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INTRODUCTION

Let G be a connected reductive algebraic group defined over an
algebraically closed field F of characteristic not 2. Denote the Lie algebra of
G by g.

In this paper we shall classify the isomorphism classes of ordered pairs of
commuting involutorial automorphisms of G. This is shown to be indepen-
dent of the characteristic of F and can be applied to describe all semisimple
locally symmetric spaces together with their fine structure.

Involutorial automorphisms of g occur in several places in the literature.
Cartan has already shown that for F=C, the isomorphism classes of
involutorial automorphisms of g correspond bijectively to the isomorphism
classes of real semisimple Lie algebras, which correspond in their turn
to the isomorphism classes of Riemannian symmetric spaces (see
Helgason [117). If one lifts this involution to the group G, then the present
work gives a characteristic free description of these isomorphism classes. In
a similar manner we can show that semisimple locally symmetric spaces
correspond to pairs of commuting involutorial automorphisms of g.
Namely let (go, ) be a semisimple locally symmetric pair; i.e., g, is a real
semisimple Lie algebra and g€ Aut(g,) an involution. Then by a result of
Berger [2], there exists a Cartan involution 6 of g¢, such that 66 =0¢. If
we denote the complexification of g, by g, then ¢ and 0 induce a pair of
commuting involutions of g. Conversely, if o, 8 € Aut(g) are commuting
involutions, then ¢ and § determine two locally semisimple symmetric
pairs. For if u is a ¢- and 6-stable compact real form with conjugation t,
then (gy., 0lgaq.) and (g,., 0]g,.) are semisimple locally symmetric pairs
where

8o = {XeglOt(X)=X} and 8,.={Xeglot(X)=X}.
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These pairs are called dual. To get a correspondence with these locally
symmetric pairs we consider ordered pairs of involutions and let (6, o)
correspond to the first and (g, ) to the second.

So let g, 0 € Aut(G) be commuting involutions and let G, resp. G, denote
the group of fixed points of ¢ resp. 6. For a 6- and #-stable torus T of G we
write

T} =(TnG,)°  and Ty ={teT|0()=1""}"

The second torus is called a #-split torus of G. Similarly we define 7} and
T, . The torus (T, ); = {te T|a(t)=0(t)=1t""'}" is called (a, 0)-split and
is denoted by T, ,. Denote the set of characters, the set of roots, and the
Weyl group of T with respect to G by, respectively, X*(T), @(T), and
W(T). We use the notation % for the set of Int(G)-isomorphism classes of
ordered pairs of commuting involutions of G and the notation ¢(T) for the
set of W(T)-conjugacy classes of ordered pairs of commuting involutions of
(X*(T), &(T)), where T is a maximal torus of G.

To classify these isomorphism classes of ordered pairs of commuting
involutions we construct a map from % to ¢(T) (for a fixed maximal torus
T) and classify its image and the fibers. In order to construct such a map
one could take in any class ¢ of € a representative (o, §) such that 7 is
o- and f-stable and consider the W(T)-conjugacy class of (¢|T,8|T).
However, this leaves too much freedom for the choice of (g, §). Different
representatives of the class ¢ in €, stabilizing 7T, can induce different
classes in %(7). Hence we have to demand more properties of the
representative.

In the case of a single involution (i.e., 6 =6) one has two possible
choices. Namely one can require of the representative (6, 0) of ¢ that T is
a maximal torus of G, or that T, is a maximal #-split torus of G. Cartan
used the first choice to classify the real semisimple Lie algebras. For
Riemannian symmetric spaces however the second choice is more natural,
because one obtains also the restricted root system of the symmetric space,
which coincides with the non-zero restrictions of @(T) to T, . Araki[1]
followed this method to classify the Riemannian symmetric spaces.

To classify the semisimple locally symmetric pairs, Berger [2] made a
choice analogous to that of Cartan, but did not obtain any results concern-
ing the fine structure of those spaces. Qur choice is similar to that of Araki.
To be more specific, we call a pair (g, 8) normally related to T if T is 6- and
O-stable and if T, ,, T,, T, are respectively maximal (o, 6)-split, o-split,
and O-split. As in the case of a single involution, ®(T, ,) is the natural root
system of the corresponding symmetric pair. Every class in ¥ contains a
pair (o, ) which is normally related to T (see (5.13)). Denoting the center
of G by Z(G), we have furthermore:
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5.16. THEOREM. Let (¢,,0,) and (0,,0,) be pairs of commuting
involutorial automorphisms of G, normally related to T. Then (0,,0,)| T and
(63, 0,)| T are conjugate under W(T) if and only if there exists e T, with
£2e Z(G) such that (65, 0,) is isomorphic 1o (¢,, 8, Int(g)).

The elements ¢ e T, , such that &’ € Z(G) are called quadratic elements of
T, ,. We can define now a mapping

p: € = E(T)

(see (5.19)). Denote the image of p by (¥ and the fiber above p((o, 8)) by
%(o, 8). The ordered pairs of commuting involutions of (X*(7), (7)),
whose class in €(T) is contained in ¥, are called admissible.

The W(T)-conjugacy classes of admissible pairs of commuting
involutions of (X*(T), @(T)) can be described by a diagram, which can be
obtained by gluing together two diagrams of admissible involutions under
a combinatorial condition on the simple roots (see (7.11) and (7.16)).
From this one obtains all the fine structure of the corresponding semi-
simple locally symmetric pair.

As to the classification of the classes in €(a, 0), it suffices to give a set of
quadratic elements of a maximal (o, )-split torus 4 of G, representing the
classes in é(o, 8). These quadratic elements can be described by using a
basis of &(4). Namely let 4 be a basis of @(4) and {y;},. 7 a dual basis in
X,(A), the set of multiplicative one-parameter subgroups of A. If
e;=7,(—1), Aed, then e2=e. There exists a subset 4, <=4 such that
{€,}.c4, is a set of quadratic elements representing the classes in %(a, 0).
This subset 4, of A is determined by the action of the restricted Weyl
group W(A) on the group of quadratic elements of A and the signatures of
the roots in 4 (see (8.13) and (8.25)). This completes the classification.

A difference between the above classification of symmetric spaces and the
one by Berger [2] is that we give the isomorphism classes under both inner
and outer automorphisms, while Berger only classified the semisimple
symmetric spaces under the action of the full automorphism group.

Finally we note that every class %(c, ) contains a unique class of stan-
dard pairs (see (6.13)). This seems to be the natural class to start with in
the analysis on these symmetric spaces. For example, if ¢ =0, then the
standard pair in (6, 8) is (8, 8), which corresponds to a Riemannian sym-
metric space and the other pairs in %(6, 8) corespond to the K, -spaces
described in [18]. Also all the relations between the restricted Weyl groups
for the various root systems (see (2.7) and (6.15-6.18)) follow immediately
from the properties of this standard pair.

A brief summary of the contents is as follows. After some preliminaries in
Section 1. We derive all the properties needed about root systems with
involutions in Section 2. The Sections 3 and 4 deal with the classification of
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single involutorial automorphisms. The method of classification, presented
here, simplifies the work of Araki[1] and Sugiura [22, Appendix]. In
Section 5 we characterize the isomorphism classes of pairs of commuting
involutions on a maximal torus as above. In section 6 we show that for a
maximal (g, 0)-split torus 4 of G, the set &(A4) is a root system and we
introduce the standard pair. The classification of admissible pairs of com-
muting involutions of (X*(T), &(T)) is treated in Section 7, where also all
the fine structure is derived. A set of quadratic elements characterizing the
classes in %(o, 0) is given in Section 8. In Section 9 we deal with the
isomorphism classes under the full automorphism group and give also a list
of the associated pairs (o, 66) and (8, 66). These will be of importance for
the analysis of the corresponding symmetric spaces. Finally the relations
between ordered pairs of commuting involutions and semisimple locally
symmetric spaces is discussed in Section 10.

Recently Oshima and Sekiguchi [19] also determined the restricted root
system of a semisimple locally symmetric pair, based on the classification of
Berger. Some of this fine structure of a locally semisimple symmetric pair
can be found also in Hoogenboom [13].

1. PRELIMINARIES AND RECOLLECTIONS

1.1. Let F denote an algebraically closed field of characteristic #2.
We use as our basic references for algebraic groups the books of
Humphreys [14] and Springer [24] and we shall follow their notations
and terminology. Throughout this paper G will denote a connected reduc-
tive linear algebraic group, defined over F. For any closed subgroup H of
G, denote its Lie algebra by the corresponding (lowercase) German letter
and write H° for the identity component. The center of H will be denoted
by Z(H).

For a subtorus T of H let X*(T) denote the additively written group of
rational characters of T and X ,(T) the group of rational one-parameter
multiplicative subgroups of T; ie, the group of homomorphisms (of
algebraic groups): GL, —» T. The group X*(T) can be put in duality with
X, (T) by a pairing (-, -)> defined as follows: if y € X*(T), e X _(T), then
x(A(1)) = t<**> for all te F*. The torus T acts on the Lie algebra b of H by
the adjoint representation. For a € X*(T) let b, denote the weight space for
the character « on §) and let &(7T, H) denote the set of roots of H with
respect to T; ie., (T, H) is the set of non-trivial characters a € X*(T) such
that b, #0. Set W(T, H)= N, (T)/Z,(T), where

Ny(T)={xeH|xTx ' T},
Zy(T)={xeH|xt=txforall te T}.
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If H is connected, W(T, H) is called the Weyl group of H relative to T. It is
a finite group, which acts on 7, X*(T) and X _(T). Moreover, the set of
roots @(T, H) is stable under the action of W(T, H) on X*(T). In the case
H = G we shall write @(T) for &(T, G) and W(T) for W(T, G).

If T is a torus of G such that &(T) is a root system in the subspace of
X*(T)®; R spanned by &(T) and if W(T) is the corresponding Weyl
group, then for each ae ®(T) the subgroup G,= Z;((Ker «)°) is non-
solvable. If we now choose n,e N; (T)—Z; (T) and let s, be the element
of W(T) defined by n,, then there exists a unique one-parameter subgroup
a¥ € X, (T) such that (o, ¥ > =2 and s,(x)=x— {2 > (x€ X*T)).
We call a” the coroot of o and denote the set of these ¥ in X (T) by
@ (T). We have a bijection of &(T) onto & (T).

For x, ye G denote the commutator xyx'y~' by (x, y). If 4, B are
subgroups of G, the subgroup of G generated by all (x, ¥), x€ 4, y€ B will
be denoted by (A, B).

1.2. Involutorial automorphisms of G. Let 6 e Aut(G) be an involutorial
automorphism of G; ie, 6°=id. We denote the automorphism of g,
induced by 6 also by 6 and write K=G,= {xe G|0(x)=x} for the group
of fixed points of 0. This is a closed, reductive subgroup of G (see Vust [31,
Sect. 1]). If F=C then G/K is the complexification of a space G(R)/K(R)
with G{R)-invariant Riemannian structure. Here G(R) (resp. K(R)) denotes
the set of R-rational points of G (resp. K.)

For a f-stable subgroup H of G let Sy(H)= {hB(h)~'|he H}. In the case
H =G, we shall also write S, (or §) for So(G). The group G acts transi-
tively on S, by g* x=gx0(g) "

1.3. PROPOSITION. S, is a closed connected subvariety of G and the map
g — g * e induces an isomorphism of affine G-varieties: G/K — S,.

This is proved in Richardson [20, 2.4]

1.4, 0-split tori. Let T be a f-stable torus of G. (Recall that according
to a result of Steinberg [27, 7.5], there exists a 6-stable torus T of G.) If we
write T =(TnK)®and T, = {xe T|6(x)=x""1° then it is easy to verify
that the product map

u: Ty xTy » T, ulty, t)=1tt,

is a separable isogeny. So in particular T=T4 - T, and T} n T, is a finite
group. (In fact it is an elementary abelian 2-group.) If T is a torus in a
6-stable subgroup H of G, then the automorphisms of @®(T, H) and
W(T, H) induced by 6| H will also be denoted by 0.

A torus 4 of G is called 0-split if (a)=a ' for every ae A. These tori
are called 8-anisotropic in Vust [31] and Richardson [20]. We prefer the
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former terminology, because if F=C, then A is a split torus, defined over
R, with respect to the real structure defined by 0z, where 7 is the complex
conjugation with respect to a compact real form of G invariant under 6.

If 8 +#1id, then non-trivial #-split tori exist (see Vust [31, Sect. 1]), so in
particular there are maximal ones. The following result can be found in
Vust [31, Sect. 1]:

1.5. PROPOSITION. Let A be a maximal 8-split torus of G. Then:
(1) A is the unique B-split torus of Z;(A).
(2) (Z4(A), Zs(A))<K® and Z;(A) is the almost direct product of
Z,(A4)° and A.
(3) If T is a maximal torus of G, containing A, then T is O-stable.

Moreover, all maximal 0-split tori of G are conjugate under K° and so are all
maximal tori of G containing a maximal 0-split torus of G.

1.6. PrROPOSITION. Let A be a maximal 6-split torus of G and let E,
denote the vector subspace of X*(A)® ; R spanned by P(A). Then P(A4) is a
root system in E, and the corresponding Weyl group is given by the restric-
tion of W(A) to E,. Moreover, every element of W(A) has a representative in
Nio(A).

For a proof, see Richardson [20, 4.7].

Note that if 7' is a maximal torus of G containing A4, then ®(A4) coincides
with the set of restrictions of the elements of @(T) to 4.

2. INVOLUTIONS OF RoOT DATA

To deal with the notion root system in reductive groups it is quite useful
to work with the notion of root datum (see Springer [23, Sect. 1]).

2.1. Root data. A root datum is a quadruple ¥=(X, P, X", P"),
where X and XV are free abelian groups of finite rank, in duality by a
pairing X x X¥ — Z, denoted by (-, ), @ and @ are finite subsets of X
and XV with a bijection a »a¥ of @ onto &Y. If xe® we define
endomorphisms s, and s,. of X and XV, respectively, by

s(=x—<La¥ e s(A)=1—K0 4> a”.

The following two axioms are imposed:

(1) Ifaed, then {a,a" >=2.
(2) Ifaed, then s (PP, 5, (P )= D",



ALGEBRAIC GROUPS WITH INVOLUTIONS 27

It follows from (1), that s2=1, s,(a)= —a and similarly for s,.. Let Q be
the subgroup of X gencrated by @ and put F=0®, R, E=X®, R. Con-
sider V" as a linear subspace of E. Define similarly the subgroup 0 of X'~
and the vector space VY. If &3 (¥, then @ is a not necessarily reduced
root system in V in the sense of Bourbaki [5, Chap. VI, No. 1]. The rank
of @ is by definition the dimension of V. The root datum ¥ is called
semisimple if X< V. We observe that s,. ='s, and s, (8)" =s,.(8") as
follows by an easy computation (cf. Springer [23, 1.4]). Let (-,) be a
positive definite symmetric bilinear form on E, which is Aut(®) invariant.
Now the s, (2 e @) are Euclidean reflections, so we have

<X7av>=2(a’a)‘l’(xaa) (XEE,&€¢).

Consequently, we can identify @ with the set {2(x, ) 'a|ae @} and o
with 2(e, ) 'a. If ¢eAut(X, d), then its transpose ‘¢ induces an
automorphism of &V, so ¢ induces a unique automorphism in Aut(¥), the
set of automorphisms of the root datum ¥. We shall frequently identify
Aut(X, @) and Aut(¥).

For any closed subsystem &, of @ let W(®,) denote the finite group
generated by the s, for ae @,.

2.1.1. ExampLe. If T is a torus in a reductive group G, such that &(7)
is a root system with Weyl group W(T), then the root datum associated to
the pair (G, T) is: (X*(T), &(T), X, (T), ¢v(T)), where X*(T), &(T),
X,(T), and @Y (T) are as defined in (1.1). In particular, if T is a maximal
torus of G or T=A4 a maximal -split torus of G, as in (1.6), then the
above root datum exists.

2.2. Involutions. Let ¥ be a root datum with @ # (¥, as in (2.1), and let
o, 8 € Aut(¥) be commuting involutions; i.., 0> = 07 =id, 60 = fo. We now
derive some properties of the set of restrictions of & to the common
(—1)-eigenspace of ¢ and 6, which will play an important role in our
classification.

Let Xy(o,0)={yeX|y—a(x)—0(x)+a8(x})=0} and let Py(o,0)=
@ Xy(o, 0). Clearly Xy(0, 6) and Dy(a, ) are o- and f-stable and Py(a, 0)
is a closed subsystem of @. We denote the Weyl group of @y(a, 8) by
Wy(o, 8) and identify it with the subgroup W(®.(a,8)) of W(d). Put
Wi(o, 8)={we W(®)|w(Xy(o, 8))=X(0,0)}, X, g=X/X,(0, 0) and let n
be the natural projection from X to X, ,. We frequently identify X, , with
{xeX|o(x)=0(y)= —x}, such that m(y) corresponds to i(y—o(x)—
8(x)+ a0(x)). Every we W,(o, 8) induces an automorphism n(w) of X, ,
and n(wy)=n(w) n(x) (xeX). f W, o= {n(w)|we W,(a, 08)}, then W, ,=
W (o, 0)/W(o, 8) (see Satake [22, 2.1.3]). We call this the restricted Weyl
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group, with respect to the action of (g, #) on X. It is not necessarily a Weyl
group in the sense of Bourbaki [5, Chap. VI, No. 1].

Let @, o= n(® — P,(o, 0)) denote the set of restricted roots of @ relative
to (a, 6). We shall mainly be concerned with the case that @, , is a root
system with Weyl group W, , (see, e.g., (1.6), where o =6).

2.3. DerINITION. An order > on X is called a (o, 8)-order if it has the
following property:

if yeX, x>0, and x ¢ X,(0, 6) then o(y) <0 and 0(y)<0.

If > is a (o, 8)-order on X, then for ye X we have
x> 0<either y —o(x)—60(3) +00(x) >0 or n{y)=0 and x>0.

So a (g, 8)-order on X induces orders on X,(o, 0) and X, , and vice versa.

A basis 4 of @ with respect to a (o, 8)-order on X will be called a
(0, 0)-basis of ®. We then write Ay(o, 0)=4NPy(0,0) and 4,,=
(4 — Aq(o, 8)). (We call 4, 4 a restricted basis of D, 4 with respect to 4.) It
is not hard to see that Ay(o, 8) is a basis of D,(s, 6) and that a similar
property holds for 4, 4.

24. LeMMA. The elements of A, 4 are linearly independent. Moreover,
every Ae @ 4 can be expressed uniquely in the form
A=+ Y m,u with m,eZ, m,>0.
puedsp

For a proof see Satake [22, 2.1.6].

Note that W,(g, ) permutes the (o, f)-bases of @; ie., if we Wy(o, 0)
and 4 is a (g, 8)-basis of @, then w(A) is also a (o, 8)-basis of &. Moreover,
we Wy(o,0) if and only if a(w)=id. This is again equivalent to
n(w)(d,.) =4, as is easily seen from the following useful result:

2.5. LEMMA. Let 4, 4’ be (a, 0)-bases of @ such that A, 4=4, 4. Then
A'=wy(4), where wye Wy(0,0) is the unique element such that
woldolo, 8}) = 4o(a, 6)".

For a proof see Satake [22, 2.1.2]. The proof follows also immediately
from the observation that a (g, 8)-basis of & is completely determined by
bases 4,(a, 0) resp. 4, , of Dy(a, 0) resp. &, ,.

2.6. In case of a single involution we take ¢ =8 and we use the results
stated above. Moreover, we omit ¢ in the notations; ic., we write X,(0),
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Xy, @o(0), By, Wi(0), W,(0), Wy, 4(8), 4, instead of, respectively,
XO(H’ 0)5 Xﬂ.ﬂ’ ¢0(9, 0)5 ¢0,69 WO(Q 0)9 Wl(gv 9), WO,Oa AO(B’ 0)’ AO,O'
A (0, 8)-order on X will be called a 8-order on X and a (8, 6)-basis of & a
8-basis of &.

2.7. Relations between (restricted) Weyl groups. Assume that (o, 0)
is a pair of commuting involutions of @ such that &, is a root system
with Weyl group W,. Then o|X, is an involution of (X,, @), so
we can also view @, , as the set of restricted roots of &, with respect
to o|X,. Denote the restriction of ¢ to X, also by ¢ and let
Wilo,0)={we W (g, 0)|w(X(0))=X,(0)} = {we W,(0)|wd=0w}. Put
We = Wi(a, 0)/Wy(o, 0). It is not hard to show that W% is isomorphic to
the restricted Weyl group of @, , with respect to the action of ¢ on X, (see
(2.2)). However, this will not be needed in the sequel.

In case @, is a root system with Weyl group W, we define W¢(o, 6) and
W? similarly. In Section 6 we shall encounter the situation that W3, W?,
and W, coincide and are equal to the Weyl group of &, ,.

2.8. A characterization of 0 on a 0-basis of ®. In the remaining part of
this section we restrict ourselves to the situation of a single involution
O e Aut(X, @). Let 4 be a O-basis of @. Then 8(— 4) is also a 0-basis of &
with the same restricted basis, so by (2.5) there is wy(8) € W,(0) such that
wo(0) 0(4) = —A4. Here wy(6) is the longest element of W (8) with respect
to 44(0). Put 0*=0%(4)= —wy(0)-0. Then 0*(4)ecAut(X, P, 4)=
{peAut(X, ®)|d(4) =4}, 0*(4)*=id, and 0*(4,(8)) = 4,(0).

2.9. Remarks. (1) 6* can be described by its action on the Dynkin
diagram of 4. Note that

(a) if @ is irreducible, then 6* is either the identity or a diagram
automorphism of order 2;
(b) if =@, U P, with &,, &, irreducible and (P ,) = P,, then
6* exchanges the Dynkin diagrams of @, and @,. In particular @,(0) = &,
s0 wo(f)=1d and 6 = —6*.
(2) If 0=id and 4 is a basis of @, then 0*(4) = —w,(id) is called the
opposition involution of A. In this case we shall also write id*(4) for 68*(4).
(3) If @ is irreducible and 4 a basis of @, then the opposition
involution is non-trivial if and only if & is either of type A4, (/=2),
Dy 4(122) or Eg.
(4) The action of 0* on A4y(8) is determined by A4,(8), because
0* | 44(0) = —w(8) is the opposition involution of 44(8), which is uniquely
determined on each irreducible component of @y(8).

(5) For & irreducible, the action of 8* can only be non-trivial if @ is
of type A, (/=2), D, ({>4) or E,.
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The diagram automorphism 8* relates the simple roots in 4, which are
lying above a restricted root in 4,:

2.10. LemMa. Let A be a O-basis of & and a,fe A, a#p such that
w(a)=n(B)#0. Then a=60*(f).

Proof. Working in ¥, we have n(x) = 3(a — 0(x)) = 38— 0(8)), so
a—f=0(a— )= —0%(wo(0)(a— f))=0*(B—a—9)

for some 6eSpan(4,(0)). Since 4 is a basis of V and «, B, 6*(«),
0* () e (4 — 4,(9)), it follows that o = 0*(f), f=0*(x), and 6=0.

2.11. The index of 6. Assume that the root datum ¥ is semisimple. If
€ Aut(¥) is an involution and 4 a §-basis of @, then # is determined by
the quadruple (X, 4, 44(8), 6*(A)), because 8= —0*(4) wy(8). We call
such a quadruple (X, 4, 4,(6), 0*(4)) an index of 0.

Two indices (X, 4, 44(0,), 0¥(4)) and (X, 4°, 45(0,), 83(4")) are said to
be isomorphic if there is a we W(®), which maps (4, 4,(8,)) onto
(4', 45(8,)) and which satisfies wO¥(4) w ' =0F(4').

2.12. Remarks. (1) The above index of @ is the same as the Satake
diagram corresponding to an action of the finite group I'y= {id, —0} on
(X, @) (See Satake [22, 2.4]). Our terminology follows Tits [29].

(2) Asin [29] we make a diagrammatic representation of the index
of 8 by colouring black those vertices of the ordinary Dynkin diagram of 6,
which represent roots in A4,(f), and by indicating the action of 8* on
A— A4,(0) by arrows. An example in type E; is:

b
N

9*

We omit the action of §* on 4y(6) because 0*|44(0) = —wy(0) is com-
pletely determined by the type of @(0) (see (2.9.4)).

(3) An index of # may depend on the choice of the #-basis of @; i.e.,
for two G-bases 4, 4', the corresponding indices (X, 4, 4,(6), 8*(4)) and
(X, 4', 45(6), 6*(4’)) need not be isomorphic. However, this cannot
happen if &, is a root system with Weyl group W,:

2.13. LeMMA. Let ¥ be semisimple and 6 € Aut(¥) an involution such
that @, is a root system with Weyl group W,. Let 4, A’ be iwo 0-bases of ®.
Then (X, 4, 44(0), 0%(4)) and (X, 4, 45(0), 0*(4’)) are isomorphic.
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Proof. Since W,= W, (8)/W(6) is the Weyl group of @,, there is by
(2.5) a unique element we W, (8) such that w(4)=4'. Then also
w(do(0)) = 45(0), so it suffices to show that 0*(4’) = wh*(d) w".

Since wy(8) = wwo(0) 0(w 1), where wy(0), resp. wo(0) € Wy(8), are as in
(2.8), we get wy(B) = 0(w)(wo(0)0)(O(w)~ '), which implies the desired
relation.

To classify the indices of involutions we note:

2.14, LEMMA. Let A be a basis of &, Adycd a subset and
6* € Aut(X, D, 4) such that 0*(4y) = 4,, (0%)* =id. Let X, be the Z-span of
Ao in X and P(A,) =P n Xy. Then there is an involution 0 € Aut(X, @) with
index (X, 4, Ay, 0%) if and only if 8% | 4, =1d*(4,) (the opposition involution
of Ay with respect to ©(4,)).

Proof. “Only if” being clear, assume 0*|A,=1d*(4,). Let w, be the
longest element of W(®(4,)) with respect to 4, and let
0= —0*wg e Aut(X, @). Since 0} X, =1id it follows that 6* and w, commute,
so 8 is an involution. On the other hand, since 0*| 4,=id*(4,) it follows
that 4, =40}, so (X, 4, 4,, 8%} is an index of 8. This proves the result.

2.15. B-normal root systems. Let X, &, and 6 be as in (2.8) and let
&' = {aecP|ia¢ P} be the set of indivisible roots.

2.15.1. DeFINITION. @ 1s called 8-normal if for ail ae @' with 6(a)#a,
we have O(a)+oa¢ @. This definition is a generalization of the known

definition of normality to non-reduced root systems (see Warner [32,
1.1.37.

2.16. Remark. 1f & is f-normal, then &, is a root system with Weyl
group W, (see Warner [32, 1.1.3.1]).

In the sequel we shall need the following results:

2.17. LeMMA. Assume @ to be irreducible and let A be a 6-basis of ®.
Let id*(4) e Aut(X, @, 4) be the opposition involution, as in (2.9.2). Then
the following statements are equivalent:

(1) id*(4) and wy(6) commute.
(2) @y(0) is stable under id*(4).

Proof. The proof follows from the following equivalences:

{1)=1d*(4) and 0 commute < 1 and (— 1 )-eigenspaces of 8 are id*(A4)-
stable < (2).

607/71/1-3
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2.18. Note that in general wy(f) and id* need not commute. For
example, if @ is of type A4,, then

O

is the index of an involution 0 € Aut(X, @), but clearly &,(0) is not stable
under id*. However, when @ is 8-normal, then the condition is satisfied.

2.19. LemMA. Let @,0, 4, and id* be as in (2.17). If & is a B-normal,
then @y(0) is stable under id*.

Proof. We first note that we may assume that id* #id. Then @ is of
type 4;, Dy, (1= 2) or E;. We may also assume 8* =id (if not, we would
have 0* =id* and we are done). Now @,(#) must be a union of irreducible
components, whose Weyl groups contain —id. From the preceding
remarks, it follows that @,(6) is a union of a number of irreducible com-
ponents of type A; and at most one component of type D, (/= 2).

If @,(0) has an irreducible component of type D,, (/= 2), then @ is of
type Dy .1 ({=2) or Eg and in both cases @((0) is stable under id*. So we
may assume that @y(0) is of type A, x --- x A(. Say 44(0)={a,, .., a,}.
Then wo(0) =s,,---5,, -

If the index of # would contain a subdiagram of the form

B b4 8 ¥
o O—O—@—CO—— of O—@—O—-—

then @ is not 0O-normal; namely since 0= —wyf) we have

8(B+7v)=s,(—F—7)=—p, hence f+y+0(F+y)=7y€ .
It foliows that the only possible indices of 8, with @4(8) of type
A, % --- XA, are

Ay,y: &—0—0——0—0—0

In this case @,(f) is obviously stable under id*, which proves the result.

2.20. From this proof it also follows that the indices of involutions 8
with & irreducible and 6-normal and id* #id, * =id are

A21+1: ._O—"._"‘

——0—=o
D21+l: o—:0—--- <
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3. A CHARACTERIZATION OF THE CONJUGACY CLASSES
OF INVOLUTORIAL AUTOMORPHISMS OF G

3.1. A realization of &(T) in G. Let T be a maximal torus of G. If
ae d(T), let x, be the corresponding one-parameter additive subgroup of
G defined by o. This is an isomorphism of the additive subgroup onto a
closed subgroup U, of G, normalized by T, such that

(&)t =x, (1)) (1eT,LeF)
The x, may be chosen such that

n,=X,(1) x _,(—1) x,(1)

lies in N(T) for all o€ d(T), as can be derived using a SL,-computation.
In that case we have

xa(é)xa(_éﬂl)xa(é):av(é)nq (éEF),

where ¥ € X (T) is the coroot of a. Moreover, n,-T is the reflection
5,€ W(T) defined by @ and nZ=a¥(—1)=t,, n_,=t,n,, t_,=1,.

A family {x,},. ) With the above properties (3.1.1), (3.1.2) is called a
realization of @(T) in G. Similarly the set of root vectors X, =dx,(1)€q, is
called a realization of ®(T) in g. We then have Ad(¢) X, =a(t) X, (teT).
For these facts see Springer [24, 11.2]. If «, f € &(T) are linearly indepen-
dent (ie., « # +f) we have a formula:

(xo:(é)s xﬂ(rf)): 1—[ xi1+jﬁ(cm,ﬂ;i.jéi’?j) (é» '?EF))
i+ jped(T)
iLj>0
the product being taken in a preassigned order. The elements c, 4., ; are
called the structure constants of G for the given realization {x,}, o7

3.2. Let 4 be a basis of &(T). If we W(T)and w=s,, ---5,, is a shortest
expression of w, the o, being simple roots, then ¢(w)=n,, ---n,, e No(T) 15
a representative of we W(T) in Ng(T), depending only on w and not on
the choice of the shortest expression (see Springer [24, 11.2.9]). There
exists a realization {x,},. 47, such that

B(w) x,(E) p(w) ™! = X0 (£8)

for e &(T), we W(T), £€F, and ¢ as above. Moreover all the structure
constants are of the form n-1 with neZ. In particular, if o, fe®,
a+Beda—cfed a—(c+ 1)f¢d thenc, s, ;= *(c + 1)and
Copir1C—q_p1.1= —(c+1)% For more details see Springer [24, 11.3.6].
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3.3. O-singular roots. Let T be a maximal torus of G and {x,},cam 2
realization of @(7T) in G. If ¢ € Aut(G) such that ¢(T) =T, then there exists
Cy.4 € F* such that for Ee F

¢(xu(£))=x¢(u)(ca,¢é)'
Now ¢ is an involution if and only if

(¢1 T =ids and ¢, 4C40 4= 1 forall ae®(T).

Let #e Aut(G) be an involution stabilizing T. Then a root ae ®(T) is
called O-singular if 6(a) = +o and 6| Z,((Ker «)°) #id. If 8() = —a we say
that o is real with respect to 8. If (o) = « and « is #-singular, then « is also
called noncompact imaginary with respect to 6. In that case ¢, = —1, as
follows also by a simple computation in SL,. If 8(a)=« and o is not
f-singular, then ¢, o=1. These roots are called compact imaginary with
respect to 0.

34. LeMMA. Let T be a O-stable maximal torus of G. Then T; is a
maximal 0-split torus of G if and only if ®(T) has no roots, which are non-
compact imaginary with respect to 0, ie., if and only if c,o=1 for all
ae @y(0).

For a proof see [12] or [25].

3.5. LemMma. Let T be a 0-stable maximal torus of G, 4 a B-basis of
&(T) and write 0= —0*wy(0) as in (2.8). Then for all t€ (e 440 Ker(f)
such that 0(1) - 1€ Z(G) we have 0*(x)(t) = a(t) for all ac &(T).

Proof. I te(\pe 490, Ker(B) such that 6(t)te Z(G), then 0*(a)(1)=
wo(8) a(0(2) 1) = wo(0)(a)(t) = a(t)y(2) for some y e Span(4,(8)). Since for
all fe dy(0) we have B(r)=1, it follows that 8*(a)(t) = «(1).

Note that among others all elements of 7, satisfy the above conditions.

3.6. DeFiNITION.  Let T be a maximal torus of G. An automorphism 6 of
G of order <2 is said to be normally related to T if 0(T)=T and T, is a
maximal -split torus of G.

3.7. THEOREM. Let 0, 0, Aut(G) be such that 62 =0%=id and assume
0., 0, are normally related to T. Then 0, and 0, are conjugate under Int(G)
if and only if 8,| T and 0,| T are conjugate under W(T).

Proof. 1f 8,=1Int(g) 6, Int(g ') for some g € G, then since all maximal
8,-split tori are conjugate under G, and also all maximal tori containing
them (see (1.5)), we may assume ge Ng(T). But then 6,|T and 8,|T are
conjugate under W(T), which proves the “only if” statement.
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Assuming that 0,| T and 8,| T are conjugate under W(T), it then suffices
to consider the case that 8, T = 0,| T. Henceforth we assume this and write
6 for @,|T. By the isomorphism theorem (see Springer [24, 11.4.3]), there
is a te T such that 6, =0, Int(¢).

Since 82 =02=1id, we get Int(0(¢)1)=1d, so 8(t)te Z(G). If aeD,(0),
then by (3.4) o 1s a compact imaginary root with respect to 8, as well as 0,,
so in particular ¢, 4, = ¢, g, = 1, which implies a(r)=1.

Let 4 be a O-basis of ®(T) and let 44(0), 4, be as in (2.6). If ye 4, and
o, Be d, a# B, such that n(a) =n(p), then by (2.10) f=0*(a). So by (3.5)
we have a(t) = 0*(a)(2).

For each ye 4,, now take ae 4 such that y=n(a)=a|T, and choose
u,e Ty such that Auw,)=1 for ied,, A#y and y(u?)=oalr). Let
u=T1,c24, %, Then by (2.10) and (3.5) we find «(ru*)=1 for all a€ 4. So
tu’ € Z(G) and it follows that Int(u) 8, Int(u ')=0,. This proves the
result.

3.8. COROLLARY. Let 8., 0, Aut(G) be as above. If 6,|T=0,|T, then
there is te T, such that 0, =6, Int(z).

This follows from the proof of (3.7).

3.9. DerINITION, Let Y =(X, P, XY, dV) be a root datum with & a
reduced root system and let 8 € Aut(¥) be an involution. Then 8 is called
admissible if there exists a reductive algebraic group G with maximal torus
T and an involution feAut(G,T) such that ¥ is isomorphic to
(X*(T), &(T), X, (T), ®*(T)), G induces § on ¥ and such that T, is a
maximal f-split torus of G. If X is semisimple, then the indices of
admissible involutions of ¥ shall be called admissible indices.

3.10. Remark. Let G, T be as in (3.1). If 0e Aut(X*(T), &(T)) is an
admissible involution, then by (1.6) &, = ®(T, ) is a root system with Weyl
group W(0)/Wy(0)= W(T; ). So if G is semisimple, then by (2.13) the
W(®)-conjugacy class of 6 corresponds bijectively with the isomorphism
class of the index of 8. We have obtained the following result.

3.11. THEOREM. Assume that G is semisimple and T is a maximal torus
of G. Then there is a bijection of the set of Int(G)-conjugacy classes of
involutorial automorphisms of G and the isomorphism classes of indices of
admissible involutions of (X*(T), ®(T)).

Proof. Since all maximal tori of G are conjugate under Int(G), every
involutorial automorphism of G is conjugate to one which is normally
related to 7. The result follows now from Theorem 3.7, Lemma 2.13, and
Remark 3.10.
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3.12. O-normality of ®(T). For later use it is useful to note that an
admissible involution § € Aut(X*(T), ®(T)) implies #-normality of the root
system:

LEMMA. Let G, T be as in (3.1). If 0 e Aut(X*(T), D(T)) is an admissible
involution, then ®(T) is 8-normal.

Proof. By (3.4) it suffices to show that if e @(T) such that 0(z)#«a
and o+ 0(x)e &(T), that then a+ 6(x) must be non-compact imaginary.
This last statement follows immediately by choosing a realization
{X,}xcom of ®(T) in g such that (X, )= X, and [X,, Xo)] =X, 00a)-
Then

H(Xu+0(a))= [Xﬂ(a)’ Xa] = —Xa+9(a)s
so o + f(a) is non-compact imaginary.

For this result see also Springer [25, 2.6].

4. CLASSIFICATION OF ADMISSIBLE INVOLUTIONS

We discuss here the classification of involutorial automorphisms of G. It
is quite similar to the classification of real forms of a complex semisimple
Lie algebra, as is carried out by Araki [1]. See also Section 10.

4.1. Lifting involutions of (X, ®). In this section we assume G to be
semisimple. Let 7 be a fixed maximal torus of G and write @ for &(T), X
for X*(T), W for W(T). Choose a realization of @ in G as in (3.2). To
determine whether an involution 6eAut(X, @) is admissible we need to
determine first whether it can be lifted; i.e.,

DEFINITION. An involution 8 e Aut(X, @) can be lifted if there is an
involutorial automorphism ¢ € Aut(G, T) inducing 6 on (X, @).

Note that by the isomorphism theorem there always exists a possibly
non-involutorial ¢ Aut(G, T), inducing 6 on (X, ®). So by (3.3) ¢ is
involutorial if and only if ¢, cgq,),=1 for all ae®. Moreover, 0 is
admissible if and only if its can be lifted to ¢ € Aut(G, T) satisfying ¢, , =1
for all ae®y(f) (cf (3.4)). On the other hand, it follows from the
isomorphism theorem (see Springer [24, 11.4.3]) that it also suffices to
restrict to a basis of &:

42. LEMMA. Let A be a basis of @, 8e Aut(X, @) an involution and
¢ € Aut(G, T) such that ¢| T=0. Then ¢ is uniquely determined by the tuple

(Ca,qf}ued'
This result is discussed in Séminaire C. Chevalley [7, 17-08, 17-09].
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4.3. DEFINITION. Let 4 be a fixed basis of @. For any involution
Be Aut(X, @) let 6,eAut(G, T) denote the unique automorphism of G
such that

04(x,(§))=xpn(§)  forall aed, {eF.

It follows now from a result of Steinberg [26, Th. 29] that ¢, ,,= +1 for
all «e @ and moreover, the constants c, 5, do not depend on the charac-
teristic of the field of definition F.

Summarizing, involutions of (X, @) which can be lifted, can be charac-
terized as follows:

4.4. PROPOSITION. Let 0 € Aut{X, @) be an involution and A a basis of ®.
Then the following are equivalent:
(1) 6 can be lifted.
(i1) There is a te T such that 6 ,Int(t) is an involution.
(iti) There is a te T such that cy,, g, =a(0(1)1) for all ae 4.
(iv) There is a te Ty such that cg = o(t) for all a € 4.
This result follows immediately from the definition of 8, (4.2) and (3.3).
Note that if te TF such that 6,Int(¢) is an involution, then, since

Cq0,= 1 for all e ®, we have by (iv) that a(s*)=1 for all xe @, hence
t*e Z(G).

4.5 COROLLARY. Let 0 Aut(X, @) be an involution and let A be a
0-basis of @. Then 0 is admissible if and only if there is a te T such that

(1) Coaye, =a(0(1)2) for all e A4 — A4y(8),
(ii}) a(t)=1 for all ae A,(0).
This follows from (4.4) and (3.4).

4.6. PROPOSITION.  Assume that G, T, X, and ® are as in (4.1). Whether
an involution 0 € Aut(X, @) is admissible or not is independent of the field of
definition F of G, if only char(F)+#2.

Proof. An involution 6 e Aut(X, @) is admissible if for a fixed 6-basis 4
of @, there is a re T} such that the conditions (i) and (ii) of (4.5) are
satisfied. But these conditions imply that t* e Z(G), so this can be verified
independently of F, if only char(F) #2.

4.7. The classification of conjugacy classes of involutorial auto-
morphisms of G coincides now with the known classification over C. For G
of adjoint type this comes down to the classification of real forms of a
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semisimple Lie algebra over C, as is carried out by Araki [1]. See also
Sugiura [22, Appendix ] for a simplification of this method. Different treat-
ments of the classification of real semisimple Lie algebras can be found for
instance in Cartan [6], Gantmacher [9] (simplified by Murakami {177]),
Helgason [11], and Freudenthal and de Vries [8].

On the other hand, with the above results it is possible to give a sim-
plification of Araki’s classification (see [1]). We will sketch this in the
remainder of this section.

4.8. Reduction to restricted rank one. Let G, T, X, @ be as in (4.1).

The restricted rank of an involution 6 € Aut(X, &) is defined as the rank
of the set of restricted roots @,. If 4 is a f-basis of &, then the restricted
rank of 6 is equal to |4,].

For each 1€ &, such that 11 ¢ &, (ic., 1€ &, see (2.15)), let @(4) denote
the set of all roots § € @ such that the restriction of § to X, is an integral
multiple of 4. Then &(4) is a G-stable closed symmetric subsystem of &
(See Borel and Tits [3, p. 71]). Let X(2) denote the projection of X on the
subspace of E=X*(T)® ;R spanned by ®(1).

4.9. PROPOSITION. Let 8 € Aut(X, @) be an involution and A a 0-basis of
®. Then 0 is admissible if and only if 0| X(A) € Aut(X(4), D(1)) is admissible
for all Ae 4,.

This result is derived immediately from (4.5) (see also Satake [22]).

4.10. Classification of involutions of restricted rank one. To determine
the indices of involutions of restricted rank one we need a notion of
irreducibility:

DEFINITION. Let 8 e Aut(X, @) be an involution and 4 a 0-basis of @.
An index S= (X, 4, 4,, 0*) of 0 is called irreducible if 4 is not the union of
two mutually orthogonal 6*-stable non-empty subsystems 4, and 4,. The
index is called absolutely irreducible if 4 is connected.

Clearly an absolutely irreducible index is irreducible. From (2.14) and
(2.9) one easily now deduces:

4.11. PROPOSITION. Let X be of adjoint type. Then there exist 17 types of
absolutely irreducible indices of non-trivial involutions of (X, @) of restricted
rank one and one type of restricted rank one, which is ireducible but not
absolutely irreducible (see Table1).

This result can also be found in Sugiura [22, Appendix, Prop. 4].

4.12. To restrict this set of rank one indices Araki [1] and Sugiura [22,
Appendix] used the f-normality of @ (see (3.12)). One can also exclude
these indices with @ not f-normal, using the following results:
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TABLE I
No. @ 0-index Admissible
T
1 A, x A, o ¢ O
2 A, @
3 A4, Oo—e
4 A, *—0O—@
/,,_.\
5 A, Oo—@—  —8—=O
6 B, O——0— —0=0
7 (1z2) *—CO0—0— —0—0
8 C, O——@— —0+—0
9 (1=23) *—O0—0—  —0=0
10 O—0—0—
D,
(Iz4)
11 o —\O—e— -
(
12 Eq
13 E;
14 E,
._
15 O—=—0—=0
F.
16 ) *—0—0—O
17 =0
G,
18 O=0




40 ALOYSIUS G. HELMINCK

LEMMA. Let X be of adjoint type, 6 € Aut(X, @) an involution of restric-
ted rank one, A a 0-basis of @ and G, T, 8, as in (4.3). If |4— 4,(0)| =1,
then 0 is admissible if and only if 0, is an involution (i.e., cyy)e,=1 for
aed—A4y0)).

Proof. The “if” statement being obvious, assume 6 is admissible. By
(4.5) there exists 1€ Ty such that cg,, 4, =a(r?) for all aed—A4,(6) and
a(t)=1 for all ae44,(f). So let aed—Ay80). It suffices to show that
Coar.0,= 1 O equivalently a(s*)= 1. Since |4 — 44(8)| =1 we have

O(a) = —wy(0)(a) = —(oc+ Y mﬁﬁ) (mgeN),
Be 4y(6)
so it follows from (4.5) that 8(x)(t)=a(¢)~!. On the other hand, since
te TS we have 0(a)(r)=a(6(¢))=a(r), hence a(r*)=1. This proves the
result.

4.13. Whether 0, is an involution or not is a matter determined by
structure constants. This can be seen as follows.

Assume 0 e Aut(X, @) an involution of restricted rank one, 4 a -basis
and [4—4y(0)|=1. Let ae 4 — 4,(0). Then 8(x) = —w,(8)(x). Since wy(8)
is an involution in Wy(0) we can write wy(0)=s, ---s,, Wwhere
oy, ..., o, € Dy(B) are strongly orthogonal roots (ie., for all i, j=1, .., r we
have «, + o; ¢ @(0)) (see, €.g., Helminck [12]). To determine 6(x) we need
to consider only those a; such that («, a;) 0. Note that if @4(8) # &, then
we can choose «; such that (a, o;) #0 and a, € 4,(6). Moreover, there are at
most 4 strongly orthogonal roots «; such that (o, o;)#0 (see
Helminck [12] or Kostant [157]). ‘

Choose a realization of @ in g as in (3.1) and for a, fe @ let N, ze F
denote the corresponding structure constant (ie., [X,, Xz]=N, X, )
Let B4, ..., B be the set of those «;, for which (a, ;) #0. We can determine
Co(z).0, NOW by applying 6, on the identity:

["' [[Xfm’ Xﬂl]’ Xﬂz:la ) Xﬂk]
=N_,5 N "Ns,«,----sm(—a).ﬂm "'Nsm_l---sm(*a)-ﬂk
Note that it also follows from this identity that cy,) ¢, depends only on the
structure constants. We can characterize these restricted rank one indices
now as follows:

sp{—a)pa’ Xe(a)‘

4.14. LEMMA. Let 0, 4,0 ,, a and wy(0) =s,, ---5,, be as in (4.13). Then
8 is admissible if and only if 3i_, {a, a ) is even.

We give a proof for 3'7_, (e, & > =1. The other cases are left to the
reader. So assume Y7_, (&, & >=1.Say (a, &) >=1. Then

[X—aa an] = Nfa,aqXB(a)'
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Applying 8, on this identity gives:
N—a.xl “Coga) e, = N9(—1).0<1 = Nafamu'

Since N,_,, ,, =N, ,, it follows that c,,, , = —1, hence 6 is not
admissible.

It is not hard to determine wy(6) as a product of strongly orthogonal
roots (see, e.g., Helminck [12] or Kostant {15]). Here are two examples:

4.15. ExaMPLES. (1) Assume 6 is of type

1 d n—1 n

In this case 8 is admissible. One sees this as follows. @((0) is of type B, _,
and a=a,, where 4= {a,,.., a,} is a basis of @ corresponding to the
above diagram. So if n =2, then wy(0)=s,, and {a,, ;) =2. If n>2, then
let 5, be the longest root of @,(f) with respect to 4,(6) and let
Bas s B 2€ Dy(0) be such that o, 8y, .., B,_, are strongly orthogonal.
Now wo(0)=5,,54 55, ,, s0 27_ {a, a7 >=2 and 0 is admissible by
(4.14).

(2) Similarly as in (1) one shows that the involution  with index
— O o 00

is not admissible, because wy(0) contains s, additional to the factors in (1).

4.16. There remain still 2 indices in Table I, which do not satisfy the
conditions in (4.13) and (4.14). However, in these cases one easily shows
directly that the index is admissible. In summarizing, we have obtained the
following result:

THEOREM. Let X be of adjoint type. The absolutely irreducible indices of
non-trivial admissible involutions of (X, @) are the ones given in Table I1.

The irreducible, but not absolutely irreducible indices are the ones given in
Table 111.

We added in these tables some extra information which will be explained
and used in Section 7, 8.

4.17. Passage to arbitrary G. The classification for arbitrary groups G
now follows easily from the above results. It is only a matter of checking
whether a lattice X is #-stable. Namely let & be a reduced root system and
let Q, resp. P, denote the root lattice, resp. weight lattice, of &. If
OeAut(Q, ®) is an admissible involution, then 6 induces a (unique)
involution fe Aut(P, ®), which is also admissible by a result of Steinberg
[27, 9.16]. Now if X is any lattice such that Q < X< P, then 6 may be
lifted to an admissible involution of (X, ®) if and only if X is f-stable.



ALOYSIUS G. HELMINCK

42

(d=1)

(11—-d)os+ (d>130) 1+(@ =g UsdsiTEn ((1=4)ng)
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TABLE 111
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5. CoNnyuGacy CLASSES OF PAIRS OF COMMUTING
INVOLUTORIAL AUTOMORPHISMS OF G

In this section we characterize conjugacy classes of pairs of commuting
involutorial automorphisms of G in a manner similar to that of Section 3.

5.1. Let o, 8 e Aut(G) be such that > =6%=id and ¢0 = fo. Let g, go,
g, denote the Lie algebras of G°, GJ, G?,, respectively. Write (for
&= +1) g€ n)={Xeglo(X)=L{X, 8(X)=nX}. Then,
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g,=g(l, 1)@g(l, —1),
ge=g(l, )Dg(—1, 1)
8,0=a(l, N®g(—1, —1).

Note that g is the direct sum of the g(&, 1) (&, 7= £1).

5.2. DEFINITION. A torus A of G is called (o, 8)-split if A is o- and
#-split. A torus T of G, which is o- and 6-stable shall be called (o, 8)-stable.
We then put T ,= {re T|a(t)=0(r)=¢""}".

If G is an arbitrary reductive connected algebraic group and g, 6 #id,
then non-trivial (o, 0)-split tori of G need not exist. One sees this in the
example of a direct product G =G, x G,, with G,, G, (reductive) groups
and 0(G,))=G,, 0(G,)=G(i=1,2), 0|, =id, g|;,=1id.

In (5.10) we shall see that if G is simple and o, 0 #id, then non-trivial
(g, 6)-split tori exist. In fact we shall show an equivalent statement that if G
has no (o, )-split tori, that then on each irreducible component of &(T)
we have o =1d or § =id. Here T is a (o, 8)-stable maximal torus of G. To
do so we first prove some results on (o, 8)-stable tori.

5.3. LemMA. The following statements are equivalent:

(a) @ contains no nontrivial (o, 0)-split tori.
(b) G, contains no non-trivial o-split tori.
() G%=G°~GY.

(d) g(—1,-1)=0.

Proof. (a)<> (b) is clear from the observation that the (g, 8)-split tori
of G are precisely the a-split (or f-split) tori of G,.

(b)=(c) follows immediately from (1.4) and (c)=(d) follows from
(5.1). Finally (d)=>(a) is immediate from the observation that the Lie
algebra of a (o, 6)-split torus is contained in g(—1, —1).

5.4. PROPOSITION. Let 0, 0 € Aut(G) be a pair of commuting involutorial
automorphisms of G. If 0 #1d, then there exists a maximal 0-split torus of G,
which is o-stable.

Proof. Let A be a maximal (o, 6)-split torus of G. It suffices to show
that Z.(A)/A contains a g-stable maximal 6-split torus.

If A is already maximal 6-split, we are done, so assume A is not maximal
#-split. Then passing to Z;(A)/A, we may assume that G has no (o, 6)-split
tori and 6 #id. Now 8| G 5 id, because if G° = GY then using (5.3) we get
a(l, —1Y=g{—1, —1)=0, whence g, =g, contradicting ##id. Let S be a
maximal §-split torus of G%. Then, since G has no non-trivial (g, §)-split

607/71/1-4
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tori, the same holds for Z;(S)/S. In other words, S is a g-stable maximal
#-split torus of G. This proves the result.

5.5. COROLLARY. There exists a maximal torus of G, which is (o, 0)-
stable.

Proof. Let T be a o-stable maximal torus of Z;(A4), where 4 is a
o-stable maximal #-split torus of G. Then by (1.5) T is also #-stable, hence
the resuit.

56. Let T be a (o,0)stable maximal torus of G, denote by
Y= (X*T), ®(T), X (T), @"(T)) the corresponding root datum and write
A=T;, (For the moment we do not yet assume that 4 is a maximal
(o, 0)-split torus of G). Using the notations of (2.2) we have the following
identifications:

LEMMA. Let T, ¥, o, 8 and A be as above. Then

(i) Xo(o,0)={xe X*(T)|x(4)=1};
(i) D,=D(A);
(iii) Wy(0,0)={we W(T)|w(d)=4) and Wos,0)={we W(T)]
wlA=id};
(iv) W(A)= W (o, 0)/Wy(a, 0y =W, ,.

Proof. (i) Note first that Xy(o)={}xeX*(T)|x(T;)=1}. Let
x€ X*(T) be such that y(4)=1. If te T, then writing ¢t=1¢,-¢,, where
tied, t,e(T; )y, it follows that x(r)= x(0(t)), whence y—0(x)e Xo(o).
But then y —6(x) = o(x — 6(x)); in other words, y € X,(o, §). On the other
hand, if y € X,(o, 8), then y —0(x) € Xy(0), so for all te A:

() =00x)t)=x(t™"),

hence y(A)=1. This proves (i).
As for (ii), we only note that the roots of G with respect to the adjoint
action of 4 on g are exactly the restrictions of @&(T) to 4.
(iii) follows from the fact that 4= {re T|x(¢t)=1 for all y € X,(o, 0)}.
Finally, using (iii), the proof of (iv) is as in Richardson [20, 4.1].

5.7. Assume G does not contain a non-trivial (o, 8)-split torus and let T
be a (o, 8)-stable maximal torus of G.

LEMMA. X*¥(T)= X,4(0, 8), &(T)=Dy(0, 8). In particular if ye X*(T),
a(x)= —yx and O(x)= —y, then y=0.
Proof. - Since G has no (o, 8)-split tori T, ,={e}, hence by (5.6),
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X*(T)=X,(0,0) and &(T)=D,(a, 0). But for Xy(o, #) the second asser-
tion follows immediately.

5.8. ProrosiTION.  Let (G, T) be as in (5.7). If e ®&(T), then o(a) =0,
8, < g, or B(a)=0, g, gy.

Proof. Let ae®(T) and let 0+ X, eq, denote a root vector. Since G
has no (o, f)-split tori, we have g(—1,—-1)=0, by (53) So
(1 —o)}(1—-6)X,=0, whence

X,—o(X,)~6(X,)+ad(X,)=0.

Now 0(X,) €y 0(X,)EQnm and o0(X,)€ g9 It follows that if
O(a) # o, o(a) £ o, we must have o8(a) = o. Since X*(T) = X,(o, 6) we have
x=a—0o(a)=a—0(x). But then a(y) = —x=0(x), so, by (5.7), y =0. This
is a contradiction, hence the assertion has been shown.

5.9. PrOPOSITION.  Let (G, T) be as in (5.7) and let &, < ®(T) = Py(0, 0)
be an irreducible component. Then o|®,=1id or 0| P, =id.

Proof. Let 4 be a basis of @,. Assume o|®, #id and ¢|®, #id. Then
there are a, fe 4 such that a(a)=a, a(B)# B, O(x)#a«, O(f)=p. Since
&, is irreducible, there is a string of simple roots «, =a, a,, ..o, =f
connecting « and f. Moreover, we can choose o, fed such that
ola)=0(a)=a, for i=2,.,r—1. Now y=a,+ ---+a,e®d,, while
a(y)#7v. B(y)#y, which contradicts (5.8).

From (5.8) and (5.9) we conclude:

5.10. CoroLLARY. If ®(G, T) is irreducible and o #id, 0 #id, then
non-trivial (o, 0)-split tori exist.

5.11. CoROLLARY. Let A be a maximal (a, 6)-split torus of G and A,
resp. A, maximal o-split resp. O-split tori of Z (A). Then A, and A,
commute.

Proof. We may assume G=Z(A). If A,=(A4,n (G, G))° (i=1, 2), then
it suffices to show that 4, and 4, commute in (G, G). But this follows
from (5.9).

512. LeMMA. All maximal (o, 0)-split tori of G are conjugate under
(Gon Gy)°.

Proof. Let A,, A, be maximal (o, 0)-split of G. Since 4, and A4, are
also maximal o-split tori of GY,, they are conjugate under (G%)°=
(Gon Gy).
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5.13. PrROPOSITION. There exist (o, 8)-stable maximal tori of G such that
T, , is a maximal (o, 0)-split torus of G, T, is a maximal ¢-split torus of G,
and Ty is a maximal 0-split torus of G. Moreover, all such maximal tori of G
are conjugate under (G, G,)°.

Proof. Let A be a maximal (g, 0)-split torus of G and A4, (resp. 4,) a
maximal g-split (resp. f-split} torus of Z;(A). Since 4, and 4, commute
(see (5.11)), the first assertion follows by taking a (o, )-stable maximal
torus T of Z5(A,4,).

If T is another maximal torus of G satisfying the above condtions, then
by (5.12) we may assume that 4=7T,,=T7,,. Moreover, passing to
Z;(A)/A, we may also assume that G has no nontrivial (o, 8)-split tori. But
then T, and 7T,, are maximal ¢f-split tori of G, hence by (1.5) there exists
g€ GY such that gTg ' =T Since G% = (G, Gy)° (see (5.3)) the result
follows.

The notion “normally related” is defined as in the case of one involution
(see (3.6)):

5.14. DerINITION. If (0,0) is a pair of commuting involutorial
automorphisms of G and T is a maximal torus of G, then (o, 0) is said to
be normally related to T if o(T)=6(T)=T and T;,, T, T; are maximal
(o, 0)-split, a-split, G-split tori of G, respectively.

Note that in this case both o and @ are also normally related to 7.
Moreover, using (5.9) on Z (T, ,) it follows that &(T) has an order which
is simultaneously a o- and f-order. This will be used to represent such
a pair of commuting involutions of (X*(T), #(T)) by a diagram (see
Section 7).

5.15. DeFINITION. Two pairs of involutorial automorphisms (o, 8,)
and (o,,8,) of G are isomorphic if there exists a geG such that
Int(g) o, Int(g~')=0, and Int(g) 8, Int(g~') = 0,. The family of all pairs
of commuting involutorial automorphisms of G will be denoted by % and
the set of isomorphism classes in # by &.

Note that we only consider isomorphisms of ordered pairs of commuting
involutions of G. We could also allow isomorphisms which map o, onto 8,
and 6, onto o,. Such an isomorphism identifies the isomorphism classes of
(6,,0,) and (0,, o,). However, when passing from pairs of commuting
involutions to symmetric spaces (see Section 9) it is more convenient to
work with ordered pairs, because the pairs (6, ¢) and (o, ) will correspond
to dual symmetric spaces.

An identification of the isomorphism classes in # under the action of the
group of outer automorphisms of G will be discussed in Section 9.
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5.16. THEOREM. Let (0,,0,) and (0,,8,) be pairs of commuting
involutorial automorphisms of G, normally related to T. Then (0,,0,)| T and
(64, 0,)| T are conjugate under W(T) if and only if there exists e€ T, , with
e’ € Z(G) such that (a,, 0,) is isomorphic to (c,, 0, Int(g)).

Proof. We may assume that ¢,|T=0,|T=0¢ and 0,|T=0,|T=80. By
the proof of (3.7) we see that after conjugation with a suitable element of T,
we may assume that g, =0,. Since 0,|T=46,| T, there exists te T, such
that 6, =0, Int(z) (see (3.8)). Write t=1t,¢, where te (T, ) and 1,eT,,.
Taking ce(T,;); such that ¢>=t¢,, we obtain Int(c)0,Int(c)'=
0, Int(c *)=0, Int(r,) and Int(c)o, Int(c) '=0,. Since 1,€T,, and
3 Z(G) we are done.

5.17. For a torus S of G we call the elements se S for which s?e Z(G)
quadratic elements of S. We can again define a notion of admissibility:

5.18. DeFINITION. Let T be a maximal torus of G. A pair of commuting
involutorial automorphisms (o, 8) of (X*(T), @(T)) is said to be admissible
(with respect to G) if there exists a pair of commuting involutorial
%utomorphisms (6, 8) of G, normally related to T and such that 6| T=o,

| T=8.

5.19. Let €(T) denote the set of W(T)-conjugacy classes of ordered
pairs of commuting involutions of (X*(T), &(T)).

By (5.13) and the conjugacy of the maximal tori of G it follows that
every pair of commuting involutorial automorphisms of G is isomorphic to
one normally related to T, so we have a natural map

p € ~%6(T).

Denote the image of p by (T) and the fiber above p((as, 8)) by %(a, 0).

We note that (Z(T) is nothing other than the set of W(T)-isomorphism

classes of admissible pairs of commuting involutions of (X*(T), &(T)).
We now have the following resuit:

520. THeOREM. Let T be a maximal torus of G. There is a bijection
between the W(T)-conjugacy classes of admissible pairs of commuting
involutions of (X*(T), D(T)) and the sets €(0,0) in €.

5.21. Remarks. (i) As in the «case of single involutorial
automorphisms, the classes in Z(T) will be represented by diagrams
((g, 0)-indices; see Section 7). To show that these diagrams are independent
of the choice of the (o, 8)-basis we will need some properties of the
restricted root system and Weyl group of a maximal (g, 6)-split torus 4 of
G. This will be treated in the next section.
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(i1) We denote the subset of # consisting of all pairs of commuting
involutions, whose isomorphism classes are contained in €(o, ) by
F(0,0). For (0,0)e# and a maximal (o, 8)-split torus 4 of G let
F4(0,0)={(0, 01nt(c))| € 4, e?€ Z(G)}. It follows from (5.16) that any
pair in %(o, 0) is isomorphic to a pair (g, 0 Int(a))e #,(0, 6). So the
classes in €(c¢, @) can be represented by a set of quadratic elements of A.
We will show in (8.2) that we can restrict ourselves to the action of N;(A4)
on % (o, 8). In order to show that this action of N;(4) on Z (0, #) can be
split in an action of W(A4) on & ,(a, ) and an action of Z;(A4) on % (o, ),
we will need to have a kind of standard pair (o, 8)e %, (0, ) with the
property that every we W(A) has a representative in (G, € G4)°. This will
be defined in (6.11).

(iti) If (o, 8)e F, A a (o, 0)-split torus of G and ¢ € 4, ¢* € Z(G), then
the pairs (o, 0 Int(¢)) and (o Int(e), 8) are isomorphic. Namely, take ce 4
such that ¢® =& Then conjugating by Int(c) gives the desired isomorphism.

6. THE RESTRICTED ROOT SYSTEM OF (g, 0)
AND STANDARD PAIRS

6.1. Let (0, 0) be a pair of commuting involutorial automorphisms of G
and A a non-trivial maximal (o, 8)-split torus of G.

In this section we shall prove that @(4) is a root system in the vector
space X*(4)®; R and that the corresponding Weyl group is #W(A). Since
A is also a maximal o-split torus of G%, (see (5.3)), we already know, by
(1.6), that @(4, G%) is a root system. The relations between @®(A4) and
®(4, GY%) will be treated and moreover, we shall show that there exists a
pair (o, 0)e Z (o, 0) for which the Weyl groups of ®(A4) and &(4, G%,)
coincide. In particular in this case every we W(A4) has a representative in
(G,nG,)°. This will be used for the classification of those quadratic
elements of A, which represent an isomorphism class in %(a, 6).

6.2. Let T be a (g, 8)-stable maximal torus of G and let A =T, ,. For
the moment we do not yet assume that 4 is a maximal (o, 6)-split torus of
G. This will only be needed to obtain all the reflections in W(A) (see
(6.11)).

For Aed(A4) let g(A,4) be the corresponding root space. Since
o8(A)= A, we have 68(g(A, A)) =g(A, ). Put

9(4, 1) ={Xeg(4, )| o6(X)= X},
m* (4, 66) =dimg(4, 1),
H(T, A)= {ch(D(T)lozlAzl},
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and
m(Ay=dimpg(4, y=m* (4, a0y +m (4, o8)=D(T, ).

6.3. DeFINITION. For le®d(4) call m(A) the multiplicity of 1 and
(m* (4, a8), m~ (4, 68)) the signature of A.

6.4. Remark. If acA is a quadratic element and Ae @(A) is such
that Alay= —1, then m (A, 68) = m*(4, o6 Int{a)) and m*(L, ¢0) =
m~ (4, o6 Int(a)).

Whether a root of @(A) is contained in ®(A4, G%,;) can be detected from
its signature:

6.5. LEMMa. Let Ae®(A), then Ae®(A,G%) if and only if
m*{A, c8)>0.

6.6. Quadratic elements of A with respect to a basis of d(A). Let Abea
(o, 0)-basis of @(T) and let 4, , denote the restricted basis of (2.2). Since
the elements of 4, 4 are linearly independent (see (2.3)) and they generate
X*(Ad(4)), it follows that for every Ae 4, , there exists y;€ X,(A) such
that (4, y, > =46, fori, V'ed_,.

For Aed,, put g;=7,(—1). Then el=y,(—1)y,(—D)=yp,(+1)=e,
hence ¢, is a quadratic element of A. If &(T) has a (o, #)-basis, which is
simultaneously a o- and 6-basis, then we can describe ¢, also in terms of
one-parameter subgroups of X (7T (for this see Section 8).

6.7. LeMma. Let 4 be a (o, B8)-basis of ®(T). There exists e€ A with
*=e¢ such that for ied,,

m* (4, 60 Int(e)) = m (4, 8 Int(e)).

In particular we then have: 4, 3 < ®(A4, G2y.c))-

Proof. Taking ¢ to be the product of those ¢;, 1€ 4, ,, for which
m* (4, 00) <m~ (4, g8), the result follows from (6.4) and (6.6).

Let E=X*(T)®; R and let E_, be the common (-~ 1)-eigenspace of ¢
and 0 in E. Take a positive definite o, 8 and W(T)-invariant inner product
(-,-) in E. We identify W(A) with its image in GL(E, ,) and, for 1€ ®(A4),
let 5,eGL(E;,) denote the reflection in the hyperplane E_ ,(A)=
{xe E; 4(x,4)=0}. So s;(x)=x—-2(ALx)(A A)"'A If 4 is a maximal
(0, 8)-split torus of G, then, by (1.6), ®(4, G%) is a root system. Hence for
every Ae @(A) with m™* (4, 60)+#0, there exists a reflection s; in W(A4).
Combining this with (6.7) we obtain:

6.8. LEMMA. Let A be a maximal (o, 0)-split torus of G. If A is not
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central, then Ng(A)# Z;(A). In particular for every Le ®(A) there exists
ne Ng(A) whose image in W(A) is s,.

Proof. The first statement readily follows from the above remark and
the second statement follows from this by considering Z;((Ker 4)°), in
which 4 is not central. Then any ne Ng(A4) N Zy((Ker 1)°) such that
n¢ Z;(A), represents the reflection s, in W(A).

Now that we have constructed the reflections in W(A4), we can follow the
proof of Springer [24, 9.1.9] to show:

6.9. LemMa. (i) WI(A) is generated by the reflections s;, A€ D(A);
(i) If Ae D(A) and ye X*(A) then 2(A, A~ ") (4, y) e Z
(See also Richardson [20,4.5].)

For A€ &(A4) now define the dual root as the unique 4" € X, (4) such
that (L AV >=2(4L, A YA x)eZ for all yeX*(4) (ie, s,(x)=
1— <y, AY >2). Then denoting the set of dual roots by @Y (4) we have
proved:

6.10. PROPOSITION. Let A be a non-central maximal (o, 0)-split torus of
G. Then the quadruple (X*(A), ®(A), X, (A4), @ (A)) is a root datum in the
sense of (2.1). In particular ®(A) is a root system in the subspace E' of
X*(A)® 7 R spanned by ®(A) and its Weyl group is given by the restriction
of W(A) to E'.

Put &(4) = {le D(A)|31¢ B(4)).

6.11. Standard pairs. For the remaining part of this section we assume
A to be maximal (o, 8)-split and non-central. In order to have the Weyl
group of 4 acting on the quadratic elements in a family % (o, 8) we need
representatives in (G, Gg)°. In case the Weyl groups of @(4) and
@(4, G,) coincide, this condition is satisfied, because every element of
W(4,G%) has a representative in (G%)° = (G, N G,)°. This leads to the
following definition:

DEFINITION. A pair of commuting involutorial automorphisms (o, 8)
of G is called a standard pair if m* (A, 66) 2m~ (4, 60) for any maximal
(o, 8)-split torus A of G and any A€ P(A4).

6.12. LEMMA. Let 0, 8 and A be as in (6.11) and let A(A) be a basis
of ®(A). If m* (4, a0)=m (4, 00) for any Aed(A), then m*(4, o0)=
m=(w(l), 60) for any L€ ®(A), we W(A). In particular (o, 0) is a standard
pair.
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Proof. Since 4(A) is a basis of &(4) and &(4, GY;), their Weyl groups
coincide. By (1.6) every we W(4,G%) has a representative in
(G%,)° =(G, N Gy)°, so we get m™(w(A), a8)=m™ (4, 60) for any Ae B(A4),
we W(A4). However, since also m(w(4))=m(1) for any e ®(4), we W(4),
we have m~(w(4), 60)=m" (4, 60), which proves the first statement.
Finally, observing that for any A€ @(A), there exists we W(4) such that
w(1) € 4(A), the result is a consequence of (5.12).

Using (6.7) this lemma implies immediately:

6.13. THEOREM. Every family F (o, 8) contains a standard pair.

We shall see later, as a consequence of the classification, that the
standard pair in & (o, ) is unique up to isomorphism.

6.14. Note that if G is of adjoint type and (o, ), (o, 0 Int(e)) (c€ A,
g’ =) are standard pairs in %,(0, #), then ¢ is a product of a number of
the ¢, (A€ 4(A)), where 4(A) is a basis of @(A4) and ¢, is as defined in (6.6)
(see also (8.11)). But since both pairs are standard we must have
m*(4, 60 1Int(e))=m (4,00 1Int(c)) and m* (A, o0)2m (4, 00) for all
AeA(A). 1t follows that & is a product of those &, for which
m* (A, o8)=m" (4, 6f) (see also (6.4)). Thus, in order to show that the
standard pair (o, 8) is unique up to isomorphism we need to show that
{0, 0 Int(e;)) and (a, 0) are isomorphic if m* (A, g8)=m (A, g6). This will
be proved in (8.14).

6.15. COROLLARY. Let (0, 8) be a standad pair. Then any we W(A) has
a representative in (G, Gy)°.

6.16. COROLLARY. Let (0,0) be a pair of commuting involutorial
automorphisms of G (not necessarily standard) and A a maximal (o, 8)-split
torus of G. Then any we W(A) has a representative in Ngo(A4) as well as in
Ngo(A).

Proof. By (6.7) there exists an £€ A, ¢ =e¢ such that (o, 0 Int(g)) is a
standard pair. Since (o, 0 Int(¢)) is isomorphic to (o Int(e), 8) (see
(5.21(i))) the result follows from (6.15).

6.17. If (6, 0) is a pair of commuting involutorial automorphisms of G,
normally related to a maximal torus 7, then by (1.6) both &, and &, are
root systems with Weyl groups W,= W(T,;) and W, = W(T;), respec-
tively. Now if A=T_,, then we can see ®(4)=&,, also as the set of
restricted roots of &, with respect to ¢ (or of @, with respect to ). Now
(6.16) implies that we can choose representatives in W(T), commuting with
8 (resp. o). So together with (2.7) we have obtained:
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6.18. PROPOSITION, Let (o, )€ F be normally related to T and identify
W(T.,), W(Ty) and W(T;) with W, 4, W,, and W, respectively. Then
W,ox W5~ W, where W§ and W? are as defined in (2.7).

7. CLASSIFICATION OF ADMISSIBLE PAIRS
OF COMMUTING INVOLUTIONS

In this section we shall classify the isomorphism of admissible pairs of
commuting involutions. To do this we shall first show that this
classification can be obtained from the classification of single admissible
involutions (see Section 4), by use of a simple (combinatorial) condition on
a (o, §)-basis of @. Moreover, the pair of isomorphism classes (o, 8) and
(6, o) can be represented by a diagram.

We fix a maximal torus T of G and write @ for &(T), X for X*(T) and
W for W(T). Let (o, 8) e Aut(X, @) be a pair of commuting involutions.

7.1. A strong (o, 8)-order on &.

DEFINITION. A (g, 8)-order > on @ is called a strong (o, 0)-order if it is
simultaneously a a- and 6-order of @. A basis of @ with respect to a strong
(o, 8)-order will be called a strong (o, 0)-basis.

A strong (o, #)-order does not always exist. Another way to characterize
such an order is given in the following result:

7.2. PROPOSITION. Let (0,0) be a pair of commuting involutions of
(X, D). The following are equivalent.

(1) @ has a strong (o, 0)-order;

(2) Polo, 0)=Po(c) L Po(8);

(3) for each irreducible component @, of ®y(a, 8) we have o| P, =id
or 8| ®,=id.

Proof. (2)= (1) is obvious, namely if ®,(c, 0) satisfies this condition,
then ®@,(s, #) has a strong (o, 0)-order, which we can extend to a strong
(6, 0)-order on @ by choosing an arbitrary order on &, 4. Assume > is a
strong (o, §)-order on @ and let @* be the set of positive roots with
respect to this order. Now the induced order on ®y(a, ) is also a strong
(0, 0)-order of @(a, 0). Suppose that there is xe @* N Dy, 8) such that
o(a)#a#6(a). Then a>0, —a(x)>0, —0(a) >0, o6(x)>0. Hence
0=a—o(a)— 0(x)+ c0(x) >0, a contradiction.

The equivalence of (2) and (3) is proved in the same way as in (5.9).
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7.3. Remark. 1f (o, 0) is an admissible pair of commuting involutions,
then it follows from (5.9) that & has a strong (o, )-basis. These
involutions satisfy even a stronger condition, as follows from the next
results:

7.4. LeMMA. Let (o, 0) be an admissible pair of commuting involutions of
(X, @) and A a strong (o, 0)-basis of ®. Write 8 = —0*wy(0) as in (2.8).
Then $yla) N @y(0) is invariant under wy{0).

Proof. Since @y(8) is g-stable and o is admissible it follows by (3.12)
that @y(f) 1s o-normal. The result follows now from Lemma 2.19 and
Remark 2.9.

7.5. LEMMA. Let (0, 0), 4 be as in (7.4). Then a, wy(0) and 6* commute.

Proof. Since 0* and wy(0) commute it suffices to show that ¢ and
wo(f) commute. For this we show that owy(0) a(Dy(6) )= Dy(6).
Let ae®y(0)*. If aed®y(0)n Py(o) then owy(0)a(a)=a(we(0)(a)) =
wol8)a) e Po(0) .

If e @y(0)— (Do(0) N DPy(a)), then a(a)e Py(F) ", a(a) ¢ Dy(8) N Dy(o).
On the other hand, by (74) we also have wy(0)a(x)e Dy 0)",
wo(8) (o) ¢ Po(0) N Py(o), which implies owy(0) a(a) € o(0) . It follows
that ¢ and wy(6#) commute, hence we are done.

7.6. LeMMA. Let (0, 8), 4 be as in (7.4). Then wy(a) and 8* commute.

Proof. Since, by (7.5), @4(0) is 6*-stable, we have 6*wy(g) 0*(Dy(0)*)
= @y(0) 7, hence 0*wy(a) 0* = wy(o).

Summarizing (7.4), (7.5), (7.6) we have obtained the following result:

7.7. THEOREM. Let (a, 8) be an admissible pair of commuting involutions
of (X, @) and A a strong (o, 0)-basis of ®. Then wy(0), wy(o), 6* and a*
mutually commute.

1.8. Remark. Note that for the proof of this result it is only needed that
@ has a strong (o, 6)-order and that & is both ¢- and 6-normal. Under
these conditions it is also possible to prove that @, , is a root system with
Weyl group W, ,.

7.9. DEFINITION. A pair of commuting involutions (o, #) of (X, &) is
called basic if @ has a strong (o, 8)-basis 4 for which wy(0), wy(a), 6* and
0* mutually commute.
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These basic pairs of commuting involutions suffice to obtain all the
admissible pairs of commuting involutions of (X, &). We still need a
characterization of the roots in 4 lying above a restricted root in 4, ,.

7.10. LEMMA. Let (0, 0) be a basic pair of commuting involutions of
(X, @) and let 4 be a strong (o, 0)-basis of @. If a, f € 4 such that « #  and
n(a)=n(B)+#0, then a equals 0*(B) or a*(B) or a*0*(p).

Proof. Let V be the subspace of X*(T)® , R spanned by @ (see (2.1)).
Arguing as in (2.10) we obtain

o+ 0*(a) + a*(a)+ 6*0* (o) = B+ 0*(B) + a*(B) + a*0*(B)+ o

with § € Span 4y(a, 8). From this we deduce, as in (2.10), that 6 =0 and a
equals 6*(B) or a*(B) or a*0*(f).

7.11. THEOREM. Let (0, 0) be a pair of commuting involutions of (X, ®).
Then (o, 0) is admissible if and only if (o, 8) is basic and both o and 8 are
admissible.

Proof. This result is proved by using more or less the same arguments
as in (3.7). If (o, 0) is admissible, then both ¢ and 6 are admissible
involutions and also (g, 8) is basic by (7.7). So it suffices to show the “if”
statement.

Assume (o, 8) is basic and o, § are admissible involutions of (X, ®@). Let
{¥.}xe o(r) be a realization of @ in G as in (3.1) and let G, § € Aut(G, T) be
involutions inducing ¢ resp. 8 on (X, @). Since both ¢f and 8o induce o0
on (X,®) it follows from the isomorphism theorem (see Springer
[24, 11.4.3]) that there is a te T such that g0 =00 In(t). If xe Do, 0)
then, since ®y(a, 8) = Py(0) L Py(a), we have by (3.4) ¢, g=Csny,6=1 O
o5 = Cor).c = 1. But then

Ca,ﬂce(a).é = ca,éca(a),a’

which implies «(¢)=1.

Let 4 be a strong (o,0)-basis of & and write o= —c*wy(a),
0= —0*wy(0) with respect to A (see (2.8)). Since 650 =g Int(r) is an
involution, we get Int(c(¢)?)=id, hence o(t)te Z(G). Similarly we get
8(t)t € Z(G). 1t follows now from (3.5) that for any o e @ we have

a(t)=0*(a)(1) = a*(a)(r) = a*0*(a)(2).

Ifyed,,and a, f€ 4, o # B such that n(a) =n(f) =1y, then it follows from
(7.10) that B =o*(a) or 8*(a) or ¢*6*(a). Similarly as in (3.7), now take,
for each ye 4, 4, an a € 4 such that y = n(«) and choose u, € T, , such that
Mu,)=1 for Aed,, A#y and y(u})=a(r). Take u=[],c s, ,u,. Then by
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(7.10) and (3.5) we find a(tu*) =1 for all a € 4. So tu* € Z(G) and it follows
that Int(u) "' ¢ Int(u)d = 6 Int(u) ' & Int(u).

It remains to show that T, is a maximal (o, 6)-split torus of G. This
follows immediately from the fact that @ has a strong (o, 6)-order. Namely
Dy(a, ) is the root system of Zy(T, ) and from (7.2.(3)) it follows that
Zs(T,4)/T, , contains no non-trivial (g, )-split torus, what proves the
result.

7.12. Related involutions of (X, ®). Whether two involutions ¢ and 6 of
(X, @) are basic or not can be detected from their indices. To show this we
need besides conditions to assure that a*, 8% w(6) and w,(c) commute,
also an order on &, which is simultaneously a ¢- and 8-order.

DerFINITION.  Two involutions o, § of (X, ®) (not necessarily com-
muting) are said to be related if @ has a basis 4, which is simultaneously a
o- and f-basis of @. In this case 4 is called the relating basis of @ (relative
to (o, 6)).

Note that if o, # are related involutions, for which o*, 8*, wy(8) and
wo(o) commute, then also ¢ and 8 commute, so (o, 0) is basic. Analogously
to (2.11) we can define an index for a related pair of involutions of (X, @):

7.13. (g, 0)-indices. Assume that X is semisimple.

For a pair of related involutions (o, 8) of (X, @) and a relating basis 4
of @, call the sextuple (X, 4, 44(6), 44(8), 6*(4), 6*(4)) an index of (o, 8)
(or (o, 8)index). This (o, #)-index determines both ¢ and 6. If (o, 0)
is basic (resp. admissible) then we call this also a basic (resp admis-
sible) (o, 0)-index. Two indices (X, 4, do(a,), 4o(8,), c¥(4), 8¥(4)) and
(X, 47, 4y(05), 45(85), aF(4"), 0¥(A4")) are said to be isomorphic 1f there is a
we W(®), which maps (X, 4, 4y(0,), 404(8,)) onto (X, A, 44(6,), 45(0,))
and which satisfies

wOX(A)w '=0%(4) and  woF(A)w ' =c¥4').

7.14. Remarks. (1) The above index of (g, 8) determines the indices of
both ¢ and 6 and vice versa. When ¢ and 6 commute, then this definition
of (o, 8)-index is an extension of the definition of the Satake diagram
corresponding to the action of I'={id, —ag, —0, 66} on (X, @). In our
situation we have additional actions of ¢ and 6 on @y(a, 0).

(2) We can make a diagrammatic representation of the (o, 6)-index
by colouring black those vertices of the ordinary Dynkin diagram of &,
which represent roots in Ay(o)u 4,(0), and by giving the vertices of
Ao(o) U 44(0) which are not in dg(a)n A4y(0) a label o or 6 if a(x) #a or
0(x) # a, respectively. The actions of ¢* and 6* are indicated by arrows. As
in (2.12) we again omit the actions of a*, 6* on X,(c), Xo(8), respectively.
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Here is an example with @ of type A,:

of o resp. § with the above recipe. Note that such a diagram represents the
indices of both (g, ) and (0, o).

(3) If g, 6 are related involutions of (X, @), then they need not com-
mute. One can easily see this in the following example of a (o, §)-index,
where @ is of type 4,:

*—o

a [

From (7.2) we see that o and ¢ cannot commute.

(4) An index of (o, ) may depend again on the choice of the (o, 0)-
basis of &. Similarly to (2.13) we can prove:

7.15. PROPOSITION. Assume X is semisimple and let (6,0) be an
admissible pair of commuting involutions of (X, ®). Let 4, A’ be strong
(0, 8)-bases of @. Then (X, 4, Ao(0), 44(0),6*%(4), 0*(4)) and (X, 4’, 45(0),
4(0), a*(4’), 6*(4')) are isomorphic. In particular there is a bijection
between the W-isomorphism classes of admissible pairs of commuting
involutions of (X, ®) and the isomorphism classes of indices of basic pairs of
admissible involutions of (X, ®).

Proof. Since W§ corresponds to the Weyl group of @, 4 (see (6.18)),
there is by (2.5) a unique element we W(a, ) such that w(4)=4". Since
we Wi(a, 0) we have w(dq(o, 0))=4u(0,0) and w(4y(6))= 4,(0). But
by (7.2) 4do(0, 0)=4y(o)u 44(6), so w maps (X, 4, 4o(c), 4,(0)) onto
(X, 4', 44(a), 40(0)).

Similarly, as in the proof of (2.13), one shows now that w satisfies
wl*(4)w—'=0%(4’) and we*(4)w~'=0a*(4’), which proves the first
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statement. The second statement follows immediately from this and
Theorem 7.11.

Whether two related involutions of (X, @) are basic or not can be
detected now directly from their (o, 8)-index:

7.16. THEOREM. Let o, 8 be related involutions of (X, @) and 4 a relating
basis of ® with respect to (o6, 8). Then (a, 8) is basic if and only if

(1) o* and 6% commute,
(2) A4y8) is o*-stable and Ay(a} is 8*-stable,

(3) for every connected component 4, of Az(0)u dy(c) we have
A,c Ag(a) or 4, < 4,(8).

Proof. 1f (o, 0) is basic, then (1) and (2) are clear and (3) follows from
(7.2), using the same arguments as in (5.9). So assume (1), (2), and (3)
hold.

Then (2) implies that wy(6) and ¢* (resp. wy(o) and 6*) commute,
because a*wq(0) a*(44(0)) = —A4,(0) (resp. O*wy(o) 0*(dy(a))= —dy(a)).
So it suffices to show that wy(c) and wy(f) commute or equivalently:
wo(0) wo(8) wo(a)(4o(8)) = —4(0).

If aedolo) n 44(8), then wo(o) (o) = —a*(a)e —(4o(o) N 44(0)) by (2).
Similarly, since 4(c) is 0*-stable, we have wq(8) wo(o)a) = —0*wo(o )} a)
€ A4y(o) N A4y(8). Hence wy(o) wo(8) wo(a)(a) € —(do(a) N 4y(0)).

If aedy(0)—(4o(0) N 4y(0)), then let 4, = Ay(a) U 44(0) be the con-
nected component such that aed,. By (3) we have 4, 4,(0) and
wolo)a) =a+ s 450)na, MpB With mype Z, my > 0. Since, by (2), we have

—0*(a) = wo(0)(a) € —(4o(8) — (do(a) N 40(6))),

it follows that wy(0) wo(8) wy(o) (o) € P4(H)~, which proves the result.

With the above result and (7.15) it becomes an easy exercise to obtain all
the indices of basic pairs of admissible involutions of (X, &). Before we
describe them, we need again a notion of irreducibility.

7.17. DEFINITION. A (0, 8)-index S=(X, 4, 44(c), 4,(0), c*, 6*) is
called irreducible if A is not the union of two mutually orthogonal ¢*- and
0*-stable non-empty subsets 4,, 4,. S is called absolutely irreducible if 4 is
connected.

Note that S is irreducible if and only if 4, , is connected.

7.18. Classification of irreducible admissible (o, 08)-indices. Assume that
X is semisimple and of adjoint type. Let (g, 8) be a basic pair of non-trivial
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admissible involutions of (X, @) with (6, 8)-index S=(X, 4, 44(0),
A40(0), c*, 0*). We assume that S is irreducible. The standard pair in
F (0, 0) (see (6.11)) will also be denoted by (o, 6). We shall use the Cartan
notation to describe involutions, whose index is absolutely irreducible (see
Table II).

If S is absolutely irreducible, then we denote the pair (o, 8) by X779 (type
g, type 0), where X denotes the type of &, ie., one of 4, B, .., G and
/=rank &, p=rank 4,, g=rank 4,. For example, 43~ 1/(1, IlI,) means
that @ is of type A,_,, o is of type Al, 6 is of type AIIl, and
rank 4,=2/—1, rank 4,=1. We shall use the same notation for the
isomorphism class of the standard pair within a family #(o, 8). To
describe the other isomorphism classes in % (o, 8) we add the representing
quadratic element in T ,. So if we write ¢, ..., ¢, for the quadratic elements
in T,, with respect to 4, ,={4,,..,4,} (see (6.5)), then in the above
example 4%~ L/(I,II1,) denotes the standard pair (o, 8) in F (o, 8) and
A3 V1,11, ¢;) denotes the pair (0,6 Int(e;)) (i=1,.., p). For a
classification of these quadratic elements, see Section 8. We denote the
pairs (6, 0 Int(e,)) by X7 (type 0, ;).

To make identification with Berger’s classification of affine symmetric
spaces, it is sometimes useful to take &, = e and to denote the standard pair
by (o, 8 Int(g,)) (see Table II). In the classification of admissible irreducible
(o, 8)-indices with both ¢ and 0 non-trivial, we have six cases:

7.18.1. @ is irreducible and oc=0. In this case, the (o, 8)-index
equals the index of 6 (and ). If F=C, then the standard pair corresponds
to the complexification of a Riemannian symmetric pair and the quadratic
elements give the K, -spaces as described in Oshima and Sekiguchi [18].
See also Section 10. As for the signatures of the standard pair, we note that
m~ (A, 60)=0 for all A€ 4,, so we have m* (4, ) =m(A).

In Table IT we list the (6, 8)-index, the diagram of 4,, the multiplicities
of the restricted roots in 4, and the quadratic elements in T,
representing the classes in €(a, ) (see Section 8). We have added also
some information to identify these pairs with Berger’s classification [2].
This will be explained in Section 10.

7.18.2. @ is irreducible and ¢ #0. The diagrams representing the
indices of (o, 8) and (8, o) are listed in Table IV. We also give the type of
(0, 0 Int(g;)) as explained above, the diagram of 4,, together with the
signatures of the standard pair and the quadratic elements in T,
representing the classes in (g, 8) (see Section 8).

7.183. o=@, LD, with &,, D, irreducible, 0 =0 and o(P,)=
@,. In this case the (o, 6)-index equals again the indices of 8 (and o). Here
o* and 0* exchange the Dynkin diagrams of @, and &,. We denote (g, 6)
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by (X,x X,), where X, denotes the type of &, (i.e., one of 4, .., G). If F=C
these pairs correspond to the symmetric pairs (gc, g), where g is a real
semisimple Lie algebra of inner type (i, g contains a compact Cartan
subalgebra) and g its complexification.

In Table IIT we give the type of (0, 0 Int(e,)), the diagram of 4,, the
multiplicities of the roots in 4, and the quadratic elements representing a
class in (o, 0).

7.184. &= 1 D, with D, &, irreducible, 6(P,)=D,, 8(P,) = P,,
o* # 0*. Since both 6= —g* and 0= —6*, this can only occur if Aut(d,)
(i=1,2) contains a non-trivial diagram automorphism of order 2; ie., @,
(i=1,2)is one of 4, (I22), D, (I=4) or E. In this case (g, 0) and (8, o)
are isomorphic and we denote (o, 6) by (*X,x 2X,), where %X, denotes the
twisted Dynkin diagram of @ of type X,. If F= C these pairs correspond to
the symmetric pairs (g¢, ), where g is of outer type.
In Table V we list the type of (a, 0), the (o, 6)-index, the diagram of 4, ,
together with the signatures of the standard pair, and the quadratic
elements representing the isomorphism classes in %(a, ).

7.18.5. &=, U P, with &, ], irreducible, o(®,)=D,, HP,)= ],
(i=1,2). The diagram representing the indices of (¢, 8) and (8, 0) is a
double copy of the index of 6|®, and the action of ¢* is described by
arrows connecting both diagrams. Moreover, @, ;= ®,,,, and for ie &, ,
we have m* (4, 60)=m~ (4, 68), which equals again the multiplicity of the
corresponding root in @,,4,. All pairs in F (o, 6) are isomorphic (see Sec-
tion 8). In Berger these pairs are denoted by (g¢, f¢) and (a® g, g), where
g is a real semisimple Lie algebra and T a maximal compact subalgebra of
g. The pairs (g, fc) are associated to the ones in (7.18.3) and (7.18.4) (see
also (10.4)).

7.186. o=, UP, D, U D, with &, (i=1,2,3,4) irreducible,
a(P))=P,, o(P;)=D,, 0(P,)=P,, O6(P,)=&d;. The diagram
representing the index of (o, 6) and (6, o) consists of four copies of the
Dynkin diagram of &, and the actions of ¢* and 6* are described by
arrows, Here is an example of &, of type A,:

In this case is @, , isomorphic to @, and m* (1, 60)=m (4, 60) =2 for all
ie®, ,. All pairs in Z (o, 0) are isomorphic (see Section 8).

607,71/1-5
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In summarizing, we have obtained the following result:

7.19. THEOREM. Assume X is semisimple and of adjoint type. Then the
irreducible indices of admissible pairs of commuting involutions (o, 0) of
(X, @), where o, 0 #id are exhausted by the induces in (7.18.1)-(7.18.6).

7.20. Aut(X, @)-isomorphism classes of admissible pairs of involutions.
Some of the ordered pairs (o, 8) are isomorphic under Aut(X, @) to their
dual (0, o), using the diagram automorphism. These are D}/(III,, 111, ¢;)
and the pairs in (7.18.4). The group Aut(X, @) identifies none of the pairs
of involutions whose diagrams are not the same.

8. CLASSIFICATION OF THE QUADRATIC ELEMENTS
REPRESENTING THE CLASSES IN €(c, 0)

In this section we shall determine a set of quadratic elements, which
represent the isomorphism classes within a set €(a, 0).

8.1. Let (0,0) be a pair of involutorial automorphisms of G, 4 a
maximal (o, 8)-split torus of G, and T> 4 a (o, §)-stable maximal torus of
G such that Ty resp. T, is a maximal 8-split resp. o-split torus of G (see
(5.13)). We shall write @ for &(T), X for X*(T) and W for W(T).

For a closed subgroup H of G, we call two pairs (o, 6,) and (g,, 6,) in
F isomorphic under H if there exists 4 e H such that Int(k) ¢, Int(h) "' =0,
and Int(h) 0, Int(h) ' =0,.

In (5.16) we showed that any pair in £ (o, 8) is isomorphic to a pair
(0, 0 Int(a))e F (0, 8). As for the possible isomorphisms between these
pairs, we can restrict ourselves to Ng(A4):

8.2. LEMMA. Two pairs (o, 6 Int(a,)) and (o, 0 Int(a,)) in F (0, 0) are
isomorphic under G if and only if they are isomorphic under Ng(4).

Proof. 1t suffices to show the “only if” statement. Assume ge G such
that Int(g) o Int(g) "' =0 and Int(g)f Int(a, g~ ') =6 Int(a,). Since both
gAg~' and A are maximal (o, 8 Int(a,))-split tori of G, there exists by
(5.15) he (G, N Gypnyay)® such that hge Ng(A). This proves the assertion.

8.3. Remark. The question whether two pairs in %,(o, 8) are
isomorphic under N (A4) can be reduced to the case where G is adjoint.
Henceforth we assume this for the remaining part of this section.

8.4. Action on W(A) on #,(0,0). The action of Ng(4) on #,(0, 8) can
be split in an action of W(4) on Z,(0,0) and an action of Zy(4) on
Z (0, 8). That W(A) acts on the pairs in % (o, 08) can be seen as follows.
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Let (0,0) be a standard pair. Then by (6.15) every we W(4) has a
representative he (G, G,)°. So if (g, 0 Int(a))e F,(0, 0), we W(A4), and
he(G,NnG,)° a representative of w, then Int(h)oInt(h)"'=0¢ and
Int(h) 8 Int(a) Int(h) ' = 0 Int(hah~') = 0 Int(w(a)).

Denote the set of quadratic elements of 4 by F(A). In (8.13) we shall
describe a set of representatives of the W(A4)-conjugacy classes in F(A4). We
first deal with the question of when two pairs in %,(a, 8) are isomorphic
under Z;{(A4).

8.5. PROPOSITION. Let T, A be as in (8.1). Then two pairs (o, 0 Int(a,))
and (o, 0 Int(a,)) in ZF (o, 8) are isomorphic under Z (A) if and only if
there exists te T such that 6(t)=1t and a,a,=0(t)t .

Proof. 1f te T satisfies the above conditions, then Int(z) is the desired
isomorphism. So assume there is g€ Z(A) such that Int(g)o Int(g) ' =0
and Int(g) 0 Int(a; ) ' = 60 Int(a,). As in (14) let T, =
{teT|oB(t)=1""}. Now T, and g(T,) g~ ' are both maximal ¢6-split tori
of Z;(A4), so by (1.5), (1.6), and (5.3) there is he (Z,(A) N G, G,)° such
that hge Z 1 (Top) = ZAAT;0) = Z( T Ty ).

Now 7 and AgTg 'h~' are maximal tori in Z; (4AT,,) and since the
derived group of Z,(AT,) is contained in (Z,(4) "G, N G,)°, there exists
ke(ZAA)NnG,nGy)° such that t=khgeT Since a;,a,eA and
khe(Z A)nG,n G,)® we have o(t) =t and a,=a,0(t) t ', which proves
the result.

For a standard pair we can prove an even stronger result:

8.6. COROLLARY. Assume (o, 8) is a standard pair. Let T, A be as in
(8.1) and ae F(A). Then (g, 0) and (o, 0 Int{a)) are isomorphic if and only if
there is te T such that o(t)=1t and a=0(1)t~ ..

Proof. The result follows immediately from (8.5), (8.2) and the fact that
by (6.15) any we W(A4) has a representative in (G, N G,)°.

It is possible to characterize these quadratic elements 6(¢) ¢ ' occurring

in (8.5) as a product of a quadratic element in (7, ); and one in (T4 )} .
This is useful for checking whether in an explicit example two pairs in
Z 4(a, 8) are isomorphic under Z;(A4). We will state this result here, but we
shall not use it for the classification.

8.7. COROLLARY. Leto, 0, T, and A be as in (8.5) and ac F(A). Then the
following statements are equivalent:
(1) ThereisateT such that o(t)=1t and a=0(1) 1"
(2) a=xy where xe(T;);,ye{Ty);, x*=y*=e.
(3) Thereis a te T such that 8(t)=t and a=a(t) t .
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Proof. (1)=>(2): Assume te T such that ()=t and a=0(¢) t ~'. Write
t=tt,t5t, with t,e(TH)F, ,e(T7)}, t;€(T;)s, t4€ 4. Then 1,151,
satisfies the same conditions, so we may assume f=1,t;¢,. From o(¢)=1
we see that (¢,1,)> = e and since 08(¢52,)(¢;¢,) "' = t; 2, we obtain ti=e and
also t}=e Now a=0(t)t '=t7%;2=15%;? so it follows that r5=e.
Taking x =12, y =12 the result follows.

(2)=>(1): Assume now that a=xy as in (2). Let ¢z, € (T;y )} be such that
t?=x and let t,e(T;); be such that 3=y. Since yeT; n T, and
Ty nT, =A (see also (8.9) below) there exists a f;€ 4 such that 1= y.
If t=1,1,t;, then a(t)=1t,t; 157 =t t,t59° =1t and 6(t)t '=17U;%=
xy=a, which proves (1).

The equivalence of (2) and (3) follows by symmetry.

8.8. A characterization of the quadratic elements of A. We can describe
the quadratic elements of 4 as a product of quadratic elements of 7. Let 4
be a strong (o, 0)-basis of @ and 4, , the corresponding basis of @(A4).
Since the elements of both 4 and 4,, are linearly independent, we
can find for each aed an w,e X (T) such that {a, wgz)=4,, for
«, fed. Similarly for each Aed,, let y,eX,(4) be such that
Ay =6,,4 ped,,). In (6.6) we defined for ied,, the quadratic
elements ¢, =7,(—1)e 4. Since (o, 0)|T is a pair of basic involutions of
(X, @) we can describe ¢; also in terms of the one parameter subgroups o,
(xe 4).

8.9. LemMa. Let ied,, For ®(T,A)nA we have the following
possibilities:
(1) &(T, A)nd={a} with a=0c*(a)=0%(a);
(2) D(T,A)nd={a, %)} or {a, 6*(x)} with o*(a)=0a, 8*(x)=a,
or 6*0*(a)=u;
(3) O(T, A)nd={a, o*(a), 0*(a), 6*6*(2)}.
In these three cases we have for ¢,, respectively,

(1) e;=w,(—1);
(2) €A=(waw6*(a))(—1) or (wawa*(a))(’“l)§

3) &= (wawa‘(a)w()‘(a)wa‘ﬂ*(a))( —1)

Proof. The first statement follows immediately from Lemma 7.10. As for
the other statements note first that, since G is adjoint, {w, },., is a basis of
X (7). But then every quadratic element of T is a product of the quadratic
elements w,(—1) (2 4). In particular there is a subset 4, < 4 such that

3/1:“«54. wlz(_ 1)
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Since for aed we have a(e;)=a(y,(—1))=(—1)"*7" the result
follows from the definition of the w, (2 € 4) and the first statement.

8.10. Remark. 1f (o, 80) is normally related to T, then it follows from
this result, (3.5) and the fact that dy(o, 0)=4dy(c)u d4(0), that
T;,=T,; nTy.Since we will not need this in the sequel we leave the proof

for the reader.
For arbitrary quadratic elements of 4 we note:

8.11. LEMMA. Let ¢€ F(A). Then there exists a subset A, of 4, , such
that e=T1,.4, &;. In particular, F(A) is completely determined by the set of
indecomposable roots @(A)'.

This follows immediately from the fact that 4, , is a Z-basis of X*(A).

8.11.1. Remark. Since also W(A) is generated by the reflections s; with
led, ,=d(AY, it follows that for determining a set of representatives of
the W(A)-conjugacy classes in F(A) we may restrict ourselves to @(A4),
which is reduced. Henceforth we will assume that @(A4)= &(A4)".

8.12. Action of the affine Weyl group on F(A). Assume G is semisimple,
®(A) is reduced and 4, 4, , are as in (8.8). Write X, (4) additively and let
E=X_(A)®;R. For xeE, let f(x) denote the translation of E along the
vector x and let Q denote the group of the translations 7(v), where
V=2 ci4,,M; 4" wWithm;eZ and 1Y e ®(A4)" a coroot. If W*(A4) denotes
the affine Weyl group of &(A4), then W9 A4) is the semidirect product of
W(A) and Q (see Bourbaki [5, Chap. VI, No. 2.1]). Let

1
A2={—< Y mf,u) m;_el}
2 XEZ,‘H

and let £, € F* be a primitive 2th root of unity. Now define ¢,: 4, = 4 by

%( 2 '"/’»Vz>*< ) nu.u)(éz).

Aedgq Aedqn

O acts transitively on the fibers of ¢, and ¢,(A4,) = F(4). Moreover, since
We(A4)=Q - W(A), the orbits of A4, under the action of W*(A4) correspond
one to one to the W(A)-conjugacy classes in F(A4). Let C be the chamber of
E with respect to 4, , and P, the unique fundamental region in C contain-
ing the origin in its closure. Denote the closures of C resp. P, by C resp.
P,. Now any W“(A) orbit in E meets P, exactly once (see Bourbaki [5,
Chap. VI, No.2.1]). So if R=4,n P,, then ¢,(R) is a set of represen-
tatives of the W(A)-conjugacy classes in F(A). One easily sees that R
consists of at most |4, 4| vectors. Eventually after applying still a Weyl
group element, we obtain the following result:
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8.13. PROPOSITION. Assume P(A) is irreducible. Then any element of
F(A) is conjugate under W(A) to one of the ¢,, e 4, 4, as given in Table V1.

For more details on the proof we refer to Borel and Siebenthal [4] who
also derived this result in a slightly different context. They work with
compact groups, but this specific result depends only on the action of the
affine Weyl group. See also Oshima and Sekiguchi [18].

TABLE VI
& Dynkin diagram Quadratic elements
1 {
A1) O—0—-—0—0 g (2i<I+1)
1 '
B, (i22) O—0—- - —0=>0 g (<)
1 7
BC,(z1) O—O— - —O=0 g (<)
1 I ;
C(I>3) OO+ —0=0 A<
{
-1
1 -2 g (i<
D,(/=4) o—-0—-- iy
i 3/
£
E6 1 3 4 5 6 E;
2
1
E; 1 3 4 5 6 7 €2
&7
2
£
EB 1 3 4 5 6 7 8 ﬁ;
1 2 3 4 P
F, O—O0=0—0 !

&4
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We still need to determine which of these ¢, in Table VI are isomorphic
under Z;(A). This depends only on the signatures of the simple roots:

8.14. THEOREM. Assume G is semisimple and let (o,0) be a pair of
commuting involutorial automorphisms of G. If T, A, A and 4,4 are as in
(8.8), then, for any Aed,, with m*(4,00)=m (4, a0), the pair
(0, 0 Int(g,)) is isomorphic to (o, 0).

It is possible to prove this result by checking the condition (2) of (8.7)
for all the irreducible (o, 6) indices in (7.18.1)-(7.18.6). We shall give
another proof by proving five lemmas, which deal with all, except four,

cases.
For (8.15)-(8.19) we assume that G, T, o, 8, 4 are as in (8.14).

8.15. LEMMA. Assume o€ d — Ay(o, 8) such that 6*60*(a) # o and either
o*(o)=o or O*(x)=w. If A=n(a) then (o, 6 Int(e;)) is isomorphic to (o, 0).

Proof. Lett=w,(—1)eT Then B(z)=11if fed— {a} and a(t)= —1.
Let u=to0(t~"'). Then ueT,, (see (14)), so for Bed we have
B(u)= B(r) a*0*(B)(¢t "), because ab(B)=c*0*(B)+7, where y lies in the
Z-span of Ay(o, 0).

Now since flu)=1if f #a or e*6*(a), it follows that Int(e,) = Int(u), so
by (8.5) we are done.

8.16. LEMMA. Assume o€ 4 — Ay(0, 0), such that 6*0*(a) # a, c*(a) # o,
and 0*(a) #a. If 2=n(a) then (a, 0 Int(e;)) is isomorphic to (o, 6).

Proof. Let t=w,(—1), x=10(t ') and u=xaf(x ")=ta(t ") 60(:t™")
6(1). Similarly to (8.15) we have for fe A: B(u)=B(t) a*(B)1) O*(B) (¢ ")
o*0*(B)(t~'). So Bu)=a(r)= —1 if B equals one of a, o*(x), O*(a),
6*0*(x) and B(u)=1 for the other roots in 4. It follows that Int(u)=
Int(e,) and the result now follows from (8.5).

8.17. LEMMA. Assume a € 4 — Ay(o, 0) such that 0*(x) =c*(a)=o and
let A=mn(a). If a is contained in a subdiagram of the (o, 8)-index of the form

1 2 3 2k—1 x

a 4 g

Then (o, 8 Int(e,)) is isomorphic to (o, 0).

Proof. Assume that the roots of 4 are numbered as in the above
diagram and that a=oa,. For i=1,.,k let t,=w, (—1). Take

A2 -1



76 ALOYSIUS G. HELMINCK

t=[T%_,t; and let u=to0(t~'). Then for i=1,.., k we have ay_,(u)=
ay_,(t)>=1. Moreover, for i=1, .., k~1 we have

(1) = ay (1) o0(ay) (1)

= (og U0y )T ) =00y (7Y gy (17 =1

Since () = (1) 00(t ") = wola) wo(B)an )t ™) =gy (7 ') = —1
and p(u)=1for fed, B#a; (j=1, .., 2k) it follows that Int(u)= Int(e,),
which proves the result.

8.18. LEMMA. Assume that the (o, 0)-index has a subdiagram of the form

and Dy(0)=F, ©o(0) of type D,. If A, =mn(a,) and 1, =rn(as), then for
i=1,2 (o, 0Int(e,)) is iomorphic to (o, ).

Proof. Let t,=w,(—1)w,(—1) and fH=w,(—1)w,(—1). Put
u,=1t,00(t7') and u,=1,00(¢;"). Similarly as in (8.17) it follows that
Int(u,) =Int(¢,,) and Int(u,) =Int(¢,,), hence the result follows from (8.5).

8.19. LEMMA. Assume the (o, 0)-index has a subdiagram of the form:

If A=n(a), then (o, 8 Int(s,)) is isomorphic to (o, 0).

Proof. Put t;=wy(—1), t,=w,pu(—1), t=1,1, and u=106(:"").
Similarly as in (8.17) one verifies that Int(u) = Int(e,), so the result follows
by (8.5).

8.20. Proof of Theorem (8.14). Applying the Lemmas 8.15-8.19 to the
irreducible (o, 8)-indices in (7.18.1)-(7.18.6), we are left with four cases,
which do not satisfy any of the conditions in one of these lemmas. For each
of them we shall give an element ¢ e T satisfying the condition of (8.5). As
an example we shall treat the following case in more detail.
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(1) C47(1,,11,) with a=a,,. We number the roots according to the
Dynkin diagram below.

2p 2p+1

1 2 3
0»—0—0——0——&—0——0—’0——0:]
' 4 o 4

C21 —2p

Let A=n(a)=4,, t=0w,,,,(—1) and u=taf(:"). Then Int(x)=1Int(s,),
namely wo(0)(2)=s,, w(x), where w, is the longest element of
W(C,,_,,) with respect to AN C,, ,,. Let fe C,,_,, be such that —f is
the highest short root of C,,_,, with respect to 4 C,_,, (see Bourbaki
[5, Chap. VI, No. 1.8]). Then f(¢)= —1.

Extend {a,,,,,} to a maximal orthogonal set of roots as in (4.13)
and write w, as a product of the corresponding reflections. Then
Wl(aZp) = 0(2’, + a2p+ 1 + ﬁ So WO(O)(aZp) = aZp* 1 + a2p+ a2p+ 1 + ﬁ Now
o8(az,)(1) = wolo) wo(0)az,)(t) = sagp,,,lsazp_l(aZpA!+a2p+a2p+ 1+ B)1)=
B(t)= —1. 80 a,,(u) = p(¢)= —1. Since clearly y(u) =1 for ye 4~ {a,} we
are done.

(2) Dpi(L,, 1,) with a=a,.

Let A=mn(a)=4,, t=w,, (-1)o, (-1), and u=t66(:""). Then
Int(u) =Int{e;).

(3) DL(IIL,, T, &) with &= o, _,.

Let A=n(a)=4,_,, t=w,, (—1)and u=10(¢""). Then Int(x)=Int(e,).

A2 -y

(4) FY(I, 1) with o=,

1 2 3 4
*—0—0—O
g 2 [

Let a=u,, A=mn(a), t=w,(—1), and u=1rc6(:~"). Then Int(u)=Int(e;).
This completes the resuit.
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8.21. COROLLARY. The standard pair of a family F ,(o, 0) is unique up to
isomorphism.

Proof, The result follows immediately from (8.14), (6.13), and (6.14).

We are left with the following problem: which of the remaining ¢, give
rise to isomorphic pairs in % (0o, #). That they are not standard can be seen
by looking at the corresponding rank one subgroups.

8.22. Restricted rank one subgroups. Let (o, 8) be a standard pair and
assume T, A are as in (8.1). For Ae ®(A4) let @(A)={aeP(T)|a|A=mAi,
meZ}. This is a closed symmetric subset of @(7T). Let now G(4) denote the
(closed) subgroup of G generated by T and the root subgroups Uy, with
B e @(A). It follows from Borel and Tits [3, p. 74, Prop. 2.2, and p. 65, 2.3
Remark ], that G(A) is reductive and that @(1)=@(T, G(4)).

Since #(1)=0a(1)= —A, we see that @(1) and G(4) are ¢- and O-stable.
Moreover, if 6, =6 |G(4), 6, =0|G(4), then (g,, 8,) is normally related to
T and G(A) has restricted (o, 8,)-rank one (i, rank cli—(,l—),,lwg1 =1).

8.23. LEMMA. Let (0, 0) be a standard pair and T, A as in (8.1). Let 4 be
a strong (g, 8) basis of ® and A4, 4 the corresponding basis of ®(A). Let ¢,
(A€d, ) be as in (8.8). If L€ d,, is such that m* (4, 60)#m~ (4, ab) then,
(o, 8 Int(s,)) and (g, 0) are not isomorphic.

Proof. Assume (o, 0) and (o, 0 Int(e,)) are isomorphic (A€ 4, ,). From
(8.6) it follows that also (o, 6)| G(4) and (o, 6 Int(¢;))| G(4) are isomorphic.
So we may assume G = G(1). Now

g=Z,(4)@g(4, ) D g(4, ~1)Dg(4, 21) D g(4, —24).
On the other hand, a0 |Z,(A)= a0 Int(s;)| Z5(A) and
a8(g(A, £mi))=a0Int(e,)(g(4, £mi))=g(4, £mi), m=12

Comparing the dimensions of the eigenspaces of 66 and g6 Int(e;) in g, we
conclude that if (¢,0) and (o, #lInt(c;)) are isomorphic, we have
m* (A, 68)=m" (A, 66). The lemma is proved.

8.24. LeMMA. Let (0, 8) be a standard pair. Let ac F(A) and A, 4, ,
be such that a=T1];.4, ¢;. Then (o, 6 Int(a)) is isomorphic to (o, 0) if and
only if m*(2, 60)=m~ (4, oB) for all Ae 4,.

Proof. Assume Ae 4, such that m* (4, 68)# m~(4, a8). If (o, § Int(a))
and (o, 8) are isomorphic, then by (8.6) also their restrictions to G(4) are
isomorphic. But since (o, 8 Int(a))|G(4)= (a, 0 Int(s;))| G(1) the result
follows from (8.23).
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We can now prove the following results:

8.25. PROPOSITION. Let (g, 8) be a standard pair. Let A, i,e 4, be
such that m*(4,,60)#m (A, 00) (i=1,2). Then (o,0Int(e;)) and
(0, 6 Int(e,,)) are isomorphic if and only if ¢, and ¢;, are conjugate under
W(A).

Proof. The “if” statement being clear, assume (o, 0 Int(g;)) and
(0, 8 Int(e,,)) are isomorphic. By (84) there exists we W(4) such that
(o, 0 Int(we,,)) and (o, 0 Int(e,,)) are isomorphic under Z;(A4). Let ae 4 be
such that &;,=w(e, )a and let 4, 4, , be such that a=T],., ¢;. Then
by (8.5) (0,0) and (o, 01Int(a)) are isomorphic. Hence by (8.24)
m* (4, 60)=m" (4, a0) for all 1e 4,. We shall now show that a must equal
e.

Checking the signatures for the simple roots for the irreducible (o, 0)-
indices in (7.18.1)~(7.18.6) (see also Tables II-V), it follows that only the
following four cases occur for @, , irreducible:

(1) m*(4 00)=m" (4, aB) for all Ae A, ,. Then by (8.14) %(o, 6)
consists of a single isomorphism class.

(2) m*(A,a8)#m (A, a0)forall Led,,. Then a=e.

(3) m*(4,00)#m (4, 00) for exactly one ied,, In this case
Ay = 4,, so there is nothing to prove.

(4) &, ,is of type B, or BC, and m™* (4, 60)#m™ (4, of) for all long
roots in A, , and m* (4, a8)=m (4, a@) for the single short root pe 4, 4.

In this case a=e or a=¢,. Assume a=¢,. So wle,)=¢;¢, Here
Ay, Ayed, g— {u}. On the other hand, ¢,¢,, is conjugate under W(A4) to ¢,,,
what implies that ¢; is conjugate under W(4) to ¢,. So by (8.23) and
(8.14) we obtain a contradiction. Hence a =e. Since (1)-(4) exhaust all the
possibilities for &, , irreducible, the result is proved.

We shall say that €(a, 8) is irreducible if the index of the corresponding
admissible pair of commuting involutions of (X, @) is irreducible (ie., @, 4
is irreducible ). Summarizing the above results we have obtained the follow-
ing characterization of the isomorphism classes in 4

8.26. THEOREM. Asume G is semisimple and T a maximal torus of G.
Then the classes (0, 0) in € correspond bijectively to the isomorphism
classes of the indices of the corresponding admissible pair of commuting
involutions of (X, ®). The isomorphism classes contained in €(a,8) are
represented by guadratic elements of a fixed maximal (o, 8)-split torus A of
G. For €(0, 8) irreducible these are given in Tables 11-1V.

Note that, in cases (7.18.5)-(7.18.6), %(o,6) consists of a single
isomorphism class of commuting involutorial automorphisms of G.

607/71/1-6
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9. Aut(G)-IsoMORPHISM CLASSES AND ASSOCIATED PAIRS

In this section we will discuss the action of the full automorphism group
on the ordered pairs of commuting involutions. Moreover, we will give the
associated pairs (see (9.5)), which are of importance in the study of
semisimple symmetric spaces.

9.1. DEFINITION. Two pairs of commuting involutions (g, 6,) and
(05, 0,) are Aut(G)-isomorphic if there exists a ¢e€Aut(G) such that
¢6,6~ "' =0, and ¢0,4 ' =0,.

Denote the set of Aut(G)-isomorphism classes in &% by ¢° and for a
maximal torus T denote the set of Aut(G, T)-isomorphism classes of
ordered pairs of commuting involutions of (X*(T), &(T)) by €“(T).
Similarly as in (5.19) we can define a mapping

p°: 6% - €(T).

Write A“(T) = p“(¥°) and €“(a, 6)=(p*) ' p*(o, ).

From (7.20) it follows that Aut(7) only identifies the isomorphism
classes of some dual pairs of commuting involutions (o, §) and (6, o). The
classification of (?(T) is immediate from this.

As for the classification of €“(a, 6} it suffices to consider the action of
Aut(T) on the quadratic elements representing the classes in €(a, 8). This
can be seen as follows. Let (g, 8) be a standard pair, 4 a maximal (o, 8)-
split torus of G and

Ne={peAut(G)|d(4)c A4}.
Similarly as in (8.2) we can restrict to the action of N* on & (g, 0).
9.2. LeMMA.  Two pairs (o, 8 Int(a,)) and (o, 8 Int(a,)) in F,(a, 8) are
isomorphic under Aut(G) if and only if they are isomorphic under N°.

9.3. The group N differs at most some diagram automorphism from
Ng(A). Namely let To A4 be a (o, 8)-stable maximal torus of G as in (5.13)
and for a strong (o, 0)-basis 4 of ®(T) define

D(4, 4)={pe Aut(G, T)|§(4) = 4, $(4) = 4}.
We now have
N4=D(A, 4)-Ng(A).

For ¢ € D(A, 4), the automorphisms ¢, ¢ and § do not need to commute.
So the action of N® on %, (o, #) does not split in an action of Ny(4) on
Z (0, 0) and an action of D(A, 4) on Z (0, 0).
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94. If @(7T) is irreducible, then D(4, 4)#1d if @(T) is of type 4,
(!=2), D, (I=4), or Es. Using the characterization of the quadratic
elements of (8.9) it easily follows that N“ does not identify any of the
quadratic elements representing the classes of €(a, 8), except in the case of
DS, 11T, &)

Let ¢, (i=1,..,/—2) be the quadratic elements representing the classes
in %(0,0). Then by (8.9) g=w,(—1) (i=1,.,1—2). Let @°=
{ae D(T)| (o, 002 )= (2, a)=0}. It is easy to check that ®° is of type
D,,_, and «, .., a0y 3 can be extended with a root fe @° to a basis 4° of
P° Let —a,ed® be the longest root with respect to 4° Define
$° € Aut(@°) by:

a;l—*az‘;,z,‘;, (i=1,~-., 2Z—3)

ay—p

Extend ¢° to an automorphism ¢eAut(®P) by @(o,_,)=0ay_, and
dloty) =ay. Then ¢(e,_;_)=¢;&,_,, hence ¢; and ¢,_;_, are isomorphic
under Z;(A).

9.5. Associated pairs. Let (a, 0) be a standard pair, 4 a maximal (o, 0)-
split torus of G and e;=e. For a pair (g, 0Int(c,)) (i=0, .., rank(4)),
representing a class in %(0, 8), we define the associated pairs as
{o, 06 Int{c,)) and (06, ¢f Int(z,)).

[t will appear in Section 10 that these pairs correspond to the natural
associated pairs in the case of semisimple symmetric spaces. For the
absolutely irreducible (o, 0)-indices the associated pairs are listed in
Table VII. We have omitted those pairs which are simultaneously self-
associated and self-dual. The remaining cases are easily derived.

9.6. Remark. The determination of these associated pairs is mainiy a
matter of determining o6 Int(e;), which consists of the three commuting
involutions o, #, and Int(g;). A classification of all triples of commputing
involutions is not simple, because it is not only a combinatorial matter but
also a topological one. We will deal with a classification of these in future
papers.
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10. CLASSIFICATION OF SEMISIMPLE SYMMETRIC SPACES

In this section we shall show that there is a bijection between the set of
isomorphism classes of locally semisimple symmetric spaces and the
isomorphism classes of (ordered) pairs of commuting involutions as treated
in the Sections 7-8. Moreover, the fine structure as developed for pairs of
commuting involutions, transfers directly to the corresponding symmetric
space.

10.1. Let G, be a real semisimple connected Lie group and denote its
Lie algegra by g,. Let o € Aut(G,) be an involutorial automorphism and let
H be a closed subgroup of G, satisfying (G,)% <« H = (G,),. If ) denotes the
Lic algebra of H (or (G,),), then the pair (G,, H) is called a semisimple
symmetric pair and (go,h)) a semisimple locally symmetric pair. We shall
write also (g, o) instead of (gy, h). The symmetric space G,/H is called an
affine symmetric space. There is a bijection between the set of locally
semisimple symmetric pairs and the set of affine symmetric spaces
Go/(Gy)°. We will restrict our analysis to the semisimple locally symmetric
pairs. Two semisimple locally symmetric pairs (go, b,) and (go, b,) are
isomorphic under an inner (resp. outer) automorphism if there exists
¢ € Aut(G)° (resp. Aut(G)) such that ¢(g,) =g, and ¢(h,)=5,.

Let g denote the complexification of g, and let G = Aut(g)°. An semi-
simple symmetric pair determines a pair of commuting involutions of g.

10.2. PROPOSITION.  Let (go, ) be a semisimple locally symmetric pair.
Then there exists a Cartan involution 8 of g, such that 66 = 0g.

This is proved in Berger [2].

If 6,,0,€Aut(g,) are Cartan involutions satisfying 6,6 =60, (i=1, 2),
then there exists Yeb such that exp Y6, exp— Y =6, (see Matsuki [16]).
In other words, if we lift 6, 8, and 6, to involutions of g, then the pairs
(6,0,) and (o, 6,) are isomorphic in the sense of (5.15). Conversely,
starting with a pair of commuting involutions of g, we obtain a semisimple
locally symmetric pair, This follows from the following result.

10.3. LeMMA. Let g be a complex semisimple Lie algebra and 0, ..., 0,
commuting involutorial automorphisms of g. Then there exists a compact real
form u of g, with conjugation t, such that 8,1 =10, for i=1, .., n.

This result is discussed in the thesis of B. Hoogenboom [13]. Another
proof goes as follows. Let R denote the subgroup of Aut(g) spanned by
6,, .., 0,. Since R is a compact subgroup of Aut(g), there exists a maximal
compact subgroup U of Aut(g) containing R. Since U is maximal compact,
also Un Aut(g)° is a maximal compact subgroup of Aut(g)® and its Lie
algebra u satisfies the above properties.
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10.4. Dual and associated pairs. Let (6, 0) be a pair of commuting
involutions of the complex Lie algebra g and u a (8, ¢)-stable compact real
form of g with conjugation 7. Denote 8t by § and o7 by 4.

For a palr (0, 6), the first involution determines a real form. Then
(g°, olg") is a locally semisimple symmetric pair, corresponding to (6, o).
Here g7 is the set of fixed points of the conJugatlon @ in g. The set of fixed
points of o in g” will be denoted by g?. It follows from Helgason [11,
Chap. X, 1.4] that the isomorphism class of (g%, ¢ |g®) does not depend on
the choice of the (o, §)-stable compact real form u of g.

The pair (o, 8) is called the dual pair of (6, g) and the correspor_lding
semisimple locally symmetric pair (g7, g3) is called the dual pair of (g° g?).
Slmllarly the pair (6, c0) will be called the associated pair of (6, ¢) and
(a% g8,) the associated symmetric pair of (g°, g°).

10.5. Let (8, 0), § and g° be as in (9.4). We can lift (6, ¢) to a pair of
commuting involutions of G = Aut(g)®, which we denote also by (8, ¢). The
pairs of commuting involutions of G correspond bijectively with the pairs
of commuting involutions of g.

The tori occurring in Sections 1-8 correspond to the following subspaces
of g°. Let g =1@® p be the usual decomposition in eigenspaces of 8 (i.c., a
Cartan decomposition of g%). Likewise let g’ =h@ q be the decomposition
in eigenspaces of o |g®. Now 6-split (resp. o-split and (o, 6)-split) tori of G
correspond to Cartan subspaces of p (resp. q and pnq).

The characterization of the pairs of commuting involutions of G in Sec-
tions 5.8 gives a characterization of locally semisimple symmetric pairs in
terms of a (o, §)-stable Cartan subalgebra t of g% such that t~p (resp.
tnaq, resp. tnpnq) is maximal abelian in p (resp. g, resp. p nq). These
Cartan subalgebras of g’ are frequently used in the analysis on semisimple
symmetric spaces (see [18]).

A symmetric pair is called irreducible if the adjoint representation of h on
q is irreducible. This is equivalent to the notion of irreducibility defined in
(7.17). From (8.26) we obtain now.

10.6. THEOREM. The inner (resp. outer) isomorphism classes of the
semisimple locally symmetric pairs (§,, 6) correspond bijectively to the inner
(resp. outer) isomorphism classes of ordered pairs of commuting involutions
(6, 6) of g or Aut(g)°. Here g denotes the complexification of g, and 0| g, a
Cartan involution of g, commuting with o. In particular, a pair (S, ¢,), where
S is an admissible irreducible (0, c)-index and ¢, one of the quadratic
elements occurring with this (0, o)-index in (7.18.1)}-(7.18.6), represents the
isomorphism class of an irreducible semisimple locally symmetric pair and its
dual.

Berger (2] only classified the semisimple locally symmetric pairs under
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the action of the full automorphism group. As one can see from (9.4) some
of the inner isomorphism classes are identified under an outer
automorphism. In order to identify the above results with those of
Berger [2], we listed in Tables I and VIII the subalgebras a%(e;), where
g%(e,) denotes the set of fixed points of ¢ Int(e,) in g

Finally the associated pairs can be derived from Table VII. These are
among others of importance in the Fourier analysis on symmetric spaces
and also in descriptions of orbits of semisimple symmetric spaces under the
action of minimal parabolic subgroups (see Matsuki [16]).

10.7. A pair (0, o) is called self-dual if (8, 5) is isomorphic to (o, #) and
self-associated if (6, 0) is isomorphic to (0, 60) or equivalently if the
associated dual pair is self-dual. These pairs can be characterized as
follows.

10.8. LeMMA. Let (6, g) € Aut(G) be a pair of commuting involutions.
Then the following are equivalent:

(1) (0, 0) is self-dual,
(2) 8 is isomorphic to o,

(3) there is a maximal 6-split torus A of G and a quadratic element
e€ A such that (0, )= (0, 0 Int(e)).

Proof. Since (3)=(1) follows immediately from (5.21(ii)) and since
(1)=1(2) is obvious it suffices to prove (2)=(3). If ge G such that
Int(g)o Int(g~')=0, then 8 =0 Int(c(g) g '). By a result of Richardson
[20, 6.3] there is a maximal o-split torus 4 of G such that o(g)g 'e 4.
Since A4 is also maximal -split, the result is clear.

10.9. Remark. If 8¢ Aut(G) is an involution, 4 a minimal 8-split torus
of G and ¢ € A4, £* = ¢, then the pair (6, 0 Int(e)) corresponds to a symmetric
pair of type K,, as introduced by Oshima and Sekiguchi [18]. From the
above result it is now clear that a symmetric pair (g’ ) is of type K, if and
only if g4 and g, are isomorphic.

In {2,19] a semisimple symmetric pair is called self-dual if it is
isomorphic to its dual under an outer automorphism. So in this case the
pairs in (7.20) and (9.5) are also self-dual.

10.10. Remark. Berger [2]-gives a description of how one can obtain
the affine symmetric spaces from the semisimple locally symmetric pairs
and the fundamental groups. Together with more recent, detailed descrip-
tions of the fundamental groups (see Takeuchi [28] and Goto and
Kobayashi [10]) a complete description of the global pairs can be
obtained.
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