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Abatraet-We study the selection of the shape and growth velocity of three dimensionaf dendritic crystals 
in cubically anisotropic materials. We demonstrate that aside from minor additional complexities due to 
the lack of axisymmetry, the recently discovered mechanism of “microscopic solvability” can be extended 
to these systems and used to find a unique needle crystal solution of the equations of thermal 
diffusion-controlled solidification. We compare the predictions of this approach with measured growth 
rates in succinonitrile. Finally, we extend our analysis to determine the ratio of the sidebranch wavelength 
to the tip radius. 

R&mm&-Nous etudions la selection de forme et de vitesse de croissance de cristaux dendritiques 
tridimensionnels dans des materlaux cubiques anisotropes. Nous montrons que, mises I part quelques 
difficult& supplementaires mineures dues au manque de symhrie axiale, le m&anisme dit de “resolubilitb 
microscopique”, rCcemment dicouvert, peut etre ttendu ii ces systemes et utilise pour trouver une solution 
unique de cristal en aiguille pour les tquations de la solidification thermique r&e par la diffusion. Nous 
comparons les previsions de cette approche avec les vitesses de croissance experimentales dans le 
succinonitrile. Enfm, nous Clargissons notre analyse pour dkterminer le rapport de la longueur des 
branches laterales au rayon de I’extrimite de la dendrite. 

Zusammenfassung-Wir behandeln die Auswahl von Form und Wachstumsrate dreidimensionaler 
dendritischer Kristalle in kubisch anisotropen Materialen. Wir zeigen, daaabgesehen von kleineren 
zudtzlichen Verkomplizierungen durch die fehlende Axisymmetrie- der ktlalich aufgefundene Mech- 
anismus der “mikroskopischen Loslichkeit” auf diese Systeme ausgedehnt werden kann; damit kann 
eine einheitliche Nadelkristall-Lbsung der Gleichungen Wr die durch thermische Diffusion gesteuerte 
Erstarrung erhalten werden. Die Aussagen dieser Naherung vergleichen wir mit den an Succinonitrii 
rzemessenen Werten. Zum SchluB erweitem wir unsere Analyse, mn das Verhiiitnis der Wellenl~nge der 
Seitenarme zum Spitzenradius zu ermittein. 

1. INTRODUCTION 

Recently, the problem of velocity selection for two- 
dimensional dendritic crystal growth ]I] was solved 
both numerically [2,3] and analytically [4-71. The 
solution relies upon a solvability mechanism present 
when one tries to construct steady-state solutions of 
the interface evolution equation in the presence of 
non-zero surface tension. We have referred to this 
concept as the “microscopic solvabihty” approach. 
The predictions of this analysis agree with this nu- 
merical simulations of Saito et al. [S] and are qual- 
itatively consistent with all of what is known about 
true dendritic crystals. A quantitative comparison has 
been lacking to the simple fact that most experiments 
are three dimensional in nature, whereas the theory 
has been restricted to two. 

The problem of three dimensional dendrites is 
difficult to solve exactly, because the existence of 
steady-state solutions (parabolic needle crystals) re- 
quires non-isotropic surface tension [9-l I]. Any 
physical anistropy (such as that arising, say, from an 
underlying cubic symmetry) will give rise to a non- 
axisymmetric form for the shape. This fact greatly 

increases the complexity of either the numerical 
treatment or of any attempted analytic approach. 

In this paper, we solve this problem by making use 
of two approximations. First, we demonstrate nu- 
merically that it is possible to linearize the shape 
around the Ivantsov solution. The validity of this 
type of approximation has already been verified in 
two dimensions by Ben-Amar and Moussallam [12]. 
We perform this demonstration within the context of 
an axisymmetric anisotropy. Next, we generalize the 
linearized version to include the effects of non- 
axisymmetry. Specifically, we express the interface via 
a mode expansion in the azimuthal coordinate 4 

In the above expression, p is the Peclet number and 
the interface is assumed to be moving in the i 
direction. 

Clearly, the above truncation cannot be an exact 
solution. Nevertheless, we will show that this ap 
preach can yield quantitatively accurate results. Note 
that we have in mind M - 2,3; if M is chosen to 
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be large (100 or so), the approximation for the 
azimuthal dependence of z would be as accurate as 
that used for the r dependence. 

The introduction of non-axisymmetric shapes for 
the steady-state solution leads to an interesting puzzle 
which must be resolved by the solvability approach. 
The standard methodology of looking for a steady 
state solution by relaxing the condition &/ar = 0 
near the tip leads to a set of M independent con- 
straints, one for each S, in equation (1). We must 
therefore be able to vary M parameters so as to find 
a smooth solution. Sup~singly, we find that the 
asymptotic shape of the non-axisymmetric needle 
crystal contains precisely enough degrees of freedom 
to accomplish this task. In practice, the axisymmetric 
condition 6;(O) is most sensitive to the dimensionless 
velocity and the remaining conditions are important 
only for internal consistency. We will see this in detail 
in Section 5. 

The outline of this work is as follows. In the 
following Section, we review the derivation of the 
integro-differential equation governing the interface 
evolution. The only part of this which is technically 
difficult is the three dimensional ~neraii~tion of the 
ebbs-~omson condition for anisotropic surface 
energy. In Section 3, we restrict ourselves to the 
axisymmetric limit and derive the selected velocity. in 
Section 4, we describe the linearization and verify 
that the results for the axisymmetric case agree with 
those of the preceding non-linear method. In Section 
5, we solve a two mode truncation and argue that this 
should provide an accurate prediction for the full 
problem. Applying this reasoning, we compute the 
selected velocity of succinonitrile and compare our 
results to the data of Huang and Glicksman [13). In 
Section 6, we derive the peak sidebranc~ng wave- 
length follo~ng the method of Ref. [14]. The final 
section summarizes our results and describes the still 
puzzling case of pivalic acid crystals. 

2. STEADY-STATE EQUATION 

We start our analysis with the usual assumptions 
[ 151 regarding a crystal immersed in a supersaturated 
melt and whose growth is controlled by thermal 
diffusion. The experimental control parameter is the 
dimensionless undercooling 

where T,,, is the melting temperature, L the latent heat 
and cp the specific heat. The surface energy f is 
assumed to arise from an underlying cubic crystal. 
We measure this surface energy in dimensionless 
units by making use of an assumed velocity of 
motion. This leads us to the expression 

y(B, m,=s = Y,]l f kg (0, (t; 11 

g(iJ, 4 ) = cos4 B + sin4 B (cos’ 4 + sin’ 4 ) (2) 

where 8, I$ are the spherical angles made by the 
normal vector to the interface and D is the thermal 
diffusivity. The parameter c measures the strength of 
the anisotropy, giving a maximum of surface energy 
in the (100) crystal direction. 

The evolution equation can be found using stan- 
dard techniques. The temperature field is taken to 
satisfy the diffusion equation with the interface acting 
as a source of magnitude L:, L /c, for normal velocity 
u,. This leads to the general evolution equation 

-I -(r2+P -2rr'cos(+ -4’) 

x exp 
+ Ir(r, d, t) - z(r’, # ‘, t - 7)]3 

4D7 

(3) 

where A,, is the Gibbs-Thomson shift in the equi- 
librium melting point, which we will soon compute. 
In this expression the interface is given by a function 
z(r, $. I) and d*s’ is the surface area measure. 

We can simplify the above expression for the case 
of steady-state motion that will be the primary focus 
of this work. In this case, r, = vti 0-i; the second factor 
can be used to rewrite the measure using 

d2s’fi’.i =r’dr’d$‘. 

Finally, the integral over 7 can be explicitly per- 
formed using z(r, 4, r) = z(r, 4) + 01. The steady- 
state equation then takes the familiar form 

A-Ah,= 
‘=d4’ OL 

5 s ox, 

r,dr,e”‘.o~);+d (4) 

where 

~=~~. (5) 

in the above expressions, all lengths have been re- 
scaled by the diffusion length v/2D. 

It is possible to verify [16] that Ivantsov [17] 
paraboloid of revolution z = - r2/2p satisfies equa- 
tion (4) if the Gibbs-Thomson shift is set equal 
to zero and the Peclet number p is related to 
the undercooling by the three dimensional lvantsov 
formula 

A = pe%(p) 

where El is the exponential integral function. We will 
use this solution later as the starting point for our 
linearization. 

We now turn to an evaluation of A,,, the melting 
point depression due to interfacial curvature. To do 
this, we consider a shifted surface (parameterized by 
Cartesian coordinates) to first order in the shift 

Z(& Y)=rcl(%Y)+I(,(&Y). (6) 

Let us assume that the surface energy is given by a 
function y which depends on surface orientation. The 
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surface energy is then given by 

S= dxdj%&&,‘~ 
J 

(7) 

where the angles 8, 6 are the actual spherical angles 
made by the interface normal and 9 is the two 
dimensional gradient operator. Under the interface 
shift, the change in surface energy is therefore 

)I (8) 
Since g equals tan-‘lqzj. we have 

SB = 
$2 .a+ 

(1 +(&)*)@cl 

and similarly 
_ 4 

s$ = 
-?.(V$ x Vz) 

l?zl? 

Pa) 

(96) 

Integrating by parts allows us to remove all the 
derivatives acting on the shift J/ and rewrite this 
expression as the integral of JI multiplied by some 
prefactor. Finally we note that this prefactor is 
exactly the Gibbs-Thomson shift A,; this is because 
the equilibrium condition requires that the surface 
energy term be exactly compensated for by a change 
in volume free energy 

6F = 
s 

dx dyJl(s, y) A&r, y). 

After some tedious algebra, we arrive at the final 
expression 

-A,=Y$&) 

2y r.iiz x @(l/[tizl*) 

-g J?-Tjg . w-9 

This expression reduces to the more standard form if 
we change variables to consider angles along the 
principal axes along the interface [ 161, but the above 

equation is actually much easier to evaluate given any 
surface. Note that for isotropic surface tension, we 
recover Ar = YK and for two dimensional systems, 

with interface curvature K, in accordance with known 
results. 

Equation (10) completes our derivation of the 
steady-state interface evolution equation. In the next 
several sections we describe our methodology for 
solving this equation so as to derive the velocity and 
shape of the growing dendrite. 

3. THE AXISYMMETRIC LIMIT 

In this section, we study an axisymmetric approx- 
imation to the full three dimensional dendritic growth 
equation. Let us rewrite equation (2) for the surface 
energy anisotropy as 

y (0, 4 ) = yO[ 1 + &(cos4 8‘ -t 3/4 sin4 B 

+ 1/4sin4Bcos4J)]. (11) 

This expression allows us to define an axisymmetric 
problem by dropping the cos4$ term in y. Substi- 
tuting this reduced form into equation (10) gives us 
the axisymmetric Gibbs-Thomson shift 

+(Y +COt~~)r(l ;;:*,,: (12) 

where ’ is a/L%, and we have dropped the “tilde” 
from the definition B = zan -i (- 2’). 

Our goal is to solve equation (4) for z(r). This can 
be done in the by now standard fashion by first 
looking for solutions with non-vanishing slope at the 
tip and then varying y0 to satisfy the additional 
“solvability” condition [19]. We discretize the 
probiem by defining the point 

r,=p tangi, qi=G 

where i ranges from 0 to N-l. The solution should 
asymptotically approach the lvanstov paraboloid 
with a calculable correction derived in Ref. [9]. We 
therefore set 

z(ri) = - rf/2p + br, + c log( 1 + r,) + :, 

where the coefficients are discussed in Appendix D. 
The unknown variables are now the z,. The deriva- 
tives on the left hand side of the evolution equation 
can be computed by simple finite difference tech- 
niques. The only slight complication is the fact that 
there is potentially a singularity in the second term of 
equation (12) if z’(O) # 0; this is handled by replacing 
z’(r) by the subtracted form z’(r) - z’(0). Since any 
physical solution will have z’(O) = 0, this 
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modification will not change the allowed shapes and 
velocities. 

The right hand side of the equation was given in 
general form by equation (4). Since z does not depend 
on the angular variable 4, we can evaluate this side 
of the equation by first computing 

s 

2nd4’ e - JZ + 1’2 - 2rr’ COS(q3 - 0’) + (A@ 

0 2nJ,2+r’2 - 2rr’cos($ - 4’) + (Az)~ 

The integrand has an integrable singularity and must 
be handled with care. We write this expression in the 
subtracted form 

f2n &,I e-J'2+r'2-2n'~os(b-~')+(&~ _ 1 

J 0 ZnJr2+rf2 -2rr'cos(t$ -$‘)+(Az)* 

2nd4’ 1 

+ s 0 2nJr2+rQ * - 2rr’ cos(4 - 4 ‘) + (Az)~ 

The first integral is always finite and can hence be 
evaluated by the trapezoidal rule. The second term 
can be explicitly evaluated in terms of a complete 
elliptic function 

2 4rr’ 

n,/(r + r’)2 + (Az)~ K (r + r’)2 + (Az)2 > ’ 

We next need to evaluate the integral over r ‘. 
Again the integrand contains an integrable singu- 
larity, arising from the logarithmic divergence of the 
elliptic function as its argument approaches 1. Again 
we make use of a subtraction; in particular, we 
already know that the Ivantsov solution z,, = -r*/2p 
obeys the equation 

this comparison is the requirement that we accurately 
know the value of c in equation (11). In Appendix A, 
we review the proof [20] that the anisotropy in the 
equilibrium crystal shape can be used directly to 
determine 6. In the original experimental work, this 
number was quoted as about 1% [21]; later work [22] 
indicated a lowering of this value to l/2%. In this 
paper we will mostly quote results for the earlier 
value, recognizing that a re-measurement (perhaps by 
using digital imaging techniques [23]) would be most 
valuable. 

A= 
‘=W’ = 

I I 
r’dr’ 

eio(r’) -10(r) - d 

OTCI d ’ 
(13 

Subtracting this from equation (12) allows us to 
replace evaluation of the integrand by evaluation of 
the change in the integrand due to the difference 
between the actual shape z(r) and the Ivantsov 
parabola [ 161. The resulting integrand is always finite, 
and hence the resulting r’ integral can be computed 
with the trapezoidal rule. 

We now proceed to solve the discretized version of 
the steady-state equation by Newton’s algorithm and 
thereby compute z’(0). Figure 1 represents a typical 
plot of this mismatch function vs yO, at p = 0.25, for 
c = 0.01. There is a clear zero of this function around 
yO= 0.00107. It is easy to check that there are no 
other solutions at larger values of yO. There are 
additional solutions at smaller values, but in accord 
with the results [24] in two dimensions, these other 
shapes are expected to be linearly unstable and hence 
unphysical. 

It has already been established [9-l l] that there are 
no steady-state solutions at all for L = 0 and that 
furthermore, the solutions should obey the scaling 
y0 _ C’ 4 for small t. These facts follow immediately 
from the analogous results in two dimensions and the 
recognition that the singularity in the three dimen- 
sional axisymmetric integral operator is the same as 
that of the two dimensional one and that furthermore 
the highest derivative piece in the Gibbs-Thomson 
shift, 2” /( 1 + z ‘2)3/Z, again mimics the two dimen- 
sional curvature. As we shall soon see, these results 
are in agreement with the numerical calculations and 
can serve as an independent means for verifying the 
accuracy of the results we present. 

In Table 1 we present some of our data for several 
different discretization numbers N and for different 
Peclet numbers. Note that to this accuracy there 
is no dependence on the discretization parameter 
N and accurate results can easily be obtained by 
extrapolation. 

Most importantly, we can verify that at small 
Peclet numbers, the selected value of y,, equals a*p2 
to high accuracy. This scaling was rigorously derived 
by Pelce and Pomeau [16] and also follows form 
previous theories of dendrite shape (such as the 
marginal stability hypothesis [25]) now known to be 

Table I. Axisymmetric selected y. 

D N Yi? YlTIP2 

Our main purpose in this paper is to provide a 
framework for the eventual quantitative test of this 

0.05 75 0.000048 0.0194 
0.1 50 0.000188 0.0189 
0.1 75 0.000188 0.0189 
0.25 50 0.00107 0.0171 
0.25 75 0.00 IO7 0.0171 
0.25 100 0.00107 0.0171 

theory of velocity selection. A crucial component of 0.4 50 0.00253 0.0158 

160 103 106 109 ii2 ii5 

-to (x10-Y 

Fig. 1. Slope at tip vs y,,; N = 100, p = 0.25, nonlinear 
axisymmetric version. 
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incorrect. Its origin is that the diffusion length goes 
to infinity as the Peclet number is lowered and the 
only relevant macroscopic length scale is the tip 
radius. Our best estimate for c* is 0.02 + 0.002. It is 
also worth noting that the trend of ~7 * systematically 
decreasing as a function of increasing Peclet number 
also agrees with the experimental results. We will 
later verify that these trends are not modified upon 
the inclusion of the effects of non-axisymmetry. 

We also have studied the selection at differing 
values of the anisotropy. For example, at c = 0.005, 
u* is reduced to 0.0079. This is not quite an E”~ law, 
which apparently sets in only at smaller C. This type 
of variation does represent a strong dependence on 
crystal anisotropy, as expected from previous work 
on local models and in two dimensions. We will 
return to this point in the concluding chapter where 
we return to a discussion of the experiments on 
succinonitrile and pivalic acid. Now, however, we 
turn to a method which incorprates non- 
axisymmetric terms. This will allow us to show that 
the above estimate for g* is indeed quantitatively 
valid for the actual physical system. 

4. LINEARIZATION 

For an exact treatment of the selection problem, it 
is obviously necessary to generalize the results of 
Section 3 to arbitrary three-dimensional shapes; i.e. 
to arbitrary functions z(r, 4). We will not attempt to 
carry out such a computation here. Instead, we will 
introduce two approximations, linearization and 
mode truncation, which will greatly simplify the 
computational task. We certainly would not expect 
these approximations to be qualitatively important; 
this is due to the fact that the essential mechanism of 
pattern selection, that of generating the solvability 
condition, is already present in the simplified 
problem. It also turns out that these approximations 
give results that are also quantitatively valid, at the 
accuracy level at which the experimental data exist. 
Hence we will be able to make testable predictions for 
the growth rate CJ* and the exact shape of the 
dendrite tip. 

Our approach is simply to write 

z(r,f#+~ +“&,(r)cos4m~ (14) 
m=O 

linearize in the 6, and truncate all the Fourier 
components higher than 4(M - 1). The resulting 
equation will then be discretized by the same tech- 
niques as used in the last section. This leads to a 
M x N set of linear equations which can easily be 
solved. Again the crucial criterion is that ~‘(0, 4) 

must be set equal to zero by proper choice of the 
selected parameter yO. Actually, we will find that the 
single solvability condition is replaced by M indepen- 
dent conditions, one for each Fourier component of 
z; nevertheless, in each case there turns out to be 
enough degrees of freedom in the shape to exactly 

satisfy all of these conditions if and only if y0 is 
precisely chosen. 

Let us sketch the derivation of the set of equations 
we will be using, leaving many of the details to 
Appendix B. Let us first focus on the right hand side 
of the steady-state equation, the part containing the 
integral operator. Upon expanding in 6, we must 
evaluate 

r’ dr’ 
e~,(r’. 6’) - zo(r. +) - d 

d 

x [6,(r’) cos 4mC#J’ - 6,(r) cos 4mb ] 

( )I 1 +A 
d 

(15) 

with z, again given by the Ivantsov solution and the 
distance d now computed with AZ zz [zo(r) - ro(r ‘)] 

d = J (r +r’)*-4rr’sin2 + (AZ)‘. (16) 

In expression (15), the integrand contains integra- 
ble singularities, which again means that we must be 
careful in devising a numerical scheme to evaluate 
this expression. As in Section 3, we deal with this 
problem via subtraction. For example, consider do- 
ing the angular integral 

1 

*’ d4 ’ cd -- 
o 27[ d 

cos 4rnf$ I. 

This can be rewritten as 

s 

** dd’f(r, r’) cos4m4, 
02nd 

+ 2Rdd’ eed-f(r,r’) 
cos4mC$’ (17) 

where f is any function which has the property that 
we approach the singularity at ‘, 

T- 1 + O[(r - r’)]. The second integral contalny Lo 
singular points and is therefore simple to evaluate by 
the trapezoidal rule. The first integral can be done 
exactly in terms of an elliptic function; the final 
formula is given in the Appendix. It is convenient to 
choose f = e-4, with do z d(4 = 4 + A) so as to 
make the subtraction vanish rapidly as we move away 
from r =r’. 

This method can be used for all the terms in the 
integral operator. For each additional power of d in 
the denominator of the integrand, we must perform 
a one higher order subtraction 

e-d e-d -e-$(l -d) 
z+ d* (18) 

erc. After this step, it is easy to show that the 
integrands involved in the integral over r’ are always 
finite and no additional subtractions are needed. The 
final result is that upon discretization, the right hand 
side of the equation is replaced by a set of N x N 
matrices labeled by the index m acting on the N 
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component vectors S,,,(r,). We will later discuss in 
more detail how the discretization works and es- 
pecially how we treat the boundary conditions both 
at the tip and at the far tail. 

We must perform a similar evaluation of the left 
hand side of the evolution equation, those terms 
arising from Ar given in equation (10). There are two 
distinct types of terms; there are terms arising from 
A, of the Ivantsov solution which are inde~ndent of 
6, and terms linear in 8,. The first set of terms are 
given by just using the Ivantsov solution z&) in 
equation (12) for the axisymmetric shift. The re- 
sulting expression then acts as a source for the linear 
shape equation. 

The terms which depend on 6, are simple but 
tedious to compute. The actual details are presented 
in the Appendix and here we describe only the 
structure of the final answer. Recall from equation (2) 
that y has a term explicitly proportional to cos4@ 
This means that this side of the equation will couple 
different m values; if we think of a super matrix with 
blocks labeled by m and m’ (each consisting of N x N 
matrices), there will be non-zero entries whenever 
m’ = m, m f 1. Each such block can be written 
schematically as 

fdr) -$ +f&); +.fxr) (19) 

with the f’s explicitly computed functions. The oper- 
ators are turned into matrices by finite difference 
methods, as in the last section. 

There are some subtleties which arise near r = 0. 
First, we must explicitely set S,,,(O) = 0 for all m # 0. 
This would otherwise give rise to A, which diverges 
quadratically at the tip. We of course cannot set 
&I,(O)/& to zero; this is the essence of the solvability 
mechanism and must be kept free so as to later allow 
us to fix the unknown parameters governing the 
solution. To handle this, we modify the derivative 
piece in expression (19) to be 

f*(r) ( %sr) am 
dr ---$- > 

exactly as in the axisymmetric case. After this change 
A, is finite at the tip and the linear problem is 
well-defined. 

in the remainder of this section we return to the 
study of the axisymmetric problem, this time in the 
linear approach. Our variables are S,(ri) with the 
discretization points given as ri = ir,,,,,/N, i = 0, 
N - 1. We derive N - 1 equations by evaluating both 
sides of the equation in the manner just described at 
the points r,, i = 1, N - 1. Note that there is no 
equation at the tip. The final equation arises from the 
fixing of the asymptotic form of 8,. In Appendix D 
we derive the result of Ref. [9] that S, w br for large 
r and explicitly compute b. We then choose 

&,@,,, ) = br,, . For further accuracy, we can include 
the contributions from the integral in the region 
r max < I ’ < m by using this explicit form for the shift. 

Table 2. Linearized axisymmctric data. p =&I 

YO N rma, 6;(O) 

O.Ow185 120 0.75 1.26x io-' 
0.000185 180 0.75 1.18 x 10-J 
0.000185 180 1.0 1.30 x lo-' 
0.00019 120 0.75 6.37 x IO-' 
0.00019 180 0.75 4.88 x IO-' 
0.00019 180 1.0 6.73 x IO-' 
o.ooo195 120 0,75 -3.08x IO-' 
0.000195 180 0.75 -1.84x 10-S 
0.000195 180 1.0 -5.46x 10-e 

The final set of equations are solved by using a 
standard linear algebra package. 

In Table 2, we give the value of S&(O) for various 
values of yO, showing the effects of varying the cutoff 
parameters r,,, and N. Clearly, the answers being 
arrived at are fairly insensitive to the exact dis- 
cretization. We are therefore in a position to extract 
the selected values of y for different Peclet numbers. 
Our results are that yOl$ = 0.0194 at p = 0.1 and 
0.0179 at p = 0.25, all for 1% anisotropy. Comparing 
these numbers to those found in the last section 
shows that the linear approximation is quantitatively 
valid at an accuracy level of about 5%. The other 
anisotropy which we studied, L = 0.005, gives rise to 
agreement at about the same level. The fact that a 
completely separate compu~tion led to the same 
answers gives us confidence in the validity of the 
computer code, the accuracy of our numerical meth- 
odology, and the physical nature of the selection 
mechanism. 

5. A TWO MODE CALCULATION 

After the preliminaries set forth in the last section, 
we are ready to describe our results for shape selec- 
tion including the effects of non-axisymmetry. We 
will present our methodology for the case of general 
M but the numerical results will be restricted to 
M = 2. Inasmuch as the physical anistropy is four- 
fold, any significant change due to the departure from 
axisymmetry will be present to this order. 

‘First, we need to discuss the asymptotic form. For 
the axisymmetric case, we have already seen that 
there is a term linear in r and a constant which is a 
priori undete~ined. This constant is a trivial con- 
sequence of translation invariance in the 5 direction. 
The asymptotic behavior of the other m - 1 modes 
are much less trivial. It turns out that for each and 
every m, there is one undermined parameter. This 
parameter is the coefficient fm of a term in cl,,, which 
grows as r4m, The reason this coefficient cannot be 
determined is that the shift 6,(r) = f,r” does not 
contribute to the integral on the right hand side of the 
evolution equation. This is proved in Appendix C. 

Another way of stating the above result is to 
recognize that the function 

6(r, 4) = r& ws 4m+ 

is an exact zero mode of the Ivantsov zero surface 
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tension problem. Now imagine substituting this cx- 
pression on the left hand side (the A,, piece) of the 
shape equation. This substitution produces terms that 
grow no more rapidly than r4m-3. These terms in turn 
can be canceled by adding terms of the form rb-’ to 
6,. This process can be continued to all powers of 
I/r. (Some of the details of how to do this are 
presented in Appendix D.) The resulting shift vector 
6,(r) will not necessarily have zero slope at the tip. 
However, we have already expanded our space of 
functions to allow this to occur. We therefore have 
found an exact zero mode of our full linear problem, 
including the surface energy term. This conclusion 
can be verified directly by studing the spectral prob- 
lem of the linearization operator and showing that 
there is a mode at zero eigenvalue whose eigenvector 
has the expected behavior. 

So, we have discovered M - 1 additional degrees 
of freedom in the problem as stated. We also have 
discovered that our matrix is singular and must be 
handled with care. We will return to this momen- 
tarily. First, though, we should note that after finding 
6,(r), the next step in the calculation will be to 
impose the solvability conditions at the tip. But there 
are exactly M different conditions since we require 
&L(O) = 0 for all m! These serve to fix the M un- 
knowns and in the process to determine the allowed 
shape and growth velocity. The extra degrees of 
freedom which appear upon allowing non- 
axisymmetric shapes are exactly what is necessary to 
allow us to tind a solution which is completely 
smooth near the tip. 

We therefore proceed to study the case h4 = 2 as 
follows. We parameterize the shape by explicitly 
adding a zero mode piece S\“’ to the as yet unknown 
shift. We write for the fourfold piece 

cS,(r,) =fi6ioYr,) -l- I+$ b,,, 
i > 

(2OQ) 

for the discrete points r, = ir,,,/N, for i = 0, N - 1. 
At all r past r,,,,,, 6,,; is taken to equal zero. For the 
axisymmetric part we set 

6( )= 1+2 6 o r, 
C 1 PZ a.?. 

(2Ob ) 

We can use the fact that the asymptotic growth rate 
is linear in r to demand that all So,, for i 3 N are zero. 
We demand s,,,(O) = 0, reducing the number of un- 
knowns to N - I for both ~fl values. Finally, we must 
take into account the singular nature of the matrix by 
imposing the additional constraint that the actual r4 
growth coefficient is exactly f,; in practice this 
amounts to adding one additional boundary condi- 
tion at the last point, fixing not only the function but 
also its derivative. This constraint equation means we 
need one more variable, which in standard fashion 
takes the form of a lagrange multiplier. This lagrange 
multiplier ensures that the source term is indeed 
orthogonal to the zero mode subspace (the Fredholm 
alternative condition). Once this is done, the un- 

knowns are determined by solving the N - I equa- 
tions which arise upon evaluating both sides of the 
linearized steady-state equation at the points r,, i = 1. 
N - 1. Just as before. there are no equations at 
the tip. 

The above calculation then dete~ines the shift 
vector b(r, C#J) as a functional of the two unknowns 
y. and f, . This then determines the slopes at the tip 
of the axisymmetric and fourfold components of the 
shape. The accuracy of the answers is at least as good 
as that quoted previously for the axisymmetric linear- 
ized problem (see Table 2); in principle, any desired 
accuracy could easily be obtained by increasing N 
and r_ . A consistency check is provided by the value 
of the lagrange multiplier. In particular, the linear- 
ization we have performed is only valid if the source 
(the Gibbs-Thomson temperature change for the 
Ivantsov parabola) is orthogonal to the fadjoint) zero 
mode. If this is the case, the lagrange multiplier will 
be zero in the limit of infinite resolution, infinite box 
size and no computer roundoffs. Our numerical 
results do indeed indicate this to be true. We do 
not, however, have an analytic proof of this 
orthogonality. 

In Fig. 2 we have plotted 6;(O) vs ‘J~ at different 
values of the parameters f,, at p = 0.25. We note that 
the root is almost completely insensitive to the value 
off,. In fact, the root occurs at almost precisely the 
same point (0.0011) as it did in the previous two 
sections. In Fig. 3 we set y0 at this selected value and 
show s;(O) as a function off,. There is a root at a 
small but non-zero value. The set ro,ft determine the 
selected shape for steady-state motion. 

One of the more surprising features of our solution 
is that the shift vector grows at a faster rate (as a 
function of r) than does the Ivantsov paraboloid. 
Since the coefficient is small, the needle crystal will 
nonetheless remain approximately axisymmetric for 
quite a long distance away from the tip. In Fig. 4 we 

present the final shape of the solution, seen from two 
different viewing angles. One might be able to make 
a quantitative comparison between this picture and 
the ex~~mentally observed succinonit~le dendrite. 
but this has not been attempted. 

In Table 3, we present data for the selected param- 
eters for different Peclet numbers. at all 6 = 0.01. Of 

Pig. 2. &, at tip vs y0 at several values of fourfold parameter 
/,p3, all at p = 0.25. 
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Table 3. Non-axisymmetric selected yO. 
f, 

D YX flP’ 

0.05 0.0000497 0.0275 
0.000193 0.0257 
0.00112 0.0250 

particular interest is the approximate scaling 
yowa*p2,witha * = 0.02. This is the same number as 
we found in the axisymmetric version, demonstrating 
that this result does indeed provide a valid estimate 
for the full three~imensio~l system. A possible 
explanation of this indifference to non-axisymmetric 
terms is that the cos44 piece of the surface energy y 
is proportional to sin4 6 and hence is relatively unim- 
portant near the tip, which is where the selection 
occurs. 

So, our final chain of reasoning goes as follows. We 
can linearize the steady-state equation around the 
Ivantsov solution without any si~i~cant loss in 
accuracy; this was seen most explicitly in a com- 
parison of linear and non-linear approaches to the 
axisymmetric limit. Next, we truncate the full linear 
problem to just two modes, arguing that any im- 
portant effects due to the full three-dimensional 
nature of the shape will show up most strongly in a 
COS~#J term. Finally, we use the mode truncated 
equation to demonstrate that the result of the axisym- 
metric calculation is in fact quite accurate, perhaps as 
good as l-2%. In the end, all three estimates of U* 
are mutually consistent. And, the answer we arrive at 
agrees with the experimental determination by Huang 
and Glicksman [f 3] (c* = 0.019) to within a factor of 
two or so, and possibly much better depending on the 
exact value of the anisotropy. 

6. SIDEBRANCH WAVELENGTH 

The previous sections of this work have shown how 
to compute the velocity and tip shape of the selected 
dendritic crystal. Physical dendrities consist, of 
course, of sidebranches in addition to the steady-state 
structure. It is as yet unclear even in two dimensions 
whether sidebran~hing is due to a subcritical bifur- 
cation away from the steady-state or is generated by 
external noise. There is some evidence [26] that 
sidebranches are inherently noisy, with the concept of 
a unique wavelength true only as a first approxi- 
mation In any event, there is a peak in the spectrum 
of sidebranch oscillations and in any physical real- 
ization this peak will almost certainly have non-zero 
width. 

In a previous paper [ 141, we showed how one couid 
arrive at an estimate for this peak sidebranching 
wavelength. The idea is to consider the effect of 
adding noise to the tip region of the steady-state 
structure. This noise will be amplified selectively and 
there will be a maximally amplified frequency which 
will dominate the sidebranching whenever the noise 
is sufficiently broadband in nature. This calculation 
predicts wavelengths that are in agreement with the 
numerical simulations of two dimensional dendritic 
growth [8]. 

We now perform a similar estimate for the three 
dimensional case of interest here. For simplicity, we 
will restrict ourselves to the axisymmetric case; just as 
in earlier sections, we expect that the inclusion of 
nonsymmetric terms will not significantly alter the 
estimate. To do this, we start from the time de- 
pendent evolution equation, equation (3) and now let 

f2f) 
We use the quasistatic approximation which allows 
us to ignore the time dependence of 6 only in its 
~ont~bution to the velocity. Formally, this amounts 
to solving the heat diffusion equation by first shifting 
to the moving frame of the steady-state solution and 
then dropping the remaining time derivative. This 
approach can be shown to be valid for smali Peclet 
number. This approximation leads to the stability 
equation 

- A5”‘[6] P 

e~ofr’. *‘) - ZO(‘. 01- d 

r’dr’ 
d 

x 
i 
l&r’) - 6fr)l 

x 

where we have assumed a single frequency time 
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Fig. 5. Perturbation shape for imposed noise at the tip, 
p = 0.25, 0 = 8.5. 

dependence for the perturbation and o is measured 
in units of v2/4D. By A;) we mean that portion of the 
A,, which depends linearly on 6, as discussed in 
Section 4. 

We solve this equation in a very similar manner to 
how we did in Section 4. We discretize the curve and 
write a matrix representation for the equation by 
evaluating both sides at the discrete set of obser- 
vation points. The variables are 6, I 6(ri), i = 0, 
N - 1. We add noise to the tip by iixing 6(O) = 1, 
while maintaining 6’(O) = 0 via proper choice of 6, 
and 6,. We can then plot the function S(r) as a 
function of distance away from the tip for some 
particular frequency. 

A typical curve resulting from this calculation is 
shown in Fig. 5. The perturbation oscillates with 
increasing amplitude and approximately obeys w = k 
for spatial wavevector k. This type of wave is 
stationary in the laboratory frame of reference and 
has wavelength i = 2x/w. 

The basic method of selecting the sidebranch wave- 
vector relies upon the fact that different frequencies 
will be amplified at different rates. In particular, there 
is a maximally amplified frequency w* which, for all 
else being equal, will be the dominant sidebranching 
mode. In Fig. 6 we show graphs of the amplification 

x = 1.0 
. * . * 

. 
. 

. x = 0.75 * 
. . . 

9 : . m 

Fig. 6. Log amplification vs frequency, at several distances 
from the tip, at p = 0.25. 

versus frequency at several positions away from the 
tip; note that the fact that the peak does not shift very 
much means that o* is well-defined. Once this is 
done, the wavelength is given by E.* = 2n/o*. In the 
units we are using, the diffusion length is 1 and the 
tip radius is the Peclet number p. Therefore our final 
prediction for the ratio of sidebranch wavelength to 
tip radius is given by 

i. * 27[ 

;=pw*. R 

We determined o* in this manner for Peclet num- 
bers of 0.05, 0.1 and 0.25, all at t = 0.01; we obtained 
41.0, 21.0 and 8.5 respectively. The resultant values 
for this ratio are all about 2.9, to an accuracy of 10%. 
Note that this calculation predicts that the sidebranch 
wavelength scales as the tip radius as a function of 
undercooling. Both the scaling and the ratio agree 
with the measurements in succinonitrile [13]! 

We obviously could do more to improve this 
calculation. It would be nice to include the effects of 
non-axisymmetric terms as well as the effects of going 
beyond the linear order and coupling the stability 
shift to the steady-state shift computed earlier. Never- 
theless, it is reassuring that this simple approach 
succeeds in capturing fairly accurately the typical 
length scale present in the sidebranch train. A further 
challenge would be to try to predict in more detail the 
entire temporal structure of the branches to compare 
to the experiments of Ref. [26]. This would be easier 
if there were more information about the equilibrium 
crystal shape of ammonium chloride, which is the 
material used in those studies. 

7. CONCLUSIONS 

Over the past several years, a new approach to 
interfacial pattern formation has succeeded in expla- 

ining many of the qualitative features of these struc- 
tures. The only quantitative test to date [27], though, 
was in the Saffman-Taylor finger [28], a steady-state 
structure formed during multiphase fluid displace- 
ment. No quantitative comparison has been possible 
for solidification, either because of the three dimen- 
sional nature of the growth process or because of the 
lack of knowledge about material parameters or, 
most often, both. 

In this work, we have taken the first step towards 
applying our new “microscopic solvability” approach 
to the case of actual crystal growth. We studied free 
space dendrites in cubically anisotropic substances 
with a specific focus on succinonitrile. For this mate- 
rial, Glicksman and coworkers have, over the years, 
measured all the relevant material constants, care- 
fully studied dendritic growth as a function of under- 
cooling, and shown that kinetic effects not present in 
the Gibbs-Thomson equilibrium condition are negli- 
gible. Patterns in succinonitrile therefore serve as a 
vital test for our theory with no adjustable parame- 
ters or unknown constants to mask any inadequacy. 
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We have computed 6* as well as &s/R,, for the 
case of 1% anisotropy, obtaining results that agree 
with the corresponding measured values. Although 
this was the anisotropy value quoted in the initial 
studies on succinonitrile, later work suggests that the 
actual value is closer to half that. Our theory is 

crucially dependent on anisotropy to generate steady- 
state solutions and therefore our results are extremely 
sensitive to changes in the measured value of c. What 
we can say with certainty at present is that the growth 
velocity and sidebranch spacing are in qualitative 
agreement with the experiments and can be made to 
agree quantitatively by using the 1% value. Another 
possibility is that we need to include higher order 
anisotropies which have magnified effects in 
Gibbs-Thomson condition, as compared with the 
deviation of equilibrium shape from a sphere; this is 
due to the extra derivatives appearing in equation 
(12). This will certainly be true of materials that are 
more anisotropic than succinonitrile. 

What about other materials? There have been 
many generations of dendritic crystal growth experi- 
ments, but only in a few cases were they sufficiently 
controlled to permit direct comparision. A still puz- 
zling case is the experiment on pivalic acid [22]; this 
substance seems to be about 10 times more aniso- 
tropic than succinonitrile but cr* is only slightly 
larger. This could be due to kinetic effects not 
currently contained in the theoretical analysis, but the 
scaling with Peclet number at small undercooling 
seems to indicate that these effect are small. 

One possible explanation for the results on pivalic 
acid is, as we have already mentioned, that the 
anisotropy cannot be described simply by a cubic 
term. Some natural choices are the six fold term 

76 
_yt(1 -cos48)(1 -cos44) 

or eightfold terms proportional to cos 84. Note that 
the possible presence of terms like the above- 
mentioned sixfold piece requires measurements in 
more than one plane; y6 vanishes at 0 = n/2 and 
would not show up in the pictures taken in the 
principal plane. 

Previous theories of dendrite growth did not care 
in an essential way about the presence of crystallinity. 
In fact, the standard predictions of Q* by stability 
criteria were done in completely isotropic systems. 
This weakness of the theory became evident when 
simulations [29] and experiments [30] clearly demon- 
strated that crystal anisotropy is absolutely essential 
for obtaining dendrites. Nevertheless, the influence of 
the theory has meant that very little attention has 
been paid to detailed maps of the equilibrium surface 
energy versus angle. This will have to remedied before 
we can proceed with more detailed tests of the current 
approach. 

Aside from the case of solidification from the pure 
melt, there are other systems which could be studied 
with the methodology developed here. It would only 

require minor modifications to include the effects of 
unequal diffusion constants in the two phases or the 
effects of diffusing chemical impurities. A more 
difficult task awaits those who attempt to study 
directional solification [31]. Although there are some 
indications that a solvability mechanism is present 
[32], there are still many unresolved issues and we are 
far from quantitative predictions. The same should be 
said regarding lamellar eutectics [33] where even less 
has been accomplished to date. 

It is worthwhile to end with a brief historical aside. 
The problem of free space dendritic growth has been 
seriously studied for many decades. The efforts im- 
proved over time from the hopelessly inadequate 
maximal velocity prediction to the ad-hoc but qual- 
itatively successful marginal stability hypothesis, cul- 
minating in the present theory of shape selection via 
solvability. The major breakthrough which led to the 
formulation of this approach was made through the 
study of simplified local models of dendritic growth 
[34]. It turned out that these models did somehow 
accurately reflect the subtleties of pattern selection in 
a vastly simpler setting. Although these models have 
in a certain sense outlived their usefulness, in a 
broader view they remain as a paradigm of the 
usefulness of “toy” models as a means of generating 
new ideas which can then lead to quantitative 
predictions for realistic physical systems. 
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APPENDIX A 

We wish to derive the relationship between the equilibrium 
crystal shape and the surface energy, for small anisotropy. 

Let us assume that 

r(e.dJ)=ro[l +e(&4)1 (Al) 

for small 6. We parameterize the equilibrium crystal shape 
in spherical coordinates 

P (0.4 ) = id, + ch (0.4 )I. 

To proceed, we need to evaluate the expression for A,, 
equation (IO), to first order in L and then set Ar = 0. The 

terms which depend on g to this order are 

-2g a*g _ ” a*g (1 + ,‘;12)“’ 
-+&,+-$)” 342 rz;, 

-----+_-_ 
PO 

k 1 
-- 

d8 r(l + ;;2)’ r 1 642) 
Using the relationships 

co(r) = Jm, 

and sin 6 = r/pa, we can rewrite (A2) as 

(A3) 

Next, we evaluate the h dependent pieces. To do this. we 
must take into account the parametetization shift in the 
(z, r, 4) system caused by the normal shift h. In particular, 
the shift not only changes z but also redefines the coordi- 
nates. It is easiest to change temporarily to Cartesian 
coordinates; we can write explicitly the shifted variables 

1 
i=zfvmPOh 

_ 

i=x-&z,h 

9=y&==$+h. 
Consider the change in 

(A4) 

From the above we can calculate that 

A similar computation for the y derivative and evaluation 
of the derivatives leads to the result 

% = +z + ,/mp,$h. (‘46) 

Substituting this expression into the first term in equation 
(10) for the Gibbs-Thomson shift allows us to identify the 
first set of terms linear in h 

a*h p0 + F pa - 3r? I 
a+2 rz dr p,r 1 (A7) 

We also must compute the change due to the altered 9 
appearing in the same term. This piece is easily seen to be 
the correction to 

l/P, g+g 
( .> 

Evaluating this term, keeping the linear term in h and 
adding to (A6) leads to the final expression 

CYO 
-2h d*hp;-r* a2hpo ahpi-2rz 
__--- 

p0 ar* p0 adZr* ar pOr 1 648) 
Comparing this to (A3), we must clearly have h = g as the 
equilibrium condition. 

This result allows us to estimate t for cubic crystals by 
measuring r(6) in one plane. For such a crystal, 7 is 
described by equation (2) and therefore by the results of this 
appendix 

r(&+ =O)=r,[l +4c(cos40+sin46)] 

= ro[l + 3c + t cos (46)] (A9) 
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we can drop the small correction (the 3t) in the isotropic 
piece. Then the measured four-fold anisotropy in the r(6) 
plot directly determines the anisotropy. Glicksman and 
coworkers [21.22] have shown that for succinonitrile, 
r =r,(l +E c0s4e), with 0.005< =f < =O.Ol. 

APPENDIX B d4’ 

COP - 2 4’ 
X 

( 1 -asinz#‘)y‘ 
In this Appendix we present more details of the linearization 
described in Section 4 of the text. We start with the right 

This is the supplemented by the results for k = 0, 

hand side of the evolution equation. We must perform the 
E(&)/(l -a) and for k = 1, l/a(K(&)- E(&)]. 

integrals 
There is also an expression in terms of hypergeometric 
functions 

with 

4rr’ 
a=--, b= 

b* 
(r + r’)* + [z&) - z&‘)l* 

for the cases n = 1, 3. Once these am done, the right hand 
side of the shape equation picks up tetms of the form which 
follows from equation (15) 

{I,,, - Mr) - &‘)M,, - 1/2&,,)fMr’) 

- {I,,, - Mr) - .cWll&, - Wd W) VW 

in addition to the piece from the remaining finite integrals 
(given later). Note that the n = 2 term has can&led out of 
this expression and need not be computed. 

These integrals are all elliptic functions multiplied by 
polynomials. Let us shift 4 ’ by Q and also absorb a factor 
of l/2. This leads to 

s =I2 
Im.= = cos 4mq5 

2 d.$ ’ cos Smi$ ’ 
- 
b”x (&T’ii&Fr’ 

(B3) 
0 

It is always possible to express cos &m#’ as a power series 
of the form 

cos 8mr$ ’ = E C,COS’*tj’ 

t-0 

and each integral can be handled separately. For n = 1, 
we can use the recursion formula (see Gradshte~ and 
Ryzhik f35.l) 

s 

xi2 

0 
d+$-$p 

=(E)(y) 

a/* 

X 

s 0 
W’ JCZ 

‘ +~~)~~) 

5 

x/2 t 

X 
dm$g&- (B4) 

0 

For k = 0, the integral is the complete elliptic function 
K(,,&) and for k = 2, the difference of elliptic functions 

For small values of a, it is useful to recast these formula in 
terms of hypergeometric functions; one can prove that bI,,,, 
equals 

x F(4m + 1/2,4m + l/2; 8m + 1; a) 

A similar set of formulas is valid for R = 3. The recursion 

formula (B4) is replaced by 

s an 
d#’ 

0 

s r/2 

X W 
0 

F(4m + 1/2)r(4m + 3/2) a” 

r(l/2)r(3/2) F(8m + I)(1 -a) 

x F(4m - lj2,4rn + 1/2;8m + 1;a) 

This completes the evaluation of the required integrals. 
It is important to understand the singularities in (B2) near 

r wr‘. This region of integration corresponds to 
a-l+O[(r - r’)*]. The I,.,, are all quadratically singular, 
being proportional to l/(1 - a). This singularity is multi- 
plied by a prefactor 

@&‘) - Urlllr,@) - z&‘)l 
which vanishes quadratically. The limiting process gives rise 
to the value of the integral qua1 to 

fJzo(r) &Jr) 
drdr 
1 + a;b(r) H *’ 

dr 

There is also a finite piece arising from &,(r)(I,,, - I& 
There is therefore no need to perform additional sub- 
tractions for the remaining integral over r ‘. 

The parts we have just evaluated must be added to the 
contribution of the residual terms remaining after the 
subtractions. If we define 

R,., = 
m-1 

ewd-e-& z (--&j/i! (B6) 
J-0 1 

and d, = d(d, = qh ’ + n/2), the residual contribution is 

I&,,, -[ro(r) - ~o(~‘ll(4,, + R2.,,,W#) 

- Vko - [zo(~) - ~o(~‘~l(~3,0 + ~2,0Wm(~). (B7) 

All these pieces are explicitly finite and the integral over Cp’ 
is done via the trapezoidal rule. The convergence in the 
number of points is exponential since we are dealing with a 
periodic function, and in practice a small number of points 
(_ 20) provides extremely accurate results. 

We now turn to the left hand side of the equation which 
involves Ap. In principle, this is quite straightforward; all 
we need do is substitute the above expression for z into the 
general formula for A,, given in equation (10) and expand 
earthing to linear order in a,,,. This involves the evaluation 
of the changes in various constructs 

az=i ( -r/p+CS~cos4m~ 
> 

+ cj C - 4m/rS, sin 4m+ 

B =tan-‘(rip)-~r6acar4rn# 

(a =Q i- l/r2C4m6,sin4md 



where 8 and 4 are the spherical angles made by the interface The only singularities involve the A terms. and these are 
normal. is d/dr and # is the interface parameter chosen as handled by replacing Sk with 6,(r) - 66(O), as described in 
the azimuthai angle of the original axisymmet~c solution. the text. 
Similarly, 

Qrr = -2/p +C6”,cos4m4 + l/rC6;cos4m$ 
APPENDIX C 

-1 16mzirzS,cos4m+. 
In this Appendix we demonstrate the fact used in Section 5 
that a linear shift in z (r. d, ) of the form 6 (r, #J ) = r m cos rn4 

From these expressions substitution into equation (10) does not contribute to the integral on the right hand side of 

determines the linear Gibbs-Thomson shift. 
the steady-state shape selection equation. Another of stating 

It is useful to define the angle &, as tan-’ (r/p). We group 
this result is that the Ivantsov solution has an infinite 

all the terms making up A, into five distinct pieces number of zero modes of this form. This result was crucial 
in providing enough degrees of freedom to ensure that 2: & 
could be set equal to zero at the tip for general non- 

- Ap = A& + Bg:! + ‘3, + ‘k, + Dg, axisymmetric 2. 

where 
Before starting our derivation, we would like to note that 

A = cos2 So c f!L! cos 4m@ 

this result must be true for m = 0. I by translation invari- 
ance and for m = 2 by the existence of the Horvay-Cahn 

P gener~i~t~on of the Ivantsov paraboloid of revolution to 

B =cos2@o~S~cos4md, 
more general ellipsoidal paraboloids. We have not discov- 

C, = cot2 8,x y sin 4mf$ 

ered any deep reason why this continues to be true for 
higher m in the linear approximation, but it is true non- 
etheless. In the m = 0, 1 &es, the result is clearly valid to 

cc = cot2 e, x 
16m26, 
2 cos 4m# 

P 
4m& 

D =COt*$~---y sin 4mz$. 
P 

Then, the coefficients are given explicitly as 

g, = cos e, cot 8,(2 - 3 cos* @,)y 

+ (3 sin S,cos2 & - cos @, cot e,) 2 

-cos’eo 
ay a+ ( > tot2 e, a”y -- g+$ + $ine, a$2 

tote, 6'; 
--- 

sin e, &i3$ 2 

( > y iC.2 g,= -cos~o 
aa2 

~‘.I pj 

g, = ~0~3 e. & - cos e, Cot e. aeiiB 

cot e. a’; 
+7 - + (2 cos e, Cot2 0, 

sin e, i?$ 3 

+c0seo+~0s~eof7.; 
84 

g, = cos e, Cot 0,; + cos coy 
cot 0, azjl 

x [(x’2+f2+p)& +2xX’ 

+-- 
sin e. 13$ 2 

+2yy’]A(x.x’,y,f.r) (C3) 

where A is just the difference in the shift vectors ii after all 
i_‘y 

g,=2cOseow -2c0seo~0t8,~ 
the changes in variables. The final t~nsformation defines 

al$‘ R = (x’~ + f2 i-p)&. The expression then becomes 

The derivatives of y can be evaluated using the explicit 
expression given in (2). This completes the evaluation of A,, . 

_ e - (I’? + 8.2, e - ,‘r t Zxn + ?yt ,2 

Finally, it is easy to see how to put this result into the 
block matrix form needed in the main body of the text. 

x (T + 2x-x’ + Zyy’)A(x, x’.r’, y’. T) (C4) 

Terms involving A, B and C, are proportional to CDS 4rndr ; with A derivable in the obvious manner from A. Note that 

the ~or~s~nding coefficient functions have pieces indepen- the integral over T can be extended to the range 

dent of # and pieces proportional to cos 4#. The resulting - cx) < T C co; any sign change in T can be absorbed to a 
multiplications contains terms either still proportional to sign change in x’ and y’. 
cosrlmd, or to Let us focus on the structure of ,?,,, which arises from 

choosing the shift S, = r”cos rn4 = Re(re’“)“‘. The various 
shifts and redefinitions combine to yield 

In this manner the surface energy couples different blocks 
of.the matrix. The same thing happens for the other terms 

2, = Re[( p’Te’$’ + r@‘)nl - (rc’*pll (C5) 

with the cosines replaced by sines, yielding terms 
where 

sin4rnd sin 44 = - 1/2[cos4(m + l)# -cos4(m - 1141. 
pk7;I-.. 

r-+p 
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all orders in 6 ; for m = 2, higher orders in 6 can always be 
absorbed by changing the undercooling. We have not yet 
investigated if there is any generalization of these nonlinear 
effects to higher m. 

Let us start with the integral operator in the form given 
in equation (3) specialized to steady-state motion at velocity 
a. Up to an irrelevant constant, this can be expressed as 

v dx’dy’dr 

I,, 
z 3!2 

-[(x -X’)2.+(). -y’)?+(z -r’-rr12] 

4Dr 
(c-1) 

[ 1 
We now set z(x, y) = - (x2 + ~92~ i- d(.r. ,r) and expand. 
With the usual definition of p = pt,‘2D and with resealing 
lengths and times by 2p and p2 respectively. we find 

- [(x - s’)? + (J, - .r’Y 

J” 

dx’ dv’ dr 
P A x exp 

+(.r”+?.“-_.r’--~+PT1’] 
T3’2 7 7 

x (x’2 + y” - _$ -0) 
Following Pelce and Pomeau [16], we shift the integration 
variable x’, y’ by x, y respectively and then rescale then 
by 4. This leads to 

xexp~-[(x’2+y’2+p),i;]+2.v.~‘+2r:1’):: 
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The binomial expansion of this expression gives 

,f, b!n.kr m-‘(p’T)‘cos[k4’+(m -&)$]. (C6) 

The final stage in the proof involves shifting T in the 
integral by the factor 2xx’+ 2yy’ resulting in a pure 
Gaussian exponent in T. This shift can equally well be 
written as rr’ cos(4 - 4’). The integrals over x’, y’ can be 
rewritten in terms of an angular integral over 4’ and one 
over r’. In this format, the factor multiplying the Gaussian 
in T is 

f bm.krm-k (p’)‘[T-rr’cos(4 -q5’)yl-’ 
k=l 

x cos[h$’ + (m - k)f#J] (C7) 

where the original l/T has been used to reduce the power 
of the T dependent piece in the above sum to k - 1. Now 
imagine expanding the expression [T - rr ’ cos(4 - 4 ‘)p - ’ 
in a binomial series. All the terms separately integrate 
to zero! This is true because they are being integrated 
versus cos [k4’ + (m - k)t$] and different Fourier modes are 
orthogonal. This completes the required proof. 

As stated above, it is not clear to us what happens to 
higher order in S, and therefore we do not know if this 
result can be extended to give additional solutions of the full 
non-linear zero surface tension problem. It is clear that the 
linear approximation must break down eventually as we 
move away from the tip because the shift vector grows at 
a faster rate that the underlying solution. This does not seem 
to affect the solvability mechanism, which in actuality is 
something that happens very close to the tip where the 
linearization is always valid. 

APPENDIX D 

In this Appendix, we review and extend the method devel- 
oped in Ref. [9] for finding the asymptotic shape of the 
needle crystal in the presence of non-zero surface energy. It 
should be noted that the results quoted in that work for two 
dimensions are in fact incorrect; this was pointed out by Van 
Saarloos et al. in Ref. (361 and is due to the fact that the shift 
S _ l/r has a singularity near the tip which therefore 
becomes the most important region of integration on the 
right hand side of the shape equation. This is not a problem 
in three dimensions where 6 grows at least as fast as r and 
the tip region makes no significant contribution. 

We start from the steady-state equation (4). first for the 
axisymmetric limit. As shown in [9], the leading term on the 
left hand side of the equation arises from the second piece 
of A:) in (18); asymptotically this term equals y,,/r and all 
other pieces are either 0(l/r3) or O(a/rJ). To linear order 
in 6, the right hand side has been derived in equation (15) 
as 

r’ dr’ 
e~o(i. 6) -Mr. 01 -d 

d 
Wr’) - a(r)1 

x C 1 _ zdr’) -z&) 
d 

(Dl) 
_ 

For large distances, the leading contribution to the integral 
comes from r’ < r. In this region, we can use the expansion 

j.2 - r’z 
dz -++p 

r2+rrZ-2rr’cos#’ 

2P > rz_r*z . PI 

The angular integrals can all be done in terms of modified 
Bessel functions I,. Changing variables to y I (r - r’)/ 
(r + r’), we find the general result 

a(r) “p*dq 
- j- --+I -s2)FmSq) 49 o 

x {l,(z) e-‘p(l - q2) - I,(z)e-‘[2q -p(l + $)I} (D3) 

where z = p(1 - q2)/2q and the function F,(q) is defined to 
be 1 - 8(r’)/8(r), for any power d _ rm; this can clearly be 
reexpressed as a function of q via r’jr = 1 - q/(1 + 4). 

From this last expression, it is clear that the generic 
behavior of the integral operator is to reduce by 2 the power 
of r appearing in the shift 6. To equate both sides of the 
equation, we therefore need to set 6 _ r. Since there is no 
l/r? term on the left hand side, the next door in S would be 

.1/r and case be neglected as fast as the linear version is 
concerned. If one is interested in the non-linear axisym- 
metric theory, there is a term of this type induced to second 
order in 6 and therefore the next correction to linear is log r. 
This has been discussed in [9] and will not be repeated here. 

Our main interest is in extending these computations to 
the two mode approach of Section 5. We have already seen 
in Appendix C that S(r) = r4 cos 44 does not contribute to 
the integral on the right hand side. So, our asymptotic 
analysis starts from the assumption that 

6:(r) =j,r4+ O(r’). 

The leading term on the left hand side can be found from 
the calculations in Appendix B. The leading term occurs in 
gdCc, which asymptotically equals 4(4 + 3c)py& cos 44. 
Note that the other terms formally of this order 

cos6, 
aY 

C”-@ +c,(Y -Y(dJ =O)) 

cancel to zero; this means that there is no axisymmetric piece 
to this order in r. 

The linear tenn in r must be cancelled by suitable choice 
of the cubic term in 6,. which will generate a linear term 
upon substitution into the integral. To find this coefficient, 
we need to generalize in (D3) to non-axisymmetric 6. 
Following the same reasoning, we can derive the general 
formula for the integral over the shift 6(r, 4) = r”cos4mrj 
as A,,mrn-2 cos4m#1 with the coefficients given by 

I 

-]2q -p(l +q’a[s~z)-(~~~~~z~]}. (W 

These integrals can all be evaluated numerically as functions 
of p. This can be used to cross check the requirement that 
A -0. 4m.m - 

Using the above formula, we can continue the process of 
computing the asymptotic shape. The first axisymmetric 
term is again linear in r, now arising both from AZ) and f, . 
Sf has terms of all orders below quartic. These results can 
then be used for the numerical analysis as described in the 
text. 


