fkms = 20 

ci 1.9995 4.2453 3. 0.637 
A* 2.0&X 3.9333 3. 1.113 

0.1757 8.5030 -0.1 
z 9.093 1; 13.43120 I.1 

Number of firms = 

A^ 2.2283 3.8763 3.aO31 0.2260 0.097 0.536 
A* 2.5622 3.5013 3.0112 0.14% 0.2% 0.382 

0.2651 0.7X3 d.4992 0.0779 - 0.021 0.082 

d 16.0950 22.1100 18.9870 . 2 cjQ;?3 0.283 0.360 

NUI&CI uiFhls=60 

2 2.4761 3.6231 3.8136 0.2736 0.094 0.067 
A* 2.6590 3.3812 3.0174 0.1259 0.018 - 0.062 

P' 0.3129 0.7493 0.5006 0.0689 0.165 0.055 

z2 20.4520 2ti.1590 23.3020 0.9924 O.GG5 - (jo5; 

Number of firms = 80 

A^ 2.453i 3.5472 3.0185 0.1655 - 0.065 0.401 
A* 2.6700 3.36% 3.0219 0.1152 0.029 0.182 

P* 0.3194 0.6548 0.4977 0.0553 -0.117 0.013 

z, 23.7490 30.1050 26.9480 1.0483 0.020 0.185 

Number Gf firms = 100 

A^ 2.6455 3.4480 3.0194 0.1424 0.117 - 0.149 
A* 2.7198 3.3675 3.0226 0.1102 0. 0.1 

P+ 0.3587 0.6634 0.5012 -0. - 0.2 

z2 27.0510 33.6230 30.1360 0. 0.191 

Number of firms = 20 

a 1.2037 3.3178 2.0163 _ _ -4 ()??I? 0.377 

A* 1.3616 1 2.8X 2.0346 n*Rq 

P’ 0.0865 0.8666 0.4916 ij.k& 

=2 5.4791 12.5320 8.8539 1.1768 0.276 

a 2.7134 2.0285 0.2267 
A* 2.4 .I733 

P' 0.7 6.08 

=2 8.6410 16.6 1.18 
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, the maximum gain in of A** over a is bounded 
. As a2 increases s bound decreases to zero. 

for a2 = 2 the bound is 50% and for S2 = P. 
values selected in this simula 

ator A** is very close to 
As expected, for S2 = 

increases in security-return variance 
erroneously as evidence of abnormal 

one @f St its 

We use our maximum-likelihood method to investigate empirically the 
valuation effects of stock splits and stock dividends in the presence of 
event-date uncertainty. Crinblatt, Marulis, and Titman’s (1984) empitica! 
evidence is consistent witth positivti stock-price reactions, on average, to 

cements of stock splits and stock dividends that are uncontaminated 
er contemporaneous firm-specific announcements. 

ation effects of stock splits and stock dividends obtain even though 
announcements do nat directly affect the future cash flows of the firm. 

and Copeland (1987) argue, however, a firm declaring a stock split 
increases the number of its shares outstanding, thereby imposing additional 
transaction costs on its shz~&~nlrt~rc C;~PP lo.1 ch~= mGfl*c apa *-**l-r h:nK -________I. W-W” “AA_ ” &.“V”* LUI YV0C.J) tip 

credibly by declaring a stock split. Furthermore, 
asulis, and Gtman observe larger a~~o~~ce t effects for stock 

lese differences are consistent with the so-called 
s, given legal restrictions on retained 

ce for stock diva s the v&e of the newly issued shares is 
subtracted from rct;;lred earnings, arms that expect poor earnings wti Gnd it 
costly to -dividend signals of firms that expect good earnings. 

multiday estimates of security price per 



Descriptive statistics on daily st 

Day 0 return 
Day 1 return 

Two-day return 

Standard error of the 

Panel B: S @i& @ = 244) 

Day 0 return 
Day 1 return 

Two-day ret 1. 

Standard error of the mean two-day rem = 
- 

Panes c: stmk 

Day 0 return 
Day 1 return 

Two-day return *em-- L.LUBl 

Standard error of the mean two-day return = 0.2436 

ause of went-date uncertainty, Grinhlatt, 

mend ietum. ay 0 is defined as the ez&er o 
Ii Street Journal in 

ized excess returns 
the results for both individual-day and multi 
reports mean ret 



II a 4 

0: = 
9 , 

standardized event- 
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we are restricting two 
ratio statistic is 

elihood-ratio statistics are also tabulated in 

ratio statistic ex random variable with two 
fore, at the 1% sign& 

empirical evidence con- 
sistent with either abnormal performance or increases in the conditional 
variance of excess st eriod returns brought about by the 

uncement of st 
ent-date the increase in the variance of stan- 

dardized excess event-period daily returns. From our previous analysis, we 
have that 

Var(XiO) = 1 4(po-p;) +po(&- 1). 

s increase in variance is factored into two components: A2( p. - p,'), 

reflecting uncertainty in event dareS, and po(S2 - l), reflecting the actual 
increase in the conditiouai ~tiance. Using the entire sample of stock splits 
and dividends and corresponding maximum-likelihood estimates, we estimate 
that event-date uncertainty accounts for 23.99% of the increase in the variance 
of standardized excess event-period returns, whereas the announcement 
aoc:rsunts for 76.01% of ‘he increase. In this particular case, event-date uncer- 

ty contributes significantly to the observed increase in the variance of 

kmparing the results of tables 7 and 8, we investigate Christie’s (1983) 
conditional hypothesis inherent in event ctudies. Christie argues that the use of 
the wrong standard deviation, estimation period rather than event period, 
leads to serious errors of kference. It is important to include estimation of g2 
when estimating A. Assuming that an event conveys information, we may then 
’ vestigate whether e information has a significant effect on security prices. 

ur empirical resul reinforce Christie’s arguments. Table 7 reports the test 
statistic Z* =A*,EX(A*), the ratio of A* to its standard error, and table 9 

**/%E(21**), the ratio of _A** to its stan- 
for the presence of abnormal per- 

thesis of no abnormal 
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ante subject to the rest 
othesis of no abn 

vidends do not a excess even 
e valuation of s 

neously much more statis 
A further comparison 

estimates assuming no increase in the conditional variance of 
excess event-period returns are u 
sample of stock splits and stock 
Furthermore, the corresponding 

crease in the conditional variance are inappropriate. For the entire 

standard error of A** is 0.1089. A ignoring ticreases in the ~~~tion~ 
variance of standardized excess eve&eri returns suggests e~o~e~~s~y 
much more statistically sign&ant valuation effects. 

5.2. A comparison c=f stock-split and stock-dividend oahatim efects 

!F_ CS2~2&g ~.~2LLft~~G~ C%S i3f S&& S&;iu 2md srocir &vi&n&, 
into account throughott any increases i.2 +;& ~g&;icri& variance of st 
ized excess event-period retlurns cattsed by ihe announcements. 
the differences in abnormal performance caused by the announcements of 
stock splits and stock dividends, we consider 

0: A split = A,, A split ’ Adiv* 

To derive the appropriate test statistic, we ap 
likelihood theory and note that 

A’f -A*.* a 

split dlV 
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estimates. ~~o~~ate test statistic is 

Again, appealing to asymptotic maximum- 
test statistic is 

theory, the appropriate 

test statistic is 0.6934 and we cannot reject the null 
evidence is consistent with the increase in security- 

iance around the announcement of a sto& @it not Meting from 
e announcement zf a stock dividend. 

rences in the timing of the announcements, we consider 

0: Psplit = Pdiv 9 f-L: Psplit # P&v. 

propiate test statis ven by 



t = -c,...,c- 
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ince 

aPPe to eq. (A.1) gives 

ram eq. (Ad) we have that 

or 

i=l i=l 

R 

P**Mx I= tP* f t fhwdX:~. - _ i- _ f ..mL \. .-.., _., \-., 

i-l i=l 

giving 

(1) pr** = (!z)_’ pv*[tlxi], t= -C,...,C, 
i=l 

where implicitly 



Qr 

n -l-C 

n 

p**[t~jci](xit - LP*)~ = n6!i2**, 

(3) &2** = (n)-’ 
i-1 p -_c 

Beaver, W.H., 1968, The information content of annual earnings announcements, 
Research id Accounting: Selected Studies, Supplemen; to the Journal of Accounting 

Brennan, M.J. and T.E. Copeland, 1987, A model of stock split behzvinr: Theq ~4 evidemeF 
Working paper (University of California at Las Angeles, CA). 

Brown, S.J. ad J.B. -Wmer, l98Q Measuring security price performance, Journal of Financial 
Economics 8,205-258. 

Br6ivn, S.J. and J-B. Warner, 1985, Using daily stock retwns: The case of event studies, J~umal of 
Financial Economics 14: 3-31, 

Cl+&, A., 1983,011 infoxmatii;;; arriva! md $ pot&is testing in event studies, Working paper 
(University of Rochester, Rochester, NY). 

Dempster, A.P., N.M. Laird, and 13.B. Rubin, 19 
via the EM algorithm, Journal of the Royal St 

Eve&t, B.S. and D.J. Hand, 1981, Finite mixture 
.S., R.W. Mast&, and S. Titman 

dividends, Journal of Financial 

tructure change on security prices. 


