
Fault Recovery in Distributed Processing
Loop Networks *

229

R a i f M. Y A N N E Y
TR lC'Defense Systems Group, Redondo Beach, CA 90278, U.S.A.

J o h n P. H A Y E S
Electrical Engineering and Computer Science Department, Uni-
versity of Michigan, Ann Arbor, M1 48109, U.S.A.

A graph model is introduced to formalize the fault recovery
process in distributed loop networks. This model is applicable
to centralized as well as distributed recovery. Key fault toler-
ance and recovery parameters including redundancy, fault
model, recovery time, and recovery strategy are characterized.
Centralized recovery strategies for a given fault-tolerant loop
network are presented and analyzed. A distributed recovery
strategy, which depends on the cooperation of a set of
processors, is given, and its application to a new class of
fault-tolerant loop networks is evaluated.

Keywords: Fault Tolerance, Fault Recovery, Recovery
Strategy, Distributed Recovery, Loop Networks, Graph Mod-
els.

Rail M. Yanney is the Manager of
Advanced Technology in the Systems
Engineering and Development Divi-
sion of TRW. He has been involved in
the development of digital systems for
the last 20 years. Before joining TRW
in 1979, he was with Questron corpo-
ration, Hughes Aircraft company, and
Cornell University. His research inter-
est is m the areas of fanlt-tolerant
systems and computer architecture.

Dr. Yanney holds a B.S.E.E. degree
from Cairo University, a M.S.E.E.

from Pratt Institute, and an Engineer degree and a Ph.D. from
the University of Southern California, Los Angeles. He is a
senior member of the IEEE and a member of the ACM and
Sigma XI.

* This work was supported in part by the Office of Naval
Research under Contract No. N15014-85-K-0531.

North-Holland
Computer Networks and ISDN Systems 15 (1988) 229-243

1. Introduct ion

Faul t - to le ran t compu te r systems are of ten

organized as a ne twork of processors or com-

puters, in which fault to lerance is achieved by

dynamical ly reconf igur ing a round faul ty units

[1,2]. Three basic processes are needed to deal

wi th faults in these systems: diagnosis, re, config-

urat ion, and recovery. Of these, fault diagnosis

has received the most research a t ten t ion in the last

two decades. Rela t ively li t t le research has been

repor ted on the formal mode l ing of reconf igura-

t ion and recovery [5,7,10,13].

A loop ne twork may be def ined as a closed

com m un ica t i on channel wi th a set of processors

and related devices that are a t tached to it by

interface circuits [6]. Loop structures are widely

used for dis t r ibuted processing systems. The i r main

advantages are easy message rout ing and low im-

p lementa t ion and expans ion costs. They also are

inherent ly faul t - to lerant since

(a) two paths link every pa i r of processors; if

one fails, com m un ica t i on can con t inue via the

o ther path;

(b) a faul ty processor can easily be bypassed.

The s tructure and behavior of such networks

can become qui te complex if ext ra processors and

communica t ion links are added to enhance the

fault to lerance of the basic under ly ing loop net-

John P. Hayes is a professor in the
Department of Electrical Engineering
and Computer Science at the Univer-
sity of Michigan, Ann Arbor. He is
also the director of the Advanced
Computer Architecture Laboratory at
the university. Before joining the Uni-
versity of Michigan in 1982, he served
on the faculty of the University of
Southern California, Los Angeles. His
research interest is in the areas of
computer architecture, VLSI design,
and fault-tolerant computing. He is

the author of Digital System Design and Microprocessors (Mc-
Graw-Hill, 1984), Computer Amhitectum and Organization (2nd
ed., McGraw-Hill, 1988) and over 90 technical papers.

Dr. Hayes received a B.E. degree from the National Univer-
sity of Ireland, Dublin, and his M.S. and Ph.D degrees from
the University of Illinois, Urbana-Champaign. He is a fellow
of IEEE and a member of ACM and Sigma Xi.

230 R.M. Yanney, J.P. Hayes / Fault Recovery in Distributed Processing Loop Networks

work. Recovery is also greatly complicated if the
recovery mechanisms are distributed throughout
the system.

Although the design of fault-tolerant loop net-
works has been previously studied [4,14], the re-
configuration and recovery mechanisms necessary
for high levels of fault tolerance or distributed
recovery do not seem to have been considered. In
this paper we extend the graph-theoretical meth-
odology for fault recovery presented in [5] and
apply it to the analysis of both centralized and
distributed recovery in loop networks. Section 2
summarizes the properties of the facility graph
used to model loop networks and defines the
recovery model within this framework. The prop-
erties of existing fault-tolerant loop networks [4]
are discussed in Section 3. Efficient centralized
recovery strategies are given and analyzed for
those systems. Distributed recovery, which is in-
tended for loop networks with no central super-
visor, is introduced in Section 4. Distributed re-
covery depends on the cooperation of a set of
nodes to execute the recovery strategy since each
node is assumed to have only a limited amount of
information about the system as a whole. The
recovery problems encountered with such net-
works are analyzed, and an efficient fault-tolerant
design and recovery procedures that circumvent
these problems are presented.

2. Fault Recovery Model

A loop network is described here using a facil-
ity graph [4] which is an undirected labeled or
unlabeled graph whose node represent the system
components or facilities and whose edges repre-
sent interconnections between facilities. A facility
is any node of the network that can fail indepen-
dently of the remaining nodes. Two facility graphs
G and H are isomorphic (G = H) if there exists a
one-to-one correspondence between their node sets
that preserves adjacency. If G 1 and G2 are two
facility graphs whose nodes are labeled by the
same set of names {x i} , then G 1 and G 2 are
L-isomorphic (G 1 =L G2) if and only if there exists
a one-to-one correspondence between their node
sets that preserves labeling and adjacency. A basic
graph is a labeled facility graph that represents the
minimum system configuration needed to perform
a certain set of tasks. A basic system by definition

cannot tolerate any faults. A loop network con-
taining n processors is modeled by the basic graph
Cn, which is a cycle or closed path with n distinct
nodes. The labels of C o represent tasks assigned to
the nodes of C,. A redundant graph G r with re-
spect to a basic graph C, is an unlabeled graph
that contains a subgraph isomorphic to C,. G r is
viewed as a redundant and possibly fault-tolerant
realization of Cn. Gr will also be written as Gr[Cn]
to indicate that Cn is the underlying basic graph.

A fault F x is represented by the removal of the
node x from the redundant graph G~. The removal
of a node from the graph also requires the removal
of all edges incident on the node. All nodes of G~
are assumed to be of the same type and to have
the same processing capability; hence, a faulty
node can be replaced by any fault-free node that
has the necessary edge connections. A set of k
faults affecting k distinct nodes of G~ is called a
k-fault. G~[Cn] is k-fault tolerant (k-FT) [4] if the
removal of any k nodes and their associated edges
from G r results in a graph that contains a sub-
graph isomorphic to Cn.

Reconfigurability is defined as a system's abil-
ity to change its physical or functional organiza-
tion in response to change in the system's compu-
tational requirements or the occurrence of faults
[9]. Recovery, on the other hand, comprises all
actions that are initiated by the detection of a
fault and concluded by

(a) resumption of normal operation (possibly
in a degraded mode); or

(b) a systematic shutdown of the system.
Although the recovery process covers all actions,
including reconfiguration, taken by a fault-tolerant
system to circumvent the effect of a fault, we will
reserve the term "recovery" to refer to reconfig-
uration processes that are expected to terminate
successfully.

It is assumed that the systems of interest con-
tain a mechanism for continuous self-diagnosis.
The precise manner in which diagnosis is achieved
is not of direct interest here. Normally the nodes
in some subgraph C" = C~ of G~[C~] are engaged
in computation, or are active, while the remaining
nodes of G~ are inactive or spare nodes. After the
detection of a fault F x affecting a node x in C"
the active subgraph changes from C" to C" - x. In
order for the system to recover, a new subgraph
C~" that is isomorphic to the basic graph C, and
has no faulty nodes must be found.

ILM. Yanney, J.P. Hayes / Fault Recovery in Distributed Processing Loop Networks 231

We look on reconfiguration as a binding be-
tween physical resources represented by the nodes
of G~ and logical resources or tasks represented by
the nodes of C~ [10]. Thus a task defines the state
s (x) of a node x. Every node x of G~ is assumed
to be in one of n + 2 possible states:

(a) n active states denoted by 1, 2 n;
(b) an inactive or spare state denoted by 0; and
(c) a faulty state denoted by - 1 .

The state S(Gr) of the m-node system G r is the
m - t u p l e S (x I x i xm) = [S (x l) ,
. . . . S(xi) S(Xm)] where S(xi) is the state of
node x r

The state S(Gr) defines a particular labeling of
Gr, leading to the next definition.

Def in i t ion 1. Let Gr[C.] be a redundant system. A
configuration G~ of Gr[C.] is a labeled graph iso-
morphic to Gr in which node x i is labeled with the
state S(xi). A configuration G¢ is a valid config-
uration if it has exactly n distinct active nodes,
and contains a subgraph L-isomorphic to C..

If G¢ is valid, then S(G¢) is called a valid state
of G~[C.].

Typically, every node of a subgraph C,' of a
valid configuration Gc is assigned one of the n
active states to make C~" =L C~. The nodes of G c -
C~' which are not faulty are spare nodes and are
assigned the state 0. The state - 1 is assigned to
any node in Gc that develops a fault. A fault F
thus transfers G~[Cn] from a valid state S to a
faulty state S e by changing the state of all nodes
affected by F to - 1 .

The reconfiguration problem of interest may
now be defined formally. Let Gr[Cn] be a redun-
dant graph that represents a fault-tolerant realiza-
tion of a basic graph C.. If G~ is the initial valid
configuration and a fault F affecting Gr[C.] oc-
curs, find a new configuration G" of Gr[C.], if
such a configuration exists, that contains a sub-
graph C.' =L C.. The general reconfiguration prob-
lem involves finding a fault-free unlabeled sub-
graph G s of G r such that Gs = C., and then label-
ing it to obtain the subgraph C" =L C.. The prob-
lem of finding G~ is the well-known subgraph
isomorphism problem. While the general subgraph
isomorphism problem is computationally very
complex (NP-complete), efficient (polynomial
time) algorithms are known for some special classes
of graphs [8]. Efficient heuristic procedures are

also known for the general case [11]. In this paper
we impose restrictions on the systems of interest
that effectively avoid the major difficulties of the
subgraph isomorphism problem and also lead to
fast recovery.

A reconfiguration function R e with respect to F
is a one-to-one mapping

(s (c ,) } - , (s(G,)}

that transfers Gr[C,] from one state to another.
Throughout this paper we consider only those
reconfiguration functions that obey the following
constraints:

(a) a node in an active state may be changed
either to another active state or to the inactive
state;

(b) a node in an inactive state may be changed
only to an active state; or

(c) a node in a faulty state must remain in the
faulty state, since repair or physical replacement
of faulty nodes is not considered.

Definition 2. Let S O be a valid state of Gr[C.] and
let F be a fault that changes S O to Se. A p-step
reconfiguration process with respect to So, F and a
reconfiguration function R e is a state sequence

P(So, F, R e) = S e, $1, S2, . . . , Sp

where Si+ 1 = R F (S i) = R ~ (S F) for i = 1, 2 p.
P(So, F, Re) is a p-step recovery process if Gcp

contains a subgraph L-isomorphic to C~, where
Gee is the configuration that corresponds to S r.

It should be noted that one step in a recovery
process corresponds to a single transition between
two states of Gr[C~] as defined by R e. A reconfig-
uration strategy R for a set of faults { F } is a set of
reconfiguration functions { RF }.

Def in i t ion 3. A p-step recovery strategy R for G r,
C., S(Gr) and { F } is a reconfiguration strategy
{Re} , such that for every fault of the set { F } and
every valid state S there exists i ~< p such that

s e) = s,

where S i is a valid state. We say that R recovers
Gr[C.] from any fault of the set {F} .

A k-FT system can tolerate up to k faults [4].
A system that achieves k-fault tolerance using a
particular recovery strategy is called a k-fault

232 R.M. Yanney, J.P. Hayes / Fault Recovery in Distributed Processing Loop Networks

recoverable system with respect to that recovery
strategy. Unless otherwise stated, G r may contain
any valid initial configuration or state before a
fault occurs.

Definition 4. A system Gr[C,] is p-step k-fault
recoverable (p-step k - F R) - - o r simply k -FR- -wi th
respect to the reconfiguration strategy R, if R is a
p-step recovery strategy with respect to any fault
affecting at most k nodes in G r.

(a)

2

1 3

The recovery process often involves a consider-
able amount of information transfer among the
system nodes. The number of fault-free nodes
whose state is changed when reconfiguring the
system to recover from a fault is taken as a
measure of the system recovery time, and leads to
the following definition.

Definition 5. A k-FT system Gr[C,] is t-node
recoverable (t-NR) with respect to a recovery
strategy R, if R can recover the system from up to
k faults by changing the state of at most t fault-free
nodes.

Obviously, we must have t >/k, and recovery
can take place in at most t steps. Note that t
represents the cumulative number of 1-node state
changes occurring during the entire recovery pro-
cess. We assume that each node changes state at
most once during a recovery step.

In [5] a general class of t-FT t-NR, or simply
t-NR, designs, denoted G ° r r , were specified and
characterized. G °r ' r may be defined as follows for
loop networks.

Definition 6. The optimal t-NR redundant graph
G ° e r realizing the basic graph C, is an (n + t)-
node graph constructed as follows:

Step 1. Let Gg, the generator graph of G °aT, be
an n-node labeled graph L-isomorphic to C~. Add
t spare nodes Xsl xs, to Gg.

Step 2. Connect each spare node xs~ to every
node in G~ and to the other t - 1 spares.

Gt ° r r allows recovery to be achieved in the
minimum time using the following simple recovery
strategy Ro: replace each faulty node by the next
available spare. (A more precise definition of R 0
can be found in [15].)

(b)

2(b)

l (a) (c)3

5 (e) ~ (d) 4

1 (a)

(c)

(b)l
/ \

/ [t \ \
l 2 ~ 1 c 1 3

Fig. 1. (a) The basic cyclic graph C5; (b) the optimal 2-NR
redundant system G~pt[c5] with a valid configuration; (c) the

system after recovery form a 1-fault.

Example 1. Figure l(a) shows the labeled basic
graph C 5 representing a 5-node loop network. The
optimal 2-NR realization G°r'r[cs] of C 5 specified
by Definition 6 appears in Fig. l(b). The genera-
tor graph G~ of G°r'r[Cs] is shown in heavy lines.
In a typical application Gg is labeled as indicated
so that Gg =r C,, and the figure constitutes a valid
configuration of G °r'r. The corresponding valid
state is

So(a, b, c, d, e, f , g) = (1, 2, 3, 4, 5, 0, 0).

Suppose that a 1-fault affecting node b occurs,
causing its state to change from 2 to - 1. Applica-

R.M. Yanney, J.P. Hayes / Fault Recovery in Distributed Processing Loop Networks 233

tion of R 0 causes one of the spares to change its
state from 0 to 2, thereby replacing the faulty
node. As can be seen from Fig. 1(c), the recovered
system contains a fault-free subgraph L-isomor-
phic to C s. The system state at this point is

S l (a , b , c , d , e , f , g) = (1 , - 1 , 3 , 4 , 5 , 2 , 0) .

A second faulty node can be similarly tolerated by
a second application of R0; recovery from a 2-fault
using R 0 is therefore a 2-step process.

slightly simpler when k >i 2 [4].) Figures 2(a) and
(b) show C,,,z for n odd and even, respectively.
Recovery in C., 1 using R] depends on identifying
nodes with degree 2 in the graph C~, 1 - x~, where
xi is a faulty node of C~, 1. The edges incident on
these nodes must be edges in the recovered sys-
tem. These edges are identified and used sys-
tematically to build up segments of a cycle that is
L-isomorphic to C~. We now give a formal defini-
tion of the recovery strategy R~ for the 1-FT case.

3. Cen(ralized Recovery

While the general redundant design G°~[C~]
defined in Section 2 uses the minimum number of
spare nodes (k = t) and has a very simple recovery
strategy (R0), it has the disadvantage of requiring
a large number of edges, and consequently has
nodes of relatively high degree. In [4] a class of
optimal k-fault-tolerant realizations of C, denoted
C., k w a s defined which also employ k spare nodes
but have the minimum possible number of edges.
This reduction in the number of redundant edges
means that simple reconfiguration strategies like
R 0 can no longer be used for recovery. We next
present a recovery strategy R 1 for C~, k which
shows that fast recovery is possible in such sys-
tems. Throughout this section we assume that
recovery is centralized in a system supervisor that
has complete information about the system's oper-
ational status and interconnection structure. The
central supervisor is also able to transfer the state
of a faulty node to any available fault-free node of
the system. This implies that it must maintain
backup files, check-point data, etc., concerning all
active nodes of the system.

First we consider centralized recovery for C,, k
where k = 1. (Note that the structure of C,, k is

Procedure 1: Cycle recovery strategy R 1 for C., r
Step 1. Let S = (s 1, s 2 S n + l) be the current

valid state of C~, 1 and let the active subgraph be
C" =L C~. Let a fault F affecting node x i occur
that changes the state of C,, 1 from S to S r . If x, is
not in C~, implying that s ~ { - 1 , 0}, then
R I (S F) = SF, i.e., R 1 leaves the system state un-
changed.

Step 2. If x~ is in C' , implying that x, is an
active node, scan S F from left to right until a
component s~ = 0 is found, and go to Step 3. If no
sj = 0 exists, then R I (S F) = SF, and the recovery
attempt is terminated unsuccessfully.

Step 3. Using Procedure 2 given below, gener-
ate the n-node path x 1 . . . x i . . . x . that corre-
sponds to the cycle C" .

Step 4. Change the states of the n active nodes
of the cycle C " = x l . . . x~.. . x , such that a node
x~ is assigned state S(x~) = i. C " is L-isomorphic
to c . .

Procedure 2, which is a subprocedure of Proce-
dure 1, is used to find an unlabeled n-node cycle
in the graph C,,] - x. It generates iteratively edge-
disjoint paths of a cycle. The endpoints of these
paths are marked by an asterisk. If a node is
marked by two asterisks, then the corresponding
paths are concatenated to generate a larger path.

x2 x 3

X(n + 3 | /2 X(n + 5)/2

(a)

X(n + 1)/2 ~)Xn + 1

x n

Fig. 2. The optimal 1-FT cyclic system: (a) (?.,1 for n odd;

Xl x 2

t---...
>

x(1 + n)/2

(b) C,,j for n even.

Xn/2

x n

(b)

234 R.M. Yanney, J.P. Hayes / Fault Recovery in Distributed Processing Loop Networks

Procedure 2: To find a cycle C. in the graph

C . , 1 - - X.
Step 1. Construct the adjacency matrix A [3] of

Cn,1 - - X.

Step 2. If any path generated so far has n
nodes, then it corresponds to the required n-node
cycle C, and the procedure terminates.

Step 3. Scan the rows of A from top to bottom.
If any unmarked row xj of A has exactly two l ' s
in columns x i and x k, generate the 3-node path
x i x j x k. Delete column xj and row xj from A.
Mark rows x~ and x k with an asterisk. If no rows
satisfying the forgoing conditions are found dur-
hag the current pass through Step 3, go to Step 6;
otherwise go to the next step.

Step 4. Scan A from top to bottom. If any row,
say x~, has two asterisk marks, then x~ is an
endpoint of two paths. Concatenate these two
paths to form a single path, and delete row x i and
column x i from A.

Step 5. Scan A f rom top to bottom. If any row,
say x i, has one asterisk mark and has a single

1-entry, say a U, then x i is an endpoint of the
paths P generated so far. Append the node xj
adjacent to x i to the path P, delete column x i and
row x i from A, mark row xy with an asterisk and
go to Step 2.

Step 6. Scan A from top to bottom. If any row,
say x i, with one asterisk mark has two 1-entries,
then one of the two corresponding edges, say x i x J,
is discarded since if added to P it will create an
m-node cycle, where m < n. Change both the aij
and aji entries to 0 and go to Step 2.

Example 2. Figure 3(a) shows the optimal 1-FT
graph C8,1 and an initial valid configuration G¢.
Suppose that node i in state 8 becomes faulty,
resulting in the invalid configuration of Fig. 3(b).
Now consider the application of recovery strategy
R 1 as defined by Procedure 1. The faulty state is

SF(a , b, c, d, e, f , g, h, i) =

(1 , 2 , 3 , 4 , 5 , 6 , 7 , 0 , - 1) .

5 (el (f) 6 5 (e) ~ (f) 6

3 (c) ~ ~ 3 (c) (i)-1

FAULTY
2 (b) la) 1 NODE 2 (b) (a) 1

(a) (b)

4 (d) l

3 (c)~

5 (e~.~...,. (f) 6

• ,./ ~ | (g)

s

". ~ ,.~t (i) 1 m / /
\ I

2 (b) ~ (a ~ l
(c)

2 (e) (f) 5

1 (d) ~ (g) 6

8 (c) ~ ~ 7 / (i) - 1

3 (b) (a) 4
Id)

Fig. 3. The optimal 1-FT system Cs.I[Cs]: (a) the graph Cs. 1 with a valid initial configuration; (b) configuration after fault F, occurs;
(c) intermediate stage in recovery; (d) final recovered system.

R.M. Yanney, J.P. Hayes / Fault Recovery m Distributed Processing Loop Networks 235

Since S (h) = 0. Step 3 of the procedure invokes
Procedure 2. The adjacency matrix A of Csj - i is

a

b
c
d

A = e

f
g

h

a b c d e f g h

-0 1 0 0 0 1 0 0
1 0 1 0 1 0 0 0
0 1 0 1 0 0 0 1
0 0 1 0 1 0 0 1
0 1 0 1 0 1 0 0
1 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 1 1 0 0 1 0

Row a has l ' s in columns b and f ; therefore Step
3 of Procedure 2 yields the path baf. Row a and
column a are now deleted, and the rows b and f
are marked with asterisks. Row g also contains
two 1-entries, and yields the path fgh. We then
delete the g row and column, and marks rows f
and h producing the following reduced adjacency
matrix:

b c d e f h

[0 1 0 1 0 011 c 1 0 1 0 0 1 *
A = d O 1 0 1 0

e 1 0 1 0 1 * * "
f 0 0 0 1 0 *
h 0 1 1 0 0

Row f has two asterisks; hence, according to Step
4 of Procedure 2, the paths bar and fgh are
concatenated to form the new path bafgh as shown
by heavy lines in Fig. 3(c). Note that since edges
af and fg are now included in the partial cycle,
we conclude that the path ef cannot be part of
that cycle. Continued application of Procedure 2
yields the 8-node cycle Ca" shown by heavy lines
in Fig. 3(c). Step 4 of Procedure 1 now relabels
Ca" to make it L-isomorphic to the original basic
graph C a .

We next demonstrate the validity of recovery
s t r a t e g y R 1 by proving that Procedure 2 always
identifies an n-node cycle in C,, 1 - x.

Theorem 1. Let C , j be the optimal 1-FT realiza-
tion of the cycle C~, and let x be any single faulty
node in C,_ 1. Procedure 2 finds an n-node cycle in
Cnj - x that is isomorphic to C,.

Proof. The procedure determines whether or not
an edge of C n j - x is to form part of C, as
follows:

(a) Step 3: If a node x i in the original graph
Cn, 1 - x , or subsequently after edges are deleted,
has degree 2, then both edges incident on x i must
be edges of C " =L Cn. The graph C, j can have no
more than one node with degree 4; all other nodes
have degree 3. Hence the fault affecting x always
leaves at least two nodes with degree 2, allowing
Step 3 to be executed at least once to initiate
Procedure 2.

(b) Step 4: If two paths are concatenated, any
edges incident on the common endpoint that have
not been selected so far can be eliminated; this is
indicated by deleting the appropriate rows and
columns of the adjacency matrix.

(c) Step 6: If adding an edge xix j to a selected
path generates a cycle C,,, where m < n, then aij
and aij are eliminated by changing the corre-
sponding entry of the adjacency matrix from 1 to
0.

We now show that in every iteration through
the procedure, at least one edge can be identified
as either being a part of C~", or not being a part of
C" . Consider the case where n is even. The opti-
mal 1-FT graph C.. 1 is shown again in Fig. 4(a).
Suppose that the center node x . + 1 is active and is
effectively removed by a fault. The resulting graph
C . , 1 - X . + l is shown in Fig. 4(b). In the first
i teration through the procedure the paths

X2X1XnXn_ 1 and X(n_2)/2Xn/2X(n+2)/2X(n+4)/2 are
identified as segments of C" . Also the edges
x2x~_ 1 and x~_2)/2x~,+4)/2 are identified as not
being a part of C,". In subsequent iterations the
other vertical edges are identified as not being
part of C~" since they produce m-node cycles with
m < n .

The only other fault we need to consider is the
removal of a perimeter node xi from C~j, where
i ~ n + 1. We consider the representative case
where i = 2. The graph C~j - x 2 is shown in Fig.
4(c). In the first iteration through the procedure
the path P = x 4 x 3 x n _ 2 X n _ l X n is identified as a
segment of C~". Also the edge xn_2x~_ 3 is identi-
fied as not being part of C~". In the second
iteration the path XaXn_3Xn_ 4 is added to the
path P. This implies that the edge x4x 5 is not part
of C~". This process continues until all edges of
C~" have been identified. The proof for n odd is
similar. []

236 R.M. Yanney, J.P. Hayes / Fault Recovery in Distributed Processing Loop Networks

(a)

Xl x2 x 3 Xln -2)/2 Xn/2
~ ~------~-- - --o c

) ()----- -,.0 ~
Xn Xn.1 Xn.2 X(n + 4)/2 Xln + 2)/2

Xl x2 x3 X(n-21/2 Xn/2
o 0 O - - - - - - ~ , 0 o

(b)

o 0 0----- .-(, 0 c~
Xn X(n-1) X(n-2) X(n + 4)/2 X(n + 2)/2

Xl x3 x 4 x5 >... o

(c) ~ 0 ~ ~ 1

o ~--~ (~
Xn X(n.1) X(n-2) X(n-3) Xln-4)

Fig. 4. Proof of Theorem 1: (a) the optimal 1-FT graph C..z;
(b) C n . 1 - - Xn+l; (C) On, 1 - x 2 .

We refer to G as the generator graph of G m. It is
obvious that the optimal k -FT graph C.,2e con-
structed using Procedure 3 is isomorphic to the
cycle power graph C~+ +1. Figure 5 shows the graph
C8, 4 which is isomorphic to C132, and according to
[16] is a 4-FT realization of the cycle C 8.

We now define a recovery strategy R 2 for C.,2p,
which exploits certain properties of cycle power
graphs. In the sequel we assume that the nodes of
C., k are named Xl, x 2 x.+ k according to their
location in the generator cycle C. +k. A set of m
consecutive nodes xi, x~+l , . . . , xg+m in the gener-
ator cycle C.+ k of C., k is called an m-node clus-
ter. An m-fault cluster, accordingly, is an m-fault
that affects an m-node cluster. R 2 exploits the
fact that any k-fault that may affect C., k belongs
to one of two basic classes. These fault classes are
illustrated in Fig. 6 for the graph C8, 4 of Fig. 5. If
an m-fault cluster affecting C.,~ satisfies the rela-
tion m ~< p, then the subgraph consisting of the n
fault-free nodes is similar to the one shown in Fig.
6(a). The n fault-free nodes are connected in a
cycle around the perimeter of the faulty graph as
shown by heavy lines. If C., k has an m-fault
cluster, where m >/p + 1, then every other d-node
cluster satisfies the relation d < p. In this case the
n-node fault-free subgraph of C., k is similar to the
graph of Fig. 6(b). Again the heavy lines show a
subgraph isomorphic to C.. R 2 uses the state
vector of C., k to label the first n fault-free nodes
with the states 1, 2 n. In the case of Fig. 6(a),
it labels the nodes as they are first encountered. In

Optimal k -FT loop networks C~, k where k >/2
are somewhat easier to characterize than the 1-FT
case. We now discuss recovery in C.,k when k >/2
and k is even.

Procedure 3. To construct an optimal k -FT reali-
zation C.,k of the cycle (7. when k = 2p is even
[4].

Step 1. Form the cycle C. + k, which is called the
generator cycle of C.,ze-

Step 2. Join every node x i of C.+k to all nodes
at distance j f rom x, in C.+k, for all j satisfying
2 ~<j < p + 1. The resulting graph is C~,zp.

The power graph G" [3] of G is constructed as
follows: add edges to G so that every node x is
connected to all nodes at distance d ~ m from x.

a b

d

k i t • 1 ~ e

h g
Fig. 5. The optimal 4-FT graph Cs. 4.

R.M. Yanney, J.P. Hayes / Fault Recovery in Distributed Processing Loop Networks
-1 -1
(a) (b)

8 f "~

"[I
6 (j } ~

(g) -1 (h) -1

(a)

4 (a) ~ 5 Ib)

1
(c) ~ (d) 2

~ (e) 3

(f} 4

3 (k)(

7 (j)

6 (I) ~ (c) -1

\

-1 (h) (g) 8

(b)
Fig. 6. Fault clusters in Cs,4: (a) two 2-fault clusters; (b) a 3-fault and a 1-fault cluster.

237

\

~) (d) -1

I
I

I
Q(e)-1

/
/

the case of Fig. 6(b) it labels the nodes alternately,
skipping every second node encountered.

Procedure 4: Cycle recovery strategy R 2 for C..2p.
Step 1. Let S (x 1, x 2 X.+k) = (S 1, S 2,

. . . . S.+k) be the current valid state of C., k and let
the active subgraph be C" =L C~. Let a fault F
affecting node x~ occur that changes the state of
C., k from S to S F.

Step 2. If xi is not in C ' , implying that s i

(0 , - 1) , then R 2 (S F) = S v , i.e., R 2 leaves the
system state unchanged.

Step 3. I f node xi is in C ' , implying that x; is
an active node and s i ~ { 1, 2 n }, scan S F f rom
left to right changing the state of every fault-free
active node x~ f rom s~ to 0 to generate the state
S 0. Set an index I to 0.

Step 4. While I < n, scan S~ from left to right
until a component s k = 0 is found. I f there is a
node x j in state I adjacent to the node xk, change
s k f rom 0 to I + 1 and Sj to Si+ 1. Increment I and
continue. I f at any point no s k = 0 is found, then
R2(S i) = Si, and the recovery attempts fails (no
spares available). I f at any point there is a compo-
nent s k = 0, but there is no node x j in state I that
is adjacent to the node xk, go to Step 6.

Step 5. If the nodes in state 1 and n are
adjacent, then the n nodes labeled 1, 2 n rep-
resent the cycle C,, and the procedure terminates.
Otherwise go to Step 7.

Step 6. Scan S i from left to right changing the
state of every fault-free node to 0. Change the
component s k from 0 to 1 to generate the state $1'.
Rotate $1' until the component s k becomes the
first component in $1'. Go to Step 8.

Step 7. Scan S, from left to right changing the
state of the first n fault-free nodes to 0 and
change the state of every other fault-free node to a
number N > n, yielding the state Sd. Scan S~
from left to right to find a component sj = 0.
Change sj from 0 to 1 to generate the state S~'. Set
an index I to 1.

Step 8. While I < n, scan S 1' f rom left to right,
starting at the component si = I , to find a pair of
components s~ = 0 and s k = 0. Change the state of
s k from 0 to I + 1 and S/ to S~+ 1. Increment I
and continue. If at any time there is no pair of
components satisfying the forgoing conditions, go
to Step 9.

Step 9. While I ~< n, scan S i' f rom right to left
to find a component sy--0 . Change sj f rom 0 to
I + 1. Increment I and continue.

Step 10. Scan S, from left to right changing
every component sj = N, if any, to 0. The nodes of
the required cycle C, are now labeled 1, 2 n.

Examlfle 3. Again we consider the optimal 4-FT
system C8, 4 shown in Fig. 5. Suppose that a 4-fault
occurs affecting the nodes c, d, e, and h. We now
use the recovery strategy R 2 to recover an 8-node

238 R.M. Yanney, J.P. Hayes / Fault Recovery in Distributed Processing Loop Networks

cycle C 8 from the faulty graph. Using Step 3 of
Procedure 4, set the state of every fault-free node
to 0 thus

S o (a , b , c , d , e , f , g , h , i , j , k , l)

= (0 , 0 , - 1 , - 1 , - 1 , 0 , 0 , - 1 , 0 , 0 , 0 , 0) .

Step 4 of the procedure causes S O to be scanned
from left to right. The spare nodes are labeled
1, 2 n in the order that they are encountered,
yielding the following sequence of states:

S 1 = (1, 0, - 1 , - 1 , - 1 , 0, 0, - 1 , 0, 0, 0, 0),

$2= (1, 2, - 1 , - 1 , - 1 , 0, 0, - 1 , 0, 0, 0, 0).

At this point the next 0 encountered in S2 is s 6
which corresponds to node f . Step 4 cannot assign
node f to state 3, since f is not adjacent to node
b, and b is already assigned to state 2. Hence Step
6 is executed which changes the state of the first n
fault-free nodes in S 2 back to 0 and changes the
state of f to 1 to produce the state $1:

S l (a , b, c d, e, f , g, h,

- - (0 , 0 , - 1 , - 1 , - 1 ,

Then S 1 is rotated until
corresponds to f thus

i, j , k , l)

1 , 0 , - 1 , 0 , 0 , 0 , 0) .

the leftmost component

S ; (f , g, h, i, j , k , 1, a, b, c, d, e)

= (1, 0, - 1 , 0, 0, 0, 0, 0, 0, - 1 , - 1 , - 1) .

According to Step 8 of the procedure, we must
now label every other 0-component in S i with the
labels 1, 2 n. Step 8 therefore produces the
following sequence of states:

$2 = (1, 0, - 1 , 2, 0, 0, 0, 0, 0, - 1 , - 1 , - 1) ,

$3 = (1, 0, - 1 , 2 , 0 , 3 , 0 , 0 , 0 , - 1 , - 1 , - 1) ,

$4= (1, 0, - 1 , 2 , 0 , 3 , 0 , 4 , 0 , - 1 , - 1 , - 1) .

Executing Step 9 of the procedure we scan S 4
from right to left labeling 0-entries in sequence:

$5= (1, 0, - 1 , 2 , 0 , 3 , 0 , 4 , 5 , - 1 , - 1 , - 1) ,

$6= (1, 0, - 1 , 2 , 0 , 3 , 6 , 4 , 5 , - 1 , - 1 , - 1) ,

S 7 = (1, 0, - 1 , 2, 7, 3, 6, 4, 5, - 1 , - 1 , - 1) ,

$ 8 = (1 , 8 , - 1 , 2 , 7 , 3 , 6 , 4 , 5 , - 1 , - 1 , - 1) .

The final state obtained by rotating the compo-
nents of the state vector S s back to their normal
positions is

S ~ (a , b , c , d , e , f , g , h , i , j , k , l)

= (4, 5, - 1 , - 1 , - 1 , 1, 8, - 1 , 2, 7, 3, 6).

The nodes of C8,4 are now labeled 1, 2 n
corresponding to S~. The valid configuration of
the recovered system is shown in Fig. 6(b).

It can readily be shown that R 2 can always
r e c o v e r Cn.2p from 2p-faults [15]. R 2 can also be
easily modified to deal with Cn. k when k is odd.
We can therefore state the following result.

Theorem 2. The optimal k-FT system Cn,2p is k-FR
with respect to the recovery strategy R 2.

It is worth noting that G°r'r[C,] and Cn.k rep-
resent two extreme cases of k-FT realizations of
C,. Cn, k employs the minimum number of edges
consistent with having the minimum number of
nodes, whereas G °l 'r employs close to the maxi-
mal number of edges. Recovery in G °eT via R 0 is
the fastest possible in terms of the number of
nodes that must change state. While R 2 is a fast
recovery strategy for C~.k, the spare interconnec-
tion structure of C,, k inherently requires a large
number of nodes to change state, resulting in
much longer recovery time. Other fault-tolerant
loop networks and their (centralized) recovery
strategies can be expected to fall between these
extremes.

4. Distributed Recovery

In the fault-tolerant systems considered so far
it has been assumed that recovery is directed by a
single supervisor. Centralized recovery of this type
has two drawbacks. First the supervisor is vulner-
able, and needs added redundancy for its protec-
tion. The other drawback is the processing over-
head of monitoring the operational status of all
processors of the system. In this section the use of
distributed recovery in loop networks is analyzed.
Distributed recovery depends on the cooperation
of a set of nodes (local supervisors) to execute the
recovery function. Each node is assumed to have
information about only a subset of nodes in its
immediate vicinity. Here we restrict our attention
to redundant systems in which each node x has
information only about the subgraph N(x) , called
the neighborhood of x, which is the induced sub-
graph of G r containing x and all nodes adjacent
to x.

R.M. Yanney, J.P. Hayes / Fault Recovery in Distributed Processing Loop Networks 239

Distributed recovery requires several steps in
which different nodes successively act as the local
supervisor. It typically proceeds as follows:

(a) A fault F occurs changing the system con-
figuration or state from valid to invalid.

(b) An active node x~ detects a faulty node xj
in its neighborhood N(x~), assumes the role of
local supervisor and initiates recovery. Usually x~
attempts to find a spare node x , in N (x i) such
that x k can assume the previous state sj of the
faulty node xj.

(c) If no suitable spare is available, either be-
cause no spares are present in N(x;) , or because
the available spares do not have the proper con-
nectivity, x; makes an appropriate change to N(x i)
and relinquishes the role of local supervisor,which
must then be assumed by some other node.

I t should be noted that the initial fault affect-
ing node xj in Step (a) above corresponds to the
absence of a node in state sj. Subsequent reassign-
ment of states during recovery may also lead to
other states being temporarily missing from the
system configuration. For example, if supervisor
node x i changes the state of another node x k from
s k to the state sj of the faulty node xj, the old
state s k of x k is unassigned These considerations
lead to the following concept of an error condi-
tion.

Definition 7. Let Gr[Cn] be a fault-tolerant system
whose current configuration is G c. A n error E (si)
exists if Gc has no active node in state s~, where
s i~ {1,2 n}.

Thus error detection and recovery will be based
on the identification of (local) configurations in
which one of the n active states is missing.

To allow a node x~ to execute the recovery
function when it acts as local supervisor, it must
store certain limited information about the system
Gr[Cn] , specifically:

(a) the structure of N(x i) ,
(b) the current state of all nodes in N(xj);
(c) the set of errors { E(s i) } of interest to xi;
(d) certain backup files defining the tasks of

the nodes in N (x i) . When x~ changes the state of
another node xj from sj to s k, x~ uses these files
to supply xj with the necessary information needed
to perform the task s k. x, periodically updates its
backup files by polling the nodes of N(x ;) .

Several problems arise in distributed recovery
that were not encountered with systems that use
centralized recovery. An error may exist in a
neighborhood that has no faulty nodes. A neigh-
borhood may have no spare nodes available to
replace faulty nodes. Valid local reconfiguration
decisions may not lead to a valid global configura-
tion. Storage requirements may be very great if a
node is required to store backup files for every
potentially faulty node in its neighborhood. If two
nodes start reconfiguration at the same time, they
may subsequently interfere with each other and
prevent recovery from taking place.

To make above problems tractable, we impose
the following general restrictions on system behav-
ior.

Assumptions Governing Distributed Recovery:
(a) Any active node x i of G r in state si may act

as a local supervisor. It may only detrrct errors of a
specified set {E~} that affect its neighborhood
N(x~). It should be noted that we associate { E; }
with the state s; rather than the node x v

(b) The set of errors { E i } and { Ej } that can
be detected by nodes x i and x j, respectively, are
disjoint.

(c) At any time at most one error may be
present in the system configuration Go.

(d) When reconfiguring the system in response
to an error E (s ,) , a local supervisor may either
assign s k to a spare node, or else change its own
state to s k.

These assumptions solve the problems listed
earlier in the following ways. Assumptions (a)-(c)
ensure that at any time only one error is present in
the system, and only one node is acting as the
local supervisor for this error. Assumption (d)
ensures that all reconfiguration actions that do not
produce immediate recovery, result in the creation
of new errors that conform to Definition 7. This
implies that at any time during recovery only one
active state is missing from Go. Assumption (c)
also implies that only single faults are dealt with.
Hence new faults may not occur while the system
is recovering from a previous fault. Multiple faults
must be treated as a sequence of single faults, with
recovery taking place before the occurrence of a
new single fault. Ensuring that global recovery is
achieved via a series of local reconfiguration steps

240 R.M. Yanney, J.P. Hayes / Fault Recovery in Distributed Processing Loop Networks

requires restrictions to be placed on the system
structure.

Next we define a class of efficient k - F R realiza-
t ions of loop networks with respect to a distrib-
uted recovery strategy R 3, and show that they can
be easily characterized by means of power graphs.
If an n-node graph G has a spanning subgraph G s
isomorphic to the n-node cycle Cn, then G is
called a Hamiltonian graph, and G s is a Hamilto-

nian cycle [3]. Clearly if a redundant realization G r
of C~ is to tolerate a k-fault, the graph obtained
by eliminating any k nodes f rom G r must contain
an n-node Hamil tonian subgraph. (Graphs with
this proper ty have been termed k-Hamiltonian.) It
is easily shown that cf++~ is a k - F T realization of
C~ which, however, is nonoptimal .

We now int roduce a distributed recovery
strategy R 3 for use with the redundant power
graph C~+I[c~] = G~. For R 3 we part i t ion the
poss ib le e r ro r s i n to the n d i s jo in t sets
{E(Sl)} , (E (s 2) } {E(s~)}, each containing
one error type. We also require the node in state s~
to detect only the error E (s ~ - 1), where the sub-
t ract ion is modulo-n. Accordingly, xi periodically
polls the neighboring node xj that is in state
s (x j) = s ~ - 1. If the error E (s ~ - 1) occurs, then
x~ changes its own state f rom s~ to s i - 1, gener-
at ing the error E(s~). The recovery process propa-
gates through G r until the node x k in state 1
detects the error E (n) , at which point x k activates
a spare and the error is absorbed, thereby com-
pleting the recovery process. Procedure 5 below
describes the recovery strategy R 3 f o r m a l l y . In
this description it is assumed that the nodes of G~
are labeled by x 1 through x~+ k according to their
posit ions on the generator cycle C,+ k.

Procedure 5: The distr ibuted recovery strategy R 3.
Step 1. Let the initial state of Cf++~[C~] be

S 0 (X 1 , X 2 Xn+k)=(1, 2, 3, 4, 5 n, O,

0 0). Let S (x I xi x~+k) = (s 1,
s 2 s i Sn+k) be the current valid state of
c~++~[Cnl, and let G c be the configurat ion corre-
sponding to S. Suppose that a fault F affecting a
node xj occurs, which generates an error E (s j)

and changes the state of c f~k 1 f rom S to SF- If
the fault affects a spare node, then R 3 leaves the
system state unchanged.

Step 2. For 1 < si ~< n, the node x~ in state s,
tests the node x j E N(x~) which should be in state

s~ - 1. If xi detects the error E(s~ - 1), then one of
the following actions occurs:

(a) If the error E(1) is present, then x~,
which is in state 2, scans the state vector
S (N (x ,)) f rom left to right until a componen t
s k = 0 is found, x, then changes s k to 1 and the
system recovers. I f no s k = 0 exists, then the
recovery a t tempt fails (no spare nodes are
available).

(b) If the error E (s i - 1) is present, where
2 ~ < s ~ - l ~ < n , then x i changes its own state
f rom s i to s, - 1.

(c) If the error E (n) is present, then x~,
which is in state 1, scans the state vector
S(N(x~)) f rom left to right until a componen t
s k = 0 is found, xi then changes s k to n and the
system recovers. I f no s k - - 0 exists, then the
recovery a t tempt fails (no spare nodes are
available).

It should be noted that since at mos t one error
exists in the system at any time, only one node
may change state each time R 3 is executed. In
general, multiple steps are required for the system
t o r e c o v e r .

T h e o r e m 3. The fault-tolerant system C f f l [c n] is
(n - 1)k-step k - F R with respect to the recovery

strategy R 3.

Proof. First we prove that Cf++kl[Cn] is k - F R with
respect to the recovery strategy R 3. Let the initial
s t a te be S (x l , x2 xi Xn+k) =
(1, 2 i 0). R 3 may require a node x~ in the
initial state s i to change its state up to k times
during recovery f rom a k fault. Thus x~ may pass
through the sequence of states s~ - 1, s i - 2 s,

- k in response to a sequence of k faults. A node
xi can act as a local supervisor and assume the
state sy + 1. Since x i is adjacent to every node in
the initial state s~ - 1, s, - 2 s, - k - 1, it can
act as the local supervisor required by R 3 for
recovery f rom the k faults. Hence, ck+~[C~] is
k - F R with respect to R 3. t~

Next, let us calculate the max imum number of
steps needed to recover the system f rom a fault.
The worst case occurs when a node xy in state 2
fails. Accord ing to R 3, the node x k in state 3
initiates recovery and changes its own state f rom 3
to 2 in one step. Then the n - 3 nodes in states s i,

R.M. Yanney, J.P. Hayes / Fault Recovery in Distributed Processing Loop Networks

for i = 4, 5, . . . , n, have to change their states in
turn, each change requiring one step. In the last
step, the node in state 1 activates a spare node.
Therefore, the m a x i m u m number of steps to
recover from one fault is n - 1. For k faults, the
number of steps is at most (n - 1)k.

Example 4. Figure 7 shows the graph C3[C6] which
is a 2-FT redundant realization of C 6. By Theorem
3, C3[C6] is also a 10-step 2-FR with respect to
R 3. Suppose that node c becomes faulty gener-
ating the error E(3) and changing the state of the
system from S(a, b, c, d, e, f , g, h) =
(1 , 2 , 3 , 4 , 5 , 6 , 0 , 0) to S F = (1 , 2 , - - 1 , 4 , 5 , 6 , 0 ,
0). The propagation of the local supervisor is

c i
,g

Fig. 7. The 2-FT graph Cs3[C6].

LOCAL
SUPERVISOR

FAULT NO. 1
3 (c) (d)4 -1 (c) 4 (d)

2 (b) ~ (e) 5 2 (b) ~ (e) 5

1 (a) ~ (f) 6 1 (a) ~ (f) 6

0 (h) |g) 0 0 (h) (g) 0

(a) (b)

241

-1 (c} (d) 3 -1 (c) (d) 3
 °C: v,soR

~ ~ i Z . ~ . ~ N j / SURRVlSOR
NO. a

0 (h) (g) 0 0 (h) (g) 0

(c) (d)

-1 (c) (d) 3 -1 (c) (d) 3

2 (b) (el 4

SUPERVISOR

NO. 4 0 (h) (g) 0 0 (h) (g) 6

(e) (f)
Fig. 8. Recovery propagation between neighborhoods on applying R 3 to Cs3[C6].

242 R.M. Yanney, J.P. Hayes / Fault Recovery in Distributed Processing Loop Networks

illustrated by the series of configurations in Fig. 8.
Figure 8(a) shows the initial configuration G c.
Figure 8(b) shows the invalid configuration with
the error E(3) present. Node d in state 4 detects
this error and becomes the local supervisor. Since
N(d) contains no spares, d changes its own state
from 4 to 3 generating the new error E(4). The
error E(4) is in turn detected by the second local
supervisor, node e. Node e changes its own state
from 5 to 4 producing the error E(5). Node f
detects this error and changes its own state from 6

to 5 generating the error E(6). Node a scans
S(N(a)) and finds that node g is the first availa-
ble spare in N(a). Node a then changes S(g)
from 0 to 6, so that the error is absorbed by the
spare node g, and the recovery process is com-
plete. The final valid configuration is shown in
Fig. 8(f). The corresponding final state of the
system is S = (1, 2, - 1, 3, 4, 5, 6, 0).

Example 5. Figure 9(a) shows a fault-tolerant
multi-microcomputer system, the Basic Fault-

o,sK11 i o,sK21
I- c,o--7 I .,cRo. / I
I COMPUTER ~ COMPUTER K I

I . ,CRO- I /

(a)

PRINTER

SWITCH

M 6 M 3

M5 M 4

(b)

Fig. 9. The Basic Fault-Tolerant Computer (BFS): (a) the 6-computer BFS; (b) its graph representation.

R.M. Yanney, J.P. Hayes / Fault Recovery in Distributed Processing Loop Networks 243

Tolerant System (BFS), which is being developed
in West Germany [12]. A suitable facility graph
model of BFS is the cycle power graph C6 2, as
illustrated in Fig. 9(b). A node x~ in C6 2 corre-
sponding to a microcomputer M i in BFS. Accord-
ing to Theorem 5, is a 5-step 1-FR realiTation of a
5-node cyclic system C 5 with respect to R 3.

Theorem 3 may be extended to systems whose
basic graph is the cycle power graph C~, rather
than the simple cycle C,. Note that the C""
topology is common in computer networks, since
nodes tend to be connected directly to nearby
nodes.

t,',m+kfg',m] Corollary 1. The fault-tolerant system "~n+k t,~n J is
(n - 1)k step k-FR with respect to the recovery

strategy R 3.

5. Conclusions

A new methodology for characterizing recovery
in fault-tolerant distributed-processing loop or
cyclic networks has been presented. A graph model
representing the basic nonredundant system as
well as fault-tolerant versions was proposed, which
allows recovery and reconfiguration problems to
be described in precise graph-theoretical terms.
Several recovery strategies for centralized and dis-
tributed recovery were described and their perfor-
mance was analyzed with respect to fault-tolerant
loop networks. An extension of the model to
networks that may be represented by the power
graph of a cycle was also noted. Applications of
this methodology to some other network struc-
tures such as trees are discussed in [15].

References

[1] T. Anderson and P.A. Lee, Fault Tolerance." Principles and
Practice (Prentice-Hall, London, 1981).

[2] P.H. Enslow, Jr., Multiprocessor Organization--A survey,
Computing Surveys 9 (1977) 103-129.

[3] F. Harary, Graph Theory (Addison-Wesley, Reading, MA,
1969).

[4] J.P. Hayes, A Graph Model for Fault-Tolerant Comput-
ing Systems, IEEE Transactions on Computers 25 (1976)
875-884.

[5] J.P. Hayes and R. Yanney, Fault Recovery in Multi-
processor Networks, Proc. 8th Symposium Fault-Tolerant
Computing, Toulouse, France (1987) 123-128.

[6] K.Y. Liu, Distributed Loop Computer Networks, in: M.C.
Yovits et al., ed., Advances in Computers 17 (Academic
Press, New York, 1978) 163-221.

[7] P.M. Merlin, A Study of the Recoverability of Computing
Systems, Dissertation, University of California, Irvine,
1974.

[8] R.C. Read and D.G. Corneil, The Graph Isomorphism
Disease, Journal of Graph Theory 1 (1977) 339-363.

[9] F. Saheban and A.D. Friedman, A Survey and Methodol-
ogy of Reconfigurable Multi-Module Systems, Proc.
COMPSAC 78, Computer Software and Appfications Con-
ference, Chicago, IL (1978) 790-796.

[10] R.R. Schell, Dynamic Reconfiguration in a Modular
Computer System, Dissertation, M.I.T., 1971.

[11] D.C. Schmidt and L.E. Druffel, A Fast Backtracking
Algorithm to Test Directed Graphs for Isomorphism Using
Distance Matrices, Journal of the A CM 21 (1976) 433-445.

[12] E.J. Schmitter and P. Banes, The Basic Fault-Tolerant
System, IEEE Micro 4 (1984) 66-74.

[13] R. Troy, Dynamic Reconfiguration: An Algorithm and its
Efficiency Evaluation, Proc. 7th Symposium Fault-Tolerant
Computing, Los Angeles (1977) 44-49.

[14] J.J. Woff et al., Design of a Distributed Fault-Tolerant
Network, Proc. 9th Symposium Fault-Tolerant Computing,
Madison, WI (1979) 17-24.

[15] R.M. Yanney, Fault Recovery in Multiprocessor Net-
works, Dissertation, University of Southern California,
1982.

[16] R.M. Yanney and J.P. Hayes, Distributed Recovery in
Fault-Tolerant Multiprocessor Networks, IEEE Transac-
tions on Computers 35 (1986) 871-879.

