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1. Introduct ion 

Faul t - to le ran t  compu te r  systems are of ten  

organized as a ne twork  of  processors  or  com-  

puters,  in which fault  to lerance is achieved by 

dynamical ly  reconf igur ing a round  faul ty units  

[1,2]. Three  basic processes are needed  to deal  

wi th  faults in these systems: diagnosis,  re, config-  

urat ion,  and recovery. Of  these, fault  diagnosis  

has received the most  research a t ten t ion  in the last 

two decades.  Rela t ively  li t t le research has been  

repor ted  on the formal  mode l ing  of  reconf igura-  

t ion and recovery [5,7,10,13]. 

A loop ne twork  may  be  def ined as a closed 

com m un ica t i on  channel  wi th  a set of  processors  

and related devices that  are a t tached  to it by  

interface circuits [6]. Loop  structures are widely  

used for dis t r ibuted processing systems. The i r  main  

advantages  are easy message rout ing  and low im- 

p lementa t ion  and expans ion  costs. They  also are 

inherent ly  faul t - to lerant  since 

(a) two paths  link every pa i r  of  processors;  if 

one fails, com m un ica t i on  can con t inue  via  the 

o ther  path;  

(b) a faul ty processor  can easily be bypassed.  

The  s tructure and behavior  of  such networks  

can become  qui te  complex  if ext ra  processors  and 

communica t ion  links are added  to enhance  the 

fault  to lerance of  the basic under ly ing  loop net-  
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work. Recovery is also greatly complicated if the 
recovery mechanisms are distributed throughout 
the system. 

Although the design of fault-tolerant loop net- 
works has been previously studied [4,14], the re- 
configuration and recovery mechanisms necessary 
for high levels of fault tolerance or distributed 
recovery do not seem to have been considered. In 
this paper  we extend the graph-theoretical meth- 
odology for fault recovery presented in [5] and 
apply it to the analysis of both centralized and 
distributed recovery in loop networks. Section 2 
summarizes the properties of the facility graph 
used to model loop networks and defines the 
recovery model within this framework. The prop- 
erties of existing fault-tolerant loop networks [4] 
are discussed in Section 3. Efficient centralized 
recovery strategies are given and analyzed for 
those systems. Distributed recovery, which is in- 
tended for loop networks with no central super- 
visor, is introduced in Section 4. Distributed re- 
covery depends on the cooperation of a set of 
nodes to execute the recovery strategy since each 
node is assumed to have only a limited amount  of 
information about the system as a whole. The 
recovery problems encountered with such net- 
works are analyzed, and an efficient fault-tolerant 
design and recovery procedures that circumvent 
these problems are presented. 

2. Fault Recovery Model 

A loop network is described here using a facil- 
ity graph [4] which is an undirected labeled or 
unlabeled graph whose node represent the system 
components  or facilities and whose edges repre- 
sent interconnections between facilities. A facility 
is any node of the network that can fail indepen- 
dently of the remaining nodes. Two facility graphs 
G and H are isomorphic (G = H )  if there exists a 
one-to-one correspondence between their node sets 
that preserves adjacency. If  G 1 and G2 are two 
facility graphs whose nodes are labeled by the 
same set of  names {x i} ,  then G 1 and G 2 are 
L-isomorphic (G 1 =L G2) if and only if there exists 
a one-to-one correspondence between their node 
sets that preserves labeling and adjacency. A basic 
graph is a labeled facility graph that represents the 
minimum system configuration needed to perform 
a certain set of tasks. A basic system by definition 

cannot tolerate any faults. A loop network con- 
taining n processors is modeled by the basic graph 
Cn, which is a cycle or closed path  with n distinct 
nodes. The labels of C o represent tasks assigned to 
the nodes of C,. A redundant graph G r with re- 
spect to a basic graph C, is an unlabeled graph 
that contains a subgraph isomorphic to C,. G r is 
viewed as a redundant and possibly fault-tolerant 
realization of Cn. Gr will also be written as Gr[Cn] 
to indicate that Cn is the underlying basic graph. 

A fault F x is represented by the removal of the 
node x from the redundant  graph G~. The removal 
of a node from the graph also requires the removal 
of all edges incident on the node. All nodes of G~ 
are assumed to be of the same type and to have 
the same processing capability; hence, a faulty 
node can be replaced by any fault-free node that 
has the necessary edge connections. A set of k 
faults affecting k distinct nodes of G~ is called a 
k-fault. G~[Cn] is k-fault tolerant (k-FT)  [4] if the 
removal of any k nodes and their associated edges 
from G r results in a graph that contains a sub- 
graph isomorphic to Cn. 

Reconfigurability is defined as a system's abil- 
ity to change its physical or functional organiza- 
tion in response to change in the system's compu- 
tational requirements or the occurrence of faults 
[9]. Recovery, on the other hand, comprises all 
actions that are initiated by the detection of a 
fault and concluded by 

(a) resumption of normal operation (possibly 
in a degraded mode); or 

(b) a systematic shutdown of the system. 
Although the recovery process covers all actions, 
including reconfiguration, taken by a fault-tolerant 
system to circumvent the effect of a fault, we will 
reserve the term "recovery" to refer to reconfig- 
uration processes that are expected to terminate 
successfully. 

It  is assumed that the systems of interest con- 
tain a mechanism for continuous self-diagnosis. 
The precise manner  in which diagnosis is achieved 
is not of direct interest here. Normally the nodes 
in some subgraph C" = C~ of G~[C~] are engaged 
in computation,  or are active, while the remaining 
nodes of G~ are inactive or spare nodes. After the 
detection of a fault F x affecting a node x in C" 
the active subgraph changes from C" to C" - x. In 
order for the system to recover, a new subgraph 
C~" that is isomorphic to the basic graph C, and 
has no faulty nodes must be found. 
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We look on reconfiguration as a binding be- 
tween physical resources represented by the nodes 
of G~ and logical resources or tasks represented by 
the nodes of C~ [10]. Thus a task defines the state 
s (x )  of a node x. Every node x of G~ is assumed 
to be in one of n + 2 possible states: 

(a) n active states denoted by 1, 2 . . . . .  n; 
(b) an inactive or spare state denoted by 0; and 
(c) a faulty state denoted by - 1 .  

The state S(Gr) of the m-node system G r is the 
m - t u p l e  S ( x  I . . . . .  x i . . . . .  xm) = [ S ( x l ) ,  
. . . .  S(xi)  . . . . .  S(Xm) ] where S(xi)  is the state of 
node x r 

The state S(Gr) defines a particular labeling of 
Gr, leading to the next definition. 

Def in i t ion  1. Let Gr[C.] be a redundant system. A 
configuration G~ of Gr[C.] is a labeled graph iso- 
morphic to Gr in which node x i is labeled with the 
state S(xi). A configuration G¢ is a valid config- 
uration if it has exactly n distinct active nodes, 
and contains a subgraph L-isomorphic to C.. 

If G¢ is valid, then S(G¢) is called a valid state 
of G~[C.]. 

Typically, every node of a subgraph C,' of a 
valid configuration Gc is assigned one of the n 
active states to make C~" =L C~. The nodes of G c - 
C~' which are not faulty are spare nodes and are 
assigned the state 0. The state - 1  is assigned to 
any node in Gc that develops a fault. A fault F 
thus transfers G~[Cn] from a valid state S to a 
faulty state S e by changing the state of all nodes 
affected by F to - 1 .  

The reconfiguration problem of interest may 
now be defined formally. Let Gr[Cn] be a redun- 
dant  graph that represents a fault-tolerant realiza- 
tion of a basic graph C.. If G~ is the initial valid 
configuration and a fault F affecting Gr[C.] oc- 
curs, find a new configuration G" of Gr[C.], if 
such a configuration exists, that contains a sub- 
graph C.' =L C.. The general reconfiguration prob- 
lem involves finding a fault-free unlabeled sub- 
graph G s of G r such that Gs = C., and then label- 
ing it to obtain the subgraph C" =L C.. The prob- 
lem of finding G~ is the well-known subgraph 
isomorphism problem. While the general subgraph 
isomorphism problem is computationally very 
complex (NP-complete), efficient (polynomial 
time) algorithms are known for some special classes 
of graphs [8]. Efficient heuristic procedures are 

also known for the general case [11]. In this paper 
we impose restrictions on the systems of interest 
that effectively avoid the major difficulties of the 
subgraph isomorphism problem and also lead to 
fast recovery. 

A reconfiguration function R e with respect to F 
is a one-to-one mapping 

( s ( c , ) }  - ,  (s(G,)}  

that transfers Gr[C,] from one state to another. 
Throughout this paper we consider only those 
reconfiguration functions that obey the following 
constraints: 

(a) a node in an active state may be changed 
either to another active state or to the inactive 
state; 

(b) a node in an inactive state may be changed 
only to an active state; or 

(c) a node in a faulty state must remain in the 
faulty state, since repair or physical replacement 
of faulty nodes is not considered. 

Definition 2. Let S O be a valid state of Gr[C.] and 
let F be a fault that changes S O to Se. A p-step 
reconfiguration process with respect to So, F and a 
reconfiguration function R e is a state sequence 

P(So, F, R e ) =  S e, $1, S2, . . . ,  Sp 

where Si+ 1 = R F ( S i )  = R ~ ( S F )  for i = 1, 2 . . . . .  p. 
P(So, F, Re )  is a p-step recovery process if Gcp 

contains a subgraph L-isomorphic to C~, where 
Gee is the configuration that corresponds to S r. 

It should be noted that one step in a recovery 
process corresponds to a single transition between 
two states of Gr[C~] as defined by R e. A reconfig- 
uration strategy R for a set of faults { F } is a set of 
reconfiguration functions { RF }. 

Def in i t ion  3. A p-step recovery strategy R for G r, 
C., S(Gr) and { F }  is a reconfiguration strategy 
{Re}  , such that for every fault of the set { F }  and 
every valid state S there exists i ~< p such that 

s e )  = s,  

where S i is a valid state. We say that R recovers 
Gr[C.] from any fault of the set {F} .  

A k-FT system can tolerate up to k faults [4]. 
A system that achieves k-fault tolerance using a 
particular recovery strategy is called a k-fault 
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recoverable system with respect to that recovery 
strategy. Unless otherwise stated, G r may contain 
any valid initial configuration or state before a 
fault occurs. 

Definition 4. A system Gr[C,] is p-step k-fault 
recoverable ( p-step k - F R ) - - o r  simply k -FR- -wi th  
respect to the reconfiguration strategy R, if R is a 
p-step recovery strategy with respect to any fault 
affecting at most k nodes in G r. 

(a) 

2 

1 3 

The recovery process often involves a consider- 
able amount of information transfer among the 
system nodes. The number of fault-free nodes 
whose state is changed when reconfiguring the 
system to recover from a fault is taken as a 
measure of the system recovery time, and leads to 
the following definition. 

Definition 5. A k-FT system Gr[C,] is t-node 
recoverable (t-NR) with respect to a recovery 
strategy R, if R can recover the system from up to 
k faults by changing the state of at most t fault-free 
nodes. 

Obviously, we must have t >/k, and recovery 
can take place in at most t steps. Note that t 
represents the cumulative number of 1-node state 
changes occurring during the entire recovery pro- 
cess. We assume that each node changes state at 
most once during a recovery step. 

In [5] a general class of t-FT t-NR, or simply 
t-NR, designs, denoted G ° r r ,  were specified and 
characterized. G °r ' r  may be defined as follows for 
loop networks. 

Definition 6. The optimal t-NR redundant graph 
G ° e r  realizing the basic graph C, is an (n + t)- 
node graph constructed as follows: 

Step 1. Let Gg, the generator graph of G °aT, be 
an n-node labeled graph L-isomorphic to C~. Add 
t spare nodes Xsl . . . . .  xs, to Gg. 

Step 2. Connect each spare node xs~ to every 
node in G~ and to the other t -  1 spares. 

Gt ° r r  allows recovery to be achieved in the 
minimum time using the following simple recovery 
strategy Ro: replace each faulty node by the next 
available spare. (A more precise definition of R 0 
can be found in [15].) 

(b) 

2(b) 

l (a)  (c)3 

5 ( e ) ~ ( d ) 4  

1 (a) 

(c) 

(b)l 
/ \ 

/ [ t \ \  
l 2 ~ 1 c 1 3  

Fig. 1. (a) The basic cyclic graph C5; (b) the optimal 2-NR 
redundant system G~pt[c5] with a valid configuration; (c) the 

system after recovery form a 1-fault. 

Example 1. Figure l(a) shows the labeled basic 
graph C 5 representing a 5-node loop network. The 
optimal 2-NR realization G°r'r[cs] of C 5 specified 
by Definition 6 appears in Fig. l(b). The genera- 
tor graph G~ of G°r'r[Cs] is shown in heavy lines. 
In a typical application Gg is labeled as indicated 
so that Gg =r  C,, and the figure constitutes a valid 
configuration of G °r'r. The corresponding valid 
state is 

So(a, b, c, d, e, f ,  g) = (1, 2, 3, 4, 5, 0, 0). 

Suppose that a 1-fault affecting node b occurs, 
causing its state to change from 2 to - 1. Applica- 
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tion of R 0 causes one of the spares to change its 
state from 0 to 2, thereby replacing the faulty 
node. As can be seen from Fig. 1(c), the recovered 
system contains a fault-free subgraph L-isomor- 
phic to C s. The system state at this point is 

S l ( a ,  b , c ,  d , e ,  f ,  g ) = ( 1 , - 1 , 3 , 4 , 5 , 2 , 0 ) .  

A second faulty node can be similarly tolerated by 
a second application of R0; recovery from a 2-fault 
using R 0 is therefore a 2-step process. 

slightly simpler when k >i 2 [4].) Figures 2(a) and 
(b) show C,,,z for n odd and even, respectively. 
Recovery in C., 1 using R] depends on identifying 
nodes with degree 2 in the graph C~, 1 - x~, where 
xi is a faulty node of C~, 1. The edges incident on 
these nodes must be edges in the recovered sys- 
tem. These edges are identified and used sys- 
tematically to build up segments of a cycle that is 
L-isomorphic to C~. We now give a formal defini- 
tion of the recovery strategy R~ for the 1-FT case. 

3. Cen(ralized Recovery 

While the general redundant design G°~[C~] 
defined in Section 2 uses the minimum number of 
spare nodes (k = t) and has a very simple recovery 
strategy (R0), it has the disadvantage of requiring 
a large number of edges, and consequently has 
nodes of relatively high degree. In [4] a class of 
optimal k-fault-tolerant realizations of C, denoted 
C., k w a s  defined which also employ k spare nodes 
but have the minimum possible number of edges. 
This reduction in the number of redundant edges 
means that simple reconfiguration strategies like 
R 0 can no longer be used for recovery. We next 
present a recovery strategy R 1 for C~, k which 
shows that fast recovery is possible in such sys- 
tems. Throughout this section we assume that 
recovery is centralized in a system supervisor that 
has complete information about the system's oper- 
ational status and interconnection structure. The 
central supervisor is also able to transfer the state 
of a faulty node to any available fault-free node of 
the system. This implies that it must maintain 
backup files, check-point data, etc., concerning all 
active nodes of the system. 

First we consider centralized recovery for C,, k 
where k = 1. (Note that the structure of C,, k is 

Procedure 1: Cycle recovery strategy R 1 for C., r 
Step 1. Let S = (s 1, s 2 . . . . .  S n + l )  be the current 

valid state of C~, 1 and let the active subgraph be 
C" =L C~. Let a fault F affecting node x i occur 
that changes the state of C,, 1 from S to S r .  If x, is 
not in C~, implying that s ~  { - 1 ,  0}, then 
R I ( S F )  = SF, i.e., R 1 leaves the system state un- 
changed. 

Step 2. If x~ is in C' ,  implying that x, is an 
active node, scan S F from left to right until a 
component s~ = 0 is found, and go to Step 3. If no 
sj = 0 exists, then R I ( S F ) =  SF, and the recovery 
attempt is terminated unsuccessfully. 

Step 3. Using Procedure 2 given below, gener- 
ate the n-node path x 1 . . . x i . . . x .  that corre- 
sponds to the cycle C" .  

Step 4. Change the states of the n active nodes 
of the cycle C "  = x l . . .  x~.. .  x ,  such that a node 
x~ is assigned state S(x~) = i. C "  is L-isomorphic 
to c . .  

Procedure 2, which is a subprocedure of Proce- 
dure 1, is used to find an unlabeled n-node cycle 
in the graph C,,] - x. It generates iteratively edge- 
disjoint paths of a cycle. The endpoints of these 
paths are marked by an asterisk. If a node is 
marked by two asterisks, then the corresponding 
paths are concatenated to generate a larger path. 

x2 x 3 

X(n + 3 | /2  X(n + 5)/2 

(a) 

X(n + 1)/2 ~ )Xn + 1 

x n 

Fig. 2. The optimal 1-FT cyclic system: (a) (?.,1 for n odd; 

Xl x 2 

t---... 
> 

x(1 + n)/2 

(b) C,,j for n even. 

Xn/2 

x n 

(b) 
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Procedure 2: To find a cycle C. in the graph 

C . ,  1 - -  X.  
Step 1. Construct the adjacency matrix A [3] of 

Cn,1 - -  X.  

Step 2. If  any path  generated so far has n 
nodes, then it corresponds to the required n-node 
cycle C, and the procedure terminates. 

Step 3. Scan the rows of A from top to bottom. 
If  any unmarked row xj of A has exactly two l ' s  
in columns x i and x k, generate the 3-node path 
x i x j x  k. Delete column xj and row xj from A. 
Mark  rows x~ and x k with an asterisk. If  no rows 
satisfying the forgoing conditions are found dur- 
hag the current pass through Step 3, go to Step 6; 
otherwise go to the next step. 

Step 4. Scan A from top to bottom. If  any row, 
say x~, has two asterisk marks, then x~ is an 
endpoint of two paths. Concatenate these two 
paths to form a single path, and delete row x i and 
column x i from A. 

Step 5. Scan A f rom top to bottom. If  any row, 
say x i, has one asterisk mark and has a single 

1-entry, say a U, then x i is an endpoint of the 
paths P generated so far. Append the node xj 
adjacent to x i to the path  P, delete column x i and 
row x i from A, mark row xy with an asterisk and 
go to Step 2. 

Step 6. Scan A from top to bottom. If  any row, 
say x i, with one asterisk mark  has two 1-entries, 
then one of the two corresponding edges, say x i x  J, 
is discarded since if added to P it will create an 
m-node cycle, where m < n. Change both the aij 
and aji entries to 0 and go to Step 2. 

Example 2. Figure 3(a) shows the optimal 1-FT 
graph C8,1 and an initial valid configuration G¢. 
Suppose that node i in state 8 becomes faulty, 
resulting in the invalid configuration of Fig. 3(b). 
Now consider the application of recovery strategy 
R 1 as defined by Procedure 1. The faulty state is 

SF(a ,  b, c, d, e, f ,  g, h, i ) =  

( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 0 ,  - 1 ) .  

5 (el (f) 6 5 (e) ~ (f) 6 

3 ( c ) ~  ~ 3 (c) (i)-1 

FAULTY 
2 (b) la) 1 NODE 2 (b) (a) 1 

(a) (b) 

4 (d) l 

3 (c)~ 

5 (e~.~...,. (f) 6 

• ,./ ~ | ( g )  

s 

". ~ ,.~t (i) 1 m / / 
\ I 

2 ( b ) ~ ( a ~ l  
(c) 

2 (e) (f) 5 

1 ( d ) ~ ( g )  6 

8 ( c ) ~ ~ 7 / ( i ) - 1  

3 (b) (a) 4 
Id) 

Fig. 3. The optimal 1-FT system Cs.I[Cs]: (a) the graph Cs. 1 with a valid initial configuration; (b) configuration after fault F, occurs; 
(c) intermediate stage in recovery; (d) final recovered system. 
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Since S ( h ) =  0. Step 3 of the procedure invokes 
Procedure 2. The adjacency matrix A of Csj - i is 

a 

b 
c 
d 

A = e  

f 
g 

h 

a b c d e f g h 

-0 1 0 0 0 1 0 0 
1 0 1 0 1 0 0 0 
0 1 0 1 0 0 0 1 
0 0 1 0 1 0 0 1 
0 1 0 1 0 1 0 0 
1 0 0 0 1 0 1 0 
0 0 0 0 0 1 0 1 
0 0 1 1 0 0 1 0 

Row a has l ' s  in columns b and f ;  therefore Step 
3 of Procedure 2 yields the path baf. Row a and 
column a are now deleted, and the rows b and f 
are marked with asterisks. Row g also contains 
two 1-entries, and yields the path fgh. We then 
delete the g row and column, and marks rows f 
and h producing the following reduced adjacency 
matrix: 

b c d e f h 

[0 1 0 1 0 011 c 1 0 1 0 0 1 * 
A = d  O 1 0 1 0 

e 1 0 1 0 1 * * "  
f 0 0 0 1 0 * 
h 0 1 1 0 0 

Row f has two asterisks; hence, according to Step 
4 of Procedure 2, the paths bar and fgh are 
concatenated to form the new path bafgh as shown 
by heavy lines in Fig. 3(c). Note that since edges 
af and fg are now included in the partial cycle, 
we conclude that the path ef cannot be part of 
that cycle. Continued application of Procedure 2 
yields the 8-node cycle Ca" shown by heavy lines 
in Fig. 3(c). Step 4 of Procedure 1 now relabels 
Ca" to make it L-isomorphic to the original basic 
graph C a . 

We next demonstrate the validity of recovery 
s t r a t e g y  R 1 by proving that Procedure 2 always 
identifies an n-node cycle in C,, 1 - x. 

Theorem 1. Let C , j  be the optimal 1-FT realiza- 
tion of the cycle C~, and let x be any single faulty 
node in C,_ 1. Procedure 2 finds an n-node cycle in 
Cnj - x that is isomorphic to C,. 

Proof. The procedure determines whether or not 
an edge of C n j - x  is to form part of C, as 
follows: 

(a) Step 3: If a node x i in the original graph 
Cn, 1 - x ,  or subsequently after edges are deleted, 
has degree 2, then both edges incident on x i must 
be edges of C "  =L Cn. The graph C, j  can have no 
more than one node with degree 4; all other nodes 
have degree 3. Hence the fault affecting x always 
leaves at least two nodes with degree 2, allowing 
Step 3 to be executed at least once to initiate 
Procedure 2. 

(b) Step 4: If two paths are concatenated, any 
edges incident on the common endpoint that have 
not been selected so far can be eliminated; this is 
indicated by deleting the appropriate rows and 
columns of the adjacency matrix. 

(c) Step 6: If adding an edge xix  j to a selected 
path generates a cycle C,,, where m < n, then aij 
and aij are eliminated by changing the corre- 
sponding entry of the adjacency matrix from 1 to 
0. 

We now show that in every iteration through 
the procedure, at least one edge can be identified 
as either being a part of C~", or not being a part of 
C" .  Consider the case where n is even. The opti- 
mal 1-FT graph C.. 1 is shown again in Fig. 4(a). 
Suppose that the center node x .  + 1 is active and is 
effectively removed by a fault. The resulting graph 
C . , 1 - X . + l  is shown in Fig. 4(b). In the first 
i teration through the procedure  the paths 

X2X1XnXn_ 1 and X(n_2)/2Xn/2X(n+2)/2X(n+4)/2 are  
identified as segments of C" .  Also the edges 
x2x~_ 1 and x~_2)/2x~,+4)/2 are identified as not 
being a part of C,". In subsequent iterations the 
other vertical edges are identified as not being 
part of C~" since they produce m-node cycles with 
m < n .  

The only other fault we need to consider is the 
removal of a perimeter node xi from C~j, where 
i ~ n + 1. We consider the representative case 
where i = 2. The graph C~j - x 2 is shown in Fig. 
4(c). In the first iteration through the procedure 
the path P = x 4 x 3 x n _ 2 X n _ l X  n is identified as a 
segment of C~". Also the edge xn_2x~_ 3 is identi- 
fied as not being part of C~". In the second 
iteration the path XaXn_3Xn_ 4 is added to the 
path P. This implies that the edge x4x  5 is not part 
of C~". This process continues until all edges of 
C~" have been identified. The proof for n odd is 
similar. [] 
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(a) 

Xl x2 x 3 Xln -2)/2 Xn/2 
~ ~------~-- - --o c 

) ()----- -,.0 ~ 
Xn Xn.1 Xn.2 X(n + 4)/2 Xln + 2)/2 

Xl x2 x3 X(n-21/2 Xn/2 
o 0 O - - - - - -  ~ ,  0 o 

(b) 

o 0 0----- .-(, 0 c~ 
Xn X(n-1) X(n-2) X(n + 4)/2 X(n + 2)/2 

Xl x3 x 4 x5 >... o 

(c) ~ 0  ~ ~ 1  

o ~--~ (~ 
Xn X(n.1) X(n-2) X(n-3) Xln-4) 

Fig. 4. Proof of Theorem 1: (a) the optimal 1-FT graph C..z; 
(b) C n .  1 - -  Xn+l; (C) On,  1 - x 2 .  

We refer to G as the generator graph of G m. It is 
obvious that the optimal k -FT graph C.,2e con- 
structed using Procedure 3 is isomorphic to the 
cycle power graph C~+ +1. Figure 5 shows the graph 
C8, 4 which is isomorphic to C132, and according to 
[16] is a 4-FT realization of the cycle C 8. 

We now define a recovery strategy R 2 for C.,2p, 
which exploits certain properties of cycle power 
graphs. In the sequel we assume that the nodes of 
C., k are named Xl, x 2 . . . . .  x.+ k according to their 
location in the generator cycle C. +k. A set of m 
consecutive nodes xi, x~+l , . . . ,  xg+m in the gener- 
ator cycle C.+ k of C., k is called an m-node clus- 
ter. An m-fault cluster, accordingly, is an m-fault 
that affects an m-node cluster. R 2 exploits the 
fact that any k-fault that may affect C., k belongs 
to one of two basic classes. These fault classes are 
illustrated in Fig. 6 for the graph C8, 4 of Fig. 5. If  
an m-fault cluster affecting C.,~ satisfies the rela- 
tion m ~< p,  then the subgraph consisting of the n 
fault-free nodes is similar to the one shown in Fig. 
6(a). The n fault-free nodes are connected in a 
cycle around the perimeter of the faulty graph as 
shown by heavy lines. If  C., k has an m-fault 
cluster, where m >/p + 1, then every other d-node 
cluster satisfies the relation d < p. In this case the 
n-node fault-free subgraph of C., k is similar to the 
graph of Fig. 6(b). Again the heavy lines show a 
subgraph isomorphic to C.. R 2 uses the state 
vector of C., k to label the first n fault-free nodes 
with the states 1, 2 . . . . .  n. In the case of Fig. 6(a), 
it labels the nodes as they are first encountered. In 

Optimal k -FT loop networks C~, k where k >/2 
are somewhat easier to characterize than the 1-FT 
case. We now discuss recovery in C.,k when k >/2 
and k is even. 

Procedure 3. To construct an optimal k -FT reali- 
zation C.,k of the cycle (7. when k = 2p  is even 
[4]. 

Step 1. Form the cycle C. + k, which is called the 
generator cycle of C.,ze- 

Step 2. Join every node x i of C.+k to all nodes 
at distance j f rom x, in C.+k, for all j satisfying 
2 ~<j < p  + 1. The resulting graph is C~,zp. 

The power graph G"  [3] of G is constructed as 
follows: add edges to G so that every node x is 
connected to all nodes at distance d ~ m from x. 

a b 

d 

k i t  • 1 ~  e 

h g 
Fig. 5. The optimal 4-FT graph Cs. 4. 
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Fig. 6. Fault clusters in Cs,4: (a) two 2-fault clusters; (b) a 3-fault and a 1-fault cluster. 
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the case of Fig. 6(b) it labels the nodes alternately, 
skipping every second node encountered. 

Procedure 4: Cycle recovery strategy R 2 for C..2p. 
Step 1. Let S ( x  1, x 2 . . . . .  X.+k) = (S 1, S 2, 

. . . .  S.+k) be the current valid state of C., k and let 
the active subgraph be C" =L C~. Let a fault F 
affecting node x~ occur that changes the state of 
C., k from S to S F. 

Step 2. If  xi is not in C ' ,  implying that s i 

( 0 , - 1 ) ,  then R 2 ( S F ) = S v ,  i.e., R 2 leaves the 
system state unchanged. 

Step 3. I f  node xi is in C ' ,  implying that x; is 
an active node and s i ~ { 1, 2 . . . . .  n }, scan S F f rom 
left to right changing the state of every fault-free 
active node x~ f rom s~ to 0 to generate the state 
S 0. Set an index I to 0. 

Step 4. While I < n, scan S~ from left to right 
until a component  s k = 0 is found. I f  there is a 
node x j  in state I adjacent to the node xk, change 
s k f rom 0 to I +  1 and Sj to Si+ 1. Increment I and 
continue. I f  at any point no s k = 0 is found, then 
R2(S i )  = Si, and the recovery attempts fails (no 
spares available). I f  at any point there is a compo-  
nent s k = 0, but there is no node x j  in state I that 
is adjacent to the node xk, go to Step 6. 

Step 5. If  the nodes in state 1 and n are 
adjacent, then the n nodes labeled 1, 2 . . . . .  n rep- 
resent the cycle C,, and the procedure terminates. 
Otherwise go to Step 7. 

Step 6. Scan S i from left to right changing the 
state of every fault-free node to 0. Change the 
component  s k from 0 to 1 to generate the state $1'. 
Rotate  $1' until the component  s k becomes the 
first component  in $1'. Go  to Step 8. 

Step 7. Scan S,  from left to right changing the 
state of the first n fault-free nodes to 0 and 
change the state of every other fault-free node to a 
number  N > n, yielding the state Sd. Scan S~ 
from left to right to find a component  sj = 0. 
Change sj from 0 to 1 to generate the state S~'. Set 
an index I to 1. 

Step 8. While I < n, scan S 1' f rom left to right, 
starting at the component  si = I ,  to find a pair of 
components  s~ = 0 and s k = 0. Change the state of 
s k from 0 to I + 1 and S/ to S~+ 1. Increment  I 
and continue. If at any time there is no pair of 
components  satisfying the forgoing conditions, go 
to Step 9. 

Step 9. While I ~< n, scan S i' f rom right to left 
to find a component  sy--0 .  Change sj f rom 0 to 
I + 1. Increment I and continue. 

Step 10. Scan S, from left to right changing 
every component  sj = N, if any, to 0. The nodes of 
the required cycle C, are now labeled 1, 2 . . . . .  n. 

Examlfle 3. Again we consider the optimal  4-FT 
system C8, 4 shown in Fig. 5. Suppose that a 4-fault 
occurs affecting the nodes c, d, e, and h. We now 
use the recovery strategy R 2 to recover an 8-node 
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cycle C 8 from the faulty graph. Using Step 3 of 
Procedure 4, set the state of every fault-free node 
to 0 thus 

S o ( a , b , c , d , e , f , g , h , i , j , k , l )  

= ( 0 , 0 ,  - 1 , - 1 ,  - 1 , 0 , 0 ,  - 1 , 0 , 0 , 0 , 0 ) .  

Step 4 of the procedure causes S O to be scanned 
from left to right. The spare nodes are labeled 
1, 2 . . . . .  n in the order that they are encountered, 
yielding the following sequence of states: 

S 1 = (1, 0, - 1 ,  - 1 ,  - 1 ,  0, 0, - 1 ,  0, 0, 0, 0), 

$2= (1, 2, - 1 ,  - 1 ,  - 1 ,  0, 0, - 1 ,  0, 0, 0, 0). 

At this point the next 0 encountered in S2 is s 6 
which corresponds to node f .  Step 4 cannot assign 
node f to state 3, since f is not adjacent to node 
b, and b is already assigned to state 2. Hence Step 
6 is executed which changes the state of the first n 
fault-free nodes in S 2 back to 0 and changes the 
state of f to 1 to produce the state $1: 

S l ( a ,  b, c d, e, f ,  g, h, 

- - ( 0 , 0 , - 1 , - 1 ,  - 1 ,  

Then S 1 is rotated until 
corresponds to f thus 

i, j , k , l )  

1 , 0 , - 1 , 0 , 0 , 0 , 0 ) .  

the leftmost component 

S ; ( f ,  g, h, i, j ,  k ,  1, a, b, c, d, e) 

= (1, 0, - 1 ,  0, 0, 0, 0, 0, 0, - 1 ,  - 1 ,  - 1 ) .  

According to Step 8 of the procedure, we must 
now label every other 0-component in S i with the 
labels 1, 2 . . . . .  n. Step 8 therefore produces the 
following sequence of states: 

$2 = (1, 0, - 1 ,  2, 0, 0, 0, 0, 0, - 1 ,  - 1 ,  - 1 ) ,  

$3 = (1, 0, - 1 , 2 , 0 , 3 , 0 , 0 , 0 ,  - 1 ,  - 1 ,  - 1 ) ,  

$4= (1, 0, - 1 , 2 , 0 , 3 , 0 , 4 , 0 ,  - 1 ,  - 1 ,  - 1 ) .  

Executing Step 9 of the procedure we scan S 4 
from right to left labeling 0-entries in sequence: 

$5= (1, 0, - 1 , 2 , 0 , 3 , 0 , 4 , 5 ,  - 1 ,  - 1 ,  - 1 ) ,  

$6= (1, 0, - 1 , 2 , 0 , 3 , 6 , 4 , 5 ,  - 1 ,  - 1 ,  - 1 ) ,  

S 7 = (1, 0, - 1 ,  2, 7, 3, 6, 4, 5, - 1 ,  - 1 ,  - 1 ) ,  

$ 8 = ( 1 , 8 , - 1 , 2 , 7 , 3 , 6 , 4 , 5 ,  - 1 ,  - 1 , - 1 ) .  

The final state obtained by rotating the compo- 
nents of the state vector S s back to their normal 
positions is 

S ~ ( a , b , c , d , e , f , g , h , i , j , k , l )  

= (4, 5, - 1 ,  - 1 ,  - 1 ,  1, 8, - 1 ,  2, 7, 3, 6). 

The nodes of C8,4 are now labeled 1, 2 . . . . .  n 
corresponding to S~. The valid configuration of 
the recovered system is shown in Fig. 6(b). 

It can readily be shown that R 2 can always 
r e c o v e r  Cn.2p from 2p-faults [15]. R 2 can also be 
easily modified to deal with Cn. k when k is odd. 
We can therefore state the following result. 

Theorem 2. The optimal k-FT system Cn,2p is k-FR 
with respect to the recovery strategy R 2. 

It is worth noting that G°r'r[C,] and Cn.k rep- 
resent two extreme cases of k-FT realizations of 
C,. Cn, k employs the minimum number of edges 
consistent with having the minimum number of 
nodes, whereas G °l 'r  employs close to the maxi- 
mal number of edges. Recovery in G °eT via R 0 is 
the fastest possible in terms of the number of 
nodes that must change state. While R 2 is a fast 
recovery strategy for C~.k, the spare interconnec- 
tion structure of C,, k inherently requires a large 
number of nodes to change state, resulting in 
much longer recovery time. Other fault-tolerant 
loop networks and their (centralized) recovery 
strategies can be expected to fall between these 
extremes. 

4. Distributed Recovery 

In the fault-tolerant systems considered so far 
it has been assumed that recovery is directed by a 
single supervisor. Centralized recovery of this type 
has two drawbacks. First the supervisor is vulner- 
able, and needs added redundancy for its protec- 
tion. The other drawback is the processing over- 
head of monitoring the operational status of all 
processors of the system. In this section the use of 
distributed recovery in loop networks is analyzed. 
Distributed recovery depends on the cooperation 
of a set of nodes (local supervisors) to execute the 
recovery function. Each node is assumed to have 
information about only a subset of nodes in its 
immediate vicinity. Here we restrict our attention 
to redundant systems in which each node x has 
information only about the subgraph N(x ) ,  called 
the neighborhood of x, which is the induced sub- 
graph of G r containing x and all nodes adjacent 
to x. 
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Distributed recovery requires several steps in 
which different nodes successively act as the local 
supervisor. It typically proceeds as follows: 

(a) A fault F occurs changing the system con- 
figuration or state from valid to invalid. 

(b) An active node x~ detects a faulty node xj 
in its neighborhood N(x~),  assumes the role of 
local supervisor and initiates recovery. Usually x~ 
attempts to find a spare node x ,  in N ( x i )  such 
that x k can assume the previous state sj of the 
faulty node xj. 

(c) If no suitable spare is available, either be- 
cause no spares are present in N(x; ) ,  or because 
the available spares do not have the proper con- 
nectivity, x; makes an appropriate change to  N(x i )  
and relinquishes the role of local supervisor,which 
must then be assumed by some other node. 

I t  should be noted that the initial fault affect- 
ing node xj in Step (a) above corresponds to the 
absence of a node in state sj. Subsequent reassign- 
ment of states during recovery may also lead to 
other states being temporarily missing from the 
system configuration. For  example, if supervisor 
node x i changes the state of another node x k from 
s k to the state sj of the faulty node xj, the old 
state s k of x k is unassigned These considerations 
lead to the following concept of an error condi- 
tion. 

Definition 7. Let Gr[Cn] be a fault-tolerant system 
whose current configuration is G c. A n  error E (  si) 
exists if Gc has no active node in state s~, where 
s i~  {1,2 . . . . .  n}. 

Thus error detection and recovery will be based 
on the identification of (local) configurations in 
which one of the n active states is missing. 

To allow a node x~ to execute the recovery 
function when it acts as local supervisor, it must 
store certain limited information about the system 
Gr[Cn] , specifically: 

(a) the structure of N(x i ) ,  
(b) the current state of all nodes in N(xj);  
(c) the set of errors { E(s i )  } of interest to xi; 
(d) certain backup files defining the tasks of 

the nodes in N ( x i ) .  When x~ changes the state of 
another node xj  from sj to s k, x~ uses these files 
to supply xj with the necessary information needed 
to perform the task s k. x, periodically updates its 
backup files by polling the nodes of N(x ; ) .  

Several problems arise in distributed recovery 
that were not encountered with systems that use 
centralized recovery. An error may exist in a 
neighborhood that has no faulty nodes. A neigh- 
borhood may have no spare nodes available to 
replace faulty nodes. Valid local reconfiguration 
decisions may not lead to a valid global configura- 
tion. Storage requirements may be very great if a 
node is required to store backup files for every 
potentially faulty node in its neighborhood. If two 
nodes start reconfiguration at the same time, they 
may subsequently interfere with each other and 
prevent recovery from taking place. 

To make above problems tractable, we impose 
the following general restrictions on system behav- 
ior. 

Assumptions Governing Distributed Recovery: 
(a) Any active node x i of G r in state si may act 

as a local supervisor. It may only detrrct errors of a 
specified set {E~} that affect its neighborhood 
N(x~). It should be noted that we associate { E; } 
with the state s; rather than the node x v 

(b) The set of errors { E i } and { Ej } that can 
be detected by nodes x i and x j, respectively, are 
disjoint. 

(c) At any time at most one error may be 
present in the system configuration Go. 

(d) When reconfiguring the system in response 
to an error E ( s , ) ,  a local supervisor may either 
assign s k to a spare node, or else change its own 
state to s k. 

These assumptions solve the problems listed 
earlier in the following ways. Assumptions (a)-(c) 
ensure that at any time only one error is present in 
the system, and only one node is acting as the 
local supervisor for this error. Assumption (d) 
ensures that all reconfiguration actions that do not 
produce immediate recovery, result in the creation 
of new errors that conform to Definition 7. This 
implies that at any time during recovery only one 
active state is missing from Go. Assumption (c) 
also implies that only single faults are dealt with. 
Hence new faults may not occur while the system 
is recovering from a previous fault. Multiple faults 
must be treated as a sequence of single faults, with 
recovery taking place before the occurrence of a 
new single fault. Ensuring that global recovery is 
achieved via a series of local reconfiguration steps 
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requires restrictions to be placed on the system 
structure. 

Next  we define a class of  efficient k - F R  realiza- 
t ions of  loop networks with respect to a distrib- 
uted recovery strategy R 3, and show that  they can 
be easily characterized by means of  power  graphs. 
If  an n-node graph G has a spanning subgraph G s 
isomorphic  to the n-node cycle Cn, then G is 
called a Hamiltonian graph, and G s is a Hamilto- 

nian cycle [3]. Clearly if a redundant  realization G r 
of  C~ is to tolerate a k-fault, the graph obtained 
by  eliminating any k nodes f rom G r must  contain 
an n-node Hamil tonian  subgraph. (Graphs  with 
this proper ty  have been termed k-Hamiltonian.) It 
is easily shown that cf++~ is a k - F T  realization of  
C~ which, however, is nonoptimal .  

We now int roduce a distributed recovery 
strategy R 3 for use with the redundant  power  
graph  C~+I[c~] = G~. For  R 3 we part i t ion the 
poss ib le  e r ro r s  i n to  the n d i s jo in t  sets 
{E(Sl)} ,  ( E ( s 2 )  } . . . . .  {E(s~)},  each containing 
one error type. We also require the node  in state s~ 
to detect only the error E ( s ~ -  1), where the sub- 
t ract ion is modulo-n.  Accordingly,  xi periodically 
polls the neighboring node  xj that  is in state 
s ( x j )  = s ~ -  1. If  the error E ( s ~ -  1) occurs, then 
x~ changes its own state f rom s~ to s i -  1, gener- 
at ing the error E(s~). The  recovery process propa-  
gates through G r until the node  x k in state 1 
detects the error E ( n ) ,  at which point  x k activates 
a spare and  the error  is absorbed,  thereby com-  
pleting the recovery process. Procedure 5 below 
describes the recovery strategy R 3 f o r m a l l y .  In  
this description it is assumed that  the nodes of  G~ 
are labeled by  x 1 through x~+ k according to their 
posit ions on the generator  cycle C,+ k. 

Procedure  5: The distr ibuted recovery strategy R 3. 
Step 1. Let the initial state of  Cf++~[C~] be 

S 0 ( X 1 ,  X 2 . . . . .  Xn+k)=(1, 2, 3, 4, 5 . . . . .  n, O, 

0 . . . . .  0). Let S ( x  I . . . . .  xi . . . . .  x~+k) = (s 1, 
s 2 . . . . .  s i . . . . .  Sn+k) be the current  valid state of  
c~++~[Cnl, and  let G c be the configurat ion corre- 
sponding to S. Suppose that  a fault F affecting a 
node  xj  occurs, which generates an error E ( s j )  

and  changes the state of  c f~k  1 f rom S to SF- If  
the fault affects a spare node, then R 3 leaves the 
system state unchanged.  

Step 2. For  1 < si ~< n, the node  x~ in state s, 
tests the node  x j  E N(x~)  which should be in state 

s~ - 1. If  xi detects the error E(s~ - 1), then one of  
the following actions occurs:  

(a) If  the error E(1)  is present, then x~, 
which is in state 2, scans the state vector 
S ( N ( x , ) )  f rom left to right until a componen t  
s k = 0 is found, x, then changes s k to 1 and the 
system recovers. I f  no  s k = 0 exists, then the 
recovery a t tempt  fails (no spare nodes are 
available). 

(b) If  the error E ( s i -  1) is present, where 
2 ~ < s ~ - l ~ < n ,  then x i changes its own state 
f rom s i to s, - 1. 

(c) If  the error E ( n )  is present, then x~, 
which is in state 1, scans the state vector 
S(N(x~) )  f rom left to right until a componen t  
s k = 0 is found, xi then changes s k to n and the 
system recovers. I f  no  s k - - 0  exists, then the 
recovery a t tempt  fails (no spare nodes are 
available). 

It should be noted that  since at mos t  one  error 
exists in the system at any time, only  one node 
may  change state each time R 3 is executed. In 
general, multiple steps are required for  the system 
t o  r e c o v e r .  

T h e o r e m  3. The fault-tolerant system C f f l [ c n ]  is 
( n -  1)k-step k - F R  with respect to the recovery 

strategy R 3. 

Proof.  First we prove that  Cf++kl[Cn] is k - F R  with 
respect to the recovery strategy R 3. Let the initial 
s t a te  be  S ( x l ,  x2 . . . . .  xi  . . . . .  Xn+k)  = 
(1, 2 . . . . .  i . . . . .  0). R 3 may  require a node  x~ in the 
initial state s i to change its state up to k times 
during recovery f rom a k fault. Thus  x~ may  pass 
through the sequence of  states s~ - 1, s i - 2 . . . . .  s, 

- k in response to a sequence of  k faults. A node  
xi can act as a local supervisor and assume the 
state sy + 1. Since x i is adjacent to every node  in 
the initial state s~ - 1, s, - 2 . . . . .  s, - k - 1, it can 
act as the local supervisor required by R 3 for 
recovery f rom the k faults. Hence,  ck+~[C~] is 
k - F R  with respect to R 3. t~ 

Next,  let us calculate the max imum number  of  
steps needed to recover the system f rom a fault. 
The worst case occurs when a node  xy in state 2 
fails. Accord ing  to R 3, the node  x k in state 3 
initiates recovery and changes its own state f rom 3 
to 2 in one step. Then  the n - 3 nodes in states s i, 
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for i = 4, 5, . . . ,  n, have to change their states in 
turn, each change requiring one step. In the last 
step, the node  in state 1 activates a spare node.  
Therefore,  the m a x i m u m  number  of  steps to 
recover from one fault is n - 1. For  k faults, the 
number of steps is at most (n - 1)k.  

Example 4. Figure 7 shows the graph C3[C6] which 
is a 2-FT redundant realization of C 6. By Theorem 
3, C3[C6] is also a 10-step 2-FR with respect to 
R 3. Suppose that node c becomes faulty gener- 
ating the error E(3) and changing the state of the 
system from S(a,  b, c, d, e, f ,  g, h ) =  
( 1 , 2 , 3 , 4 , 5 , 6 , 0 , 0 )  to S F = ( 1 , 2 , - - 1 , 4 , 5 , 6 , 0 ,  
0). The propagation of the local supervisor is 

c i 
,g 

Fig. 7. The 2-FT graph Cs3[C6]. 
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Fig. 8. Recovery propagation between neighborhoods on applying R 3 to Cs3[C6]. 
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illustrated by the series of configurations in Fig. 8. 
Figure 8(a) shows the initial configuration G c. 
Figure 8(b) shows the invalid configuration with 
the error E(3) present. Node d in state 4 detects 
this error and becomes the local supervisor. Since 
N(d) contains no spares, d changes its own state 
from 4 to 3 generating the new error E(4). The 
error E(4) is in turn detected by the second local 
supervisor, node e. Node e changes its own state 
from 5 to 4 producing the error E(5). Node f 
detects this error and changes its own state from 6 

to 5 generating the error E(6). Node a scans 
S(N(a)) and finds that node g is the first availa- 
ble spare in N(a). Node a then changes S(g) 
from 0 to 6, so that the error is absorbed by the 
spare node g, and the recovery process is com- 
plete. The final valid configuration is shown in 
Fig. 8(f). The corresponding final state of the 
system is S = (1, 2, - 1, 3, 4, 5, 6, 0). 

Example 5. Figure 9(a) shows a fault-tolerant 
multi-microcomputer system, the Basic Fault- 

o,sK11 i o,sK21 
I- c,o--7 I .,cRo. / I 
I COMPUTER ~ COMPUTER K I 

I . ,CRO- I /  

(a) 

PRINTER 

SWITCH 

M 6 M 3 

M5 M 4 

(b) 

Fig. 9. The Basic Fault-Tolerant Computer (BFS): (a) the 6-computer BFS; (b) its graph representation. 
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Tolerant System (BFS), which is being developed 
in West Germany [12]. A suitable facility graph 
model of BFS is the cycle power graph C6 2, as 
illustrated in Fig. 9(b). A node x~ in C6 2 corre- 
sponding to a microcomputer M i in BFS. Accord- 
ing to Theorem 5, is a 5-step 1-FR realiTation of a 
5-node cyclic system C 5 with respect to R 3. 

Theorem 3 may be extended to systems whose 
basic graph is the cycle power graph C~, rather 
than the simple cycle C,. Note that the C""  
topology is common in computer networks, since 
nodes tend to be connected directly to nearby 
nodes. 

t,',m+kfg',m] Corollary 1. The fault-tolerant system "~n+k t,~n J is 
( n -  1)k step k-FR with respect to the recovery 

strategy R 3. 

5. Conclusions 

A new methodology for characterizing recovery 
in fault-tolerant distributed-processing loop or 
cyclic networks has been presented. A graph model 
representing the basic nonredundant system as 
well as fault-tolerant versions was proposed, which 
allows recovery and reconfiguration problems to 
be described in precise graph-theoretical terms. 
Several recovery strategies for centralized and dis- 
tributed recovery were described and their perfor- 
mance was analyzed with respect to fault-tolerant 
loop networks. An extension of the model to 
networks that may be represented by the power 
graph of a cycle was also noted. Applications of 
this methodology to some other network struc- 
tures such as trees are discussed in [15]. 
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