Dexamethasone Suppression Test Status and Severity of Depression

James H. Meador-Woodruff, John F. Greden, Leon Grunhaus, and Roger F. Hasket

Introduction

Many patients with major depressive disorder (MDD) develop state-dependent hypothalamic–pituitary–adrenal (HPA) axis dysregulation (Carroll et al. 1981). A complex interaction of factors contributes to this abnormality. Severity of illness (Kumar et al. 1986; Meador-Woodruff et al. 1987; Miller and Nelson 1987), age (Oxenkrug et al. 1983; Davis et al. 1984; Lewis et al. 1984), and degree of recent weight loss (Keitner et al. 1985; Krishnan et al. 1985b) are seemingly three of the most important determinants.

Severity of depression has been shown to correlate moderately with and to contribute significantly to the total variance of postdexamethasone cortisol levels in patients with MDD, at both the pituitary and adrenal levels of the HPA axis. Many reports, however, have found this correlation by studying subjects who were operationally defined as either Dexamethasone Suppression Test (DST) nonsuppressors or suppressors. DST nonsuppressors have high postdexamethasone cortisol levels by definition and tend to be more severely depressed than DST suppressors (Reus 1982; Sangal et al. 1984; Krishnan et al. 1985a). Accordingly, the correlation between severity of illness and postdexamethasone cortisol levels may be an artifact secondary to defining DST suppressor status. To examine this possibility, we studied the relationship between severity of depression and postdexamethasone cortisol levels in a group of patients with MDD, but with the strategy of evaluating DST suppressors and nonsuppressors separately.

Methods

Subjects consisted of 114 patients treated in the University of Michigan Depression Program and Clinical Studies Unit of the Department of Psychiatry. All patients underwent a comprehensive diagnostic evaluation, including several clinical interviews by psychiatrists, a structured interview by a trained research staff member using the Schedule for Affective Disorders and Schizophrenia (Spitzer and Endicott 1975), a detailed family history and social assessment by a social worker, and a thorough physical and laboratory evaluation. Diagnosis was made by consensual agreement of the clinicians involved in gathering the above information using Research Diagnostic Criteria (RDC) (Spitzer et al. 1977).

Patients included in the present study (1) met RDC for MDD, (2) did not meet psychotic subtype, (3) completed a DST following a medi-
education-free period of at least 2 weeks, (4) had a 17-item Hamilton Rating Scale for Depression (HSRD) (Hamilton 1960) administered at the time of the DST, (5) had no identifiable technical exclusions known to invalidate the DST (Carroll et al. 1981), and (6) gave written informed consent to participate in these research activities.

Samples were obtained for postdexamethasone plasma cortisol determination at 8:00 AM, 4:00 PM, and 11:00 PM, although fewer than all three samples were obtained from most patients (8:00 AM, n = 20; 4:00 PM, n = 112, 11:00 PM, n = 51). We determined plasma cortisol concentration using a modification of Murphy's (1967) competitive protein-binding technique. Maximum postdexamethasone plasma cortisol levels were logarithmically transformed to improve normality prior to correlational analyses. We defined DST nonsuppression as a maximum postdexamethasone plasma cortisol level ≥ 5 μg/dl. Comparisons between DST suppressors and nonsuppressors were by two-tailed t-tests or the X² test, as appropriate.

Results

A highly significant correlation was found between HSRD scores and maximum postdexamethasone plasma cortisol levels for the entire patient population, as shown in Figure 1, generating the regression equation \(y = -2.48 + 0.36x \) (n = 114, df = 112, \(r = 0.40, p < 0.0001 \)). When divided into DST suppressors and nonsuppressors, the same general relationship persisted: the nonsuppressors manifested a significant relationship between HSRD scores and maximum postdexamethasone plasma cortisol levels (\(y = 1.93 + 0.41x \); n = 34, df = 32, \(r = 0.44, p < 0.01 \)), as did the DST suppressors (\(y = 0.99 + 0.041x \); n = 80, df = 78, \(r = 0.22, p < 0.05 \)).

Given earlier reports suggesting that age and degree of recent weight loss were entered into a multiple linear regression analysis with postdexamethasone plasma cortisol as the dependent variable. For the entire study group, a significant relationship was found (multiple \(r = 0.48, p < 0.0001 \)). Partial correlation coefficients were: HSRD score, \(r = 0.29 (p < 0.002) \); age, \(r = 0.30 (p < 0.002) \); and weight loss, \(r = 0.07 \). When only the nonsuppressors were studied, a similar correlation was found (multiple \(r = 0.47, p = 0.06 \)). In this case, partial correlation coefficients were: HSRD score, \(r = 0.42 (p < 0.02) \); age, \(r = 0.13 \); and weight loss, \(r = 0.17 \). Finally, when the DST suppressors were studied, a significant relationship was found (multiple \(r = 0.35, p < 0.02 \)), with partial correlation coefficients of 0.18 (\(p = 0.12 \)), 0.24 (\(p < 0.05 \)), and 0.11 for HSRD score, age, and weight loss, respectively. Age and severity, but not weight loss, appear to be factors contributing to the HPA axis dysregulation observed in this particular group of patients. When the effects of age and weight loss are accounted for, significant relationships between HSRD score and postdexamethasone plasma cortisol persist for the entire group and for the DST nonsuppressors; the relationship between these two variables exhibits a trend toward significance for the DST suppressors.

To explore possible differences between the DST suppressors and nonsuppressors, various clinical and demographic variables were compared, as indicated in Table 1. The DST nonsuppressors were significantly older and more severely depressed than the suppressors, whereas other factors were not appreciably different.

Discussion

A growing number of studies concur that severity of depression is a significant determinant of the HPA axis dysregulation associated with MDD (Kumar et al. 1986; Meador-Woodruff et al. 1987; Miller and Nelson 1987). Our results indicate that this relationship is not simply an artifact related to the definition of DST suppressors and nonsuppressors. Rather, both DST suppressors and nonsuppressors exhibit a sig-
Figure 1. Scattergram of HRSD scores and maximum postdexamethasone plasma cortisol levels. Dashed line indicates division between DST suppressors and nonsuppressors. Center regression line is for the entire population; upper and lower lines represent DST nonsuppressors and suppressors, respectively. All three regression lines are statistically significant.

Table 1. Clinical and Demographic Variables of DST Suppressors and Nonsuppressors

<table>
<thead>
<tr>
<th>Variable</th>
<th>Suppressors</th>
<th>Nonsuppressors</th>
<th>Statistic</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>80</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>37.3 ± 14.2</td>
<td>47.0 ± 16.2</td>
<td>t = 3.18</td>
<td><0.002</td>
</tr>
<tr>
<td>HRSD</td>
<td>17.9 ± 5.3</td>
<td>21.6 ± 5.4</td>
<td>t = 3.32</td>
<td><0.005</td>
</tr>
<tr>
<td>Weight change (kg)</td>
<td>0.60 ± 8.9</td>
<td>-2.59 ± 8.1</td>
<td>t = -1.74</td>
<td>NS</td>
</tr>
<tr>
<td>Past depressive episodes</td>
<td>2.4 ± 3.1</td>
<td>2.4 ± 2.9</td>
<td>t = 0.01</td>
<td>NS</td>
</tr>
<tr>
<td>Inpatients</td>
<td>37/43</td>
<td>20/14</td>
<td>X² = 1.51</td>
<td>NS</td>
</tr>
<tr>
<td>outpatients</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female/male</td>
<td>49/31</td>
<td>21/13</td>
<td>X² = 0.00</td>
<td>NS</td>
</tr>
<tr>
<td>Unipolar/</td>
<td>63/17</td>
<td>26/8</td>
<td>X² = 0.07</td>
<td>NS</td>
</tr>
<tr>
<td>bipolar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postdexamethasone plasma</td>
<td>1.73 ± 0.12</td>
<td>10.9 ± 4.32</td>
<td>t = 15.6</td>
<td><0.0001</td>
</tr>
<tr>
<td>cortisol (μg/dl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Mean ± standard deviation.
nificant relationship between maximum post-
dexamethasone plasma cortisol levels and HRSD
scores, just as the total combined population
does. Although differences in degree of severity
of depression exist between the DST suppres-
sors and nonsuppressors, both manifest a cor-
relational relationship between severity of
depression and plasma cortisol, even when the
effects of age and degree of recent weight loss
are accounted for.

These results also suggest that the use of a
cutpoint of postdexamethasone plasma cortisol
levels should be used in conjunction with other
measures when studying the neuroendocrinol-
y of depression. Originally, the DST was
standardized in an attempt to find a laboratory
correlate specific to endogenous depression
(Carroll et al. 1981). Although referent values
may be essential for determining sensitivity
and specificity, our results indicate that they should
not be overemphasized or used in isolation, es-
pecially in studies attempting to explore the
physiology of this system. A relationship exists
between maximum postdexamethasone plasma
cortisol levels and severity of depression, re-
gardless of DST suppressor status, and should
be considered in any study involving HPA axis
endocrinology in affective disorders.

References

Carroll BJ, Feinberg M, Greden JF, Tarika J, Albala AH,
Haskett RF, James NMC, Kronfol Z, Lohr N, Steiner
M, de Vigne JP, Young EA (1981): A specific laboratory
test for the diagnosis of melancholia. Standardization,
validation, and clinical utility. Arch Gen Psychiatry 38:15–
22.

Davis KL, Davis BM, Mathe AA, Mohs RC, Rothpearl
AB, Levy MI, Gorman LK, Berger P (1984): Age and
the Dexamethasone Suppression Test in depression. Am

Hamilton M (1960): A rating scale for depression. J. Neurol

Keitner GI, Brown WA, Qualis CB, Haier RJ, Barnes KT
(1985): Results of the Dexamethasone Suppression Test
in psychiatric patients with an without weight loss. Am

Krishnan KRR, France RD, Petton S, Mc Cann UJ, Ma-
 nepalli AN, Davidson JRT (1985a): What does the Dex-
amethasone Suppression Test identify?. Biol Psychiatry
20:957–964.

Krishnan KRR, France RD, Snipes MT, Petton S (1985b):
Weight change and the Dexamethasone Suppression Test.

Kumar A, Alceser K, Grunhaus L, Greden JF (1986): Re-
lationships of the Dexamethasone Suppression Test to
clinical severity and degree of melancholia. Biol Psy-

Lewis DA, Pfohl B, Schlechte J, Coryell W (1984): Influ-
ence of age on the cortisol response to dexamethasone.

Meador-Woodruff JH, Haskett RF, Grunhaus L, Akil H,
cortisol and b-endorphin levels in depression: Rela-
tionship to severity of illness. Biol Psychiatry 22:1137–
1150.

Miller KB, Nelson JC (1987): Does the Dexamethasone
Suppression Test relate to subtypes, factors, symptoms,
or severity?. Arch Gen Psychiatry 44:769–774.

Murphy BE (1967): Some studies of the protein-binding of
steroids and their application to the routine micro-
and ultra-micro measurement of various steroids in body
fluids by competitive protein-binding radioassay. J Clin
Endocrinol Metab 27:973–990.

Oxenkrug GF, Pomara N, McIntyre IM, Brancionner RJ,
Stanley M, Gershon S (1983): Aging and cortisol re-
sistance to suppression by dexamethasone: A positive

Reus VI (1982): Pituitary–adrenal disinhibition as the in-
dependent variable in the assessment of behavioral

Sangal R, Correa EJ, DePaulo JR (1984): Depression and
anxiety inventories and the Dexamethasone Suppression

Spitzer RL, Endicott J (1975): Schedule for Affective Dis-
orders and Schizophrenia. New York: Biometrics Re-
search Division, New York State Psychiatric Institute.

Spitzer RL, Endicott J, Robins E (1977): Research Diag-
nostic Criteria (RDC), New York: Biometrics Research
Division, New York State Psychiatric Institute.