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Abstract: Vector coherent state theory is used to give very explicit matrix representations for the 

Sp(6) 3 U(3) branch of the Ginocchio S,D-pair algebra for all states of generalized S,D-pair 

seniority, IA = 0, 1, and 2 to facilitate calculations in the fermion dynamic-symmetry model. 

1. Introduction 

Recently the Ginocchio S,D fermion pair algebra ‘), introduced originally as a 

toy model for the study of the fermionic foundation of the interacting boson model 

of Arima and Iachello, has been proposed as a fermion dynamical-symmetry model 

meriting serious consideration for nuclear spectra throughout the periodic chart 2m’). 

In this model the normal-parity single-particle states of the shell model are 

reclassified in terms of a pseudo-orbital angular momentum (k) and a pseudo-spin 

(i), with k + i =j. The so-called i-active version of the model with i limited to i = 2 

leads to the SO(8) symmetry of Ginocchio. State constructions for the three subgroup 

chains of the SO(8) symmetry have been worked out in considerable detail **6.7). 

Recently, in particular, it has been shown ‘) that the new vector coherent state 

techniques ‘-“), [f or a detailed list of applications see ref. ‘2)], can be exploited to 

give very explicit matrix representations for the physically interesting states of low 

(but nonzero) generalized SD-pair seniority for both the SO(8) 3 SO(4) x SO(2) 

and SO(7) 2 SO(5) x SO(2) branches of the model. Matrix elements of fermion 

model hamiltonians, built from terms of the interacting boson type, can thus be 

evaluated directly, on an equal footing for both even and odd nuclei, as well as for 

the most interesting states of higher SD-pair seniority. 

Until recently the k-active version of the model with k limited to k = 1, leading 

to a Sp(6) symmetry with a Sp(6) 3 SU(3) b ranch, has received less attention. This 

resulted from the “flaw” of the Sp(6) model, noted by Ginocchio, that it cannot 

support states of high SU(3) quantum numbers (hp) and thus does not appear to 

be a good candidate for nuclei with strongly collective quadrupole rotational spectra. 

In a j = rf , s, $, {, p shell, for example, the largest value of A + p permitted by the 

Pauli principle in this Sp(6) model, [with i = i, $; k = 11, is h + p = 10, [A + p < $0, 

with L! = cj (j + +)I. The interacting boson model would permit states with A + p = 14 

in even nuclei of such a shell, whereas the Elliott SU(3) model in configurations of 
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identical nucleons of an sdg shell can support representations with A + p as high 

as 13) A + p= 26. The Sp(6, R) model of Rosensteel and Rowe 14), on the other hand, 

appears to give a sound shell-model foundation of the nuclear collective model and 

leads to the possibility of truly microscopic calculations of nuclear collective 

phenomena 15,16). In the Sp(6, R) 2 SU(3) symmetry states of very large (A + p) are 

attained through a coupling of an intrinsic SU(3) representation with a collective 

SU(3) representation. An attempt to increase the possible (A +p) values of the 

Ginocchio Sp(6) model by a similar mechanism led to failure “). Although states 

with relatively large intrinsic (Ap) representations, resulting from Sp(6) representa- 

tions with higher generalized SD-pair seniority quantum numbers, can in principle 

be coupled with the favored SD-pair configurations of high (A/J) to lead to states 

with a resultant high SU(3) symmetry, the limit A +/L ~$0 cannot be exceeded. 

Moreover, the combination of intrinsic and collective SU(3) symmetries now leads 

to the disappearance “) of states such as (All) = (30 -2,2) which are among the 

Pauli-allowed states in the Sp(6) representation corresponding to zero generalized 

SD-pair seniority and intrinsic (Ap) = (00). 

Despite these difficulties the recent work on the fermion dynamic-symmetry model 

has led to renewed interest in the Sp(6) 1 SU(3) branch of the S,D fermion pair 

algebra. States of low generalized SD-pair seniority may be the most relevant, and 

it may again be useful to be able to treat even and odd nuclei as well as states of 

nonzero SD-pair seniority on an equal footing. Vector coherent state techniques 

are again ideal for this purpose and require only a small change in the formulas 

valid for the noncompact counterpart, the Sp(6, R) algebra. One of the central 

features of the vector coherent state method is the associated K-matrix theory8), 

and it is the development of the K-matrix technique into a viable computational 

tool which has led to the many recent detailed applications I’). It is the purpose of 

this short note to demonstrate that the K-matrices for the Sp(6) 1 SU(3) model and 

states of generalized SD-pair seniority z1= 0, 1, and 2 can be given in completely 

analytic form and thus leads to complete and detailed constructions of the matrix 

representations of the physically relevant states of the Sp(6) 1 SU(3) branch of the 

fermion dynamical-symmetry model. For the noncompact Sp(6, R) 1 SU(3) sym- 

metry and nuclei with mass numbers A > 6, Rowe, Wybourne, and Butler “) have 

shown that the K* matrices are completely free of zero eigenvalues. As a result all 

states of this symmetry are Pauli-allowed. In the Sp(6) 3 SU(3) model, on the other 

hand, the zero eigenvalues of the K* matrices play a prominent role and indicate 

very explicitly the Pauli-allowed domain of this model, another powerful reason 

for treating this problem by vector coherent state techniques. 

2. The vector coherent state theory of the Sp(6) 3 SU(3) S,D-pair model 

In the SD, fermion pair model the single-nucleon operators, a,,,, for a mixed 

configuration of j-values are given in terms of pseudo angular momenta k and i 
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a;,,, = C (kmkimiijm)b:,,,+ . 
ml,m! 
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(1) 

In the Sp(6) model k is restricted to k = 1, so that with i =$, $ we can build a 

j = 4, i, $, 3, 4 shell, for example. With i = $ and 4 this is a model for a j = $, $, $, s, 

g, y shell. The Sp(6) algebra is generated by the pair creation operators, A:,,,,, (with 

2-particle pseudo-spin angular momentum I =O), the hermitian conjugate pair 

annihilation operators, AJM, and the nine I = 0 one-body operators which generate 

the U(3) subalgebra. In the normalization of refs. 4,6), with finki =5(2k+ 1)(2i+ l), 

and k=l: 

A;,,,, = C Jtfi,i [bLx bLl’, “, 3 J=O,2. (2) 

In order to parallel the vector coherent state construction “) of the Sp(6, R) algebra 

as closely as possible it is convenient to introduce Cartesian components 

Ai/, = AL, = C (-l)i-mlbL~,,,,b:,i_,, ) (3a) 
i.m, 

where 

b:+,,,, = F Ji (b$,, * ib:+,,) , b:,,,,,, = b& . (3b) 

Similarly, the one-body operators in Cartesian form are 

(4) 

where a=3 1; (i+$) =I, (j-t;). The A:, of eq. (2) are given in terms of the 

Cartesian components by 

A;i-2 =a J3(AL,-A~,,.*2iA~y), 

A;+,= F~JS (AiZ* iA:,), 

A;,,=$J,(-A:,-A:,+2A;J, 

A:,=-;(A;.~+A;~+A;,). (9 

With Bah = Aah = (ALh)‘, the commutator algebra for the Sp(6) generators is 

[A;,,, & 1 = ‘%cCbd + &,dCac + ‘%&ad + &dChc > 

[Aah, cc, I= &c&d + h&ad, 

[Cat,, cc, 1 = ‘%cCad - &dCch , (6) 

which, with the exception of a few crucial changes in sign, is identical with that of 

the noncompact Sp(6, R) algebra. In analogy with ref. “) the vector coherent state 

for the Sp(6) 1 U(3) algebra can then be built in terms of six complex variables z,, 

(=%a) 
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where [q] = [ ~,~2~3] is the “intrinsic” U(3) symmetry, i.e. the U(3) symmetry of 

the u nucleons entirely free of the favored S,D pairs of the model, so that 

&ibld = 0 for all a, b; a, (8) 

where a is a shorthand label for any convenient set of U(3) subgroup labels, and 

u = (T, + a,+ u3 is the generalized SD-pair seniority number. Since the Cartan 

subalgebra is generated by the three C,, and the highest weight values of these is 

given by $ - (TV, $2 - u2 , ifI -CT,, the Sp(6) irreducible representation is labeled 

by the vi and, in Cartan standard form, is given by 

($0 - a,,@- a,,$-a,). (9) 

State vectors are mapped into z-space functional representations ‘,‘I) 

I$)- t+!~,~,,_(z.) =(zl$) =([~]~le:‘~.h“lI,A‘,hI~) (10) 

and, operators 0 are mapped into their z-space realizations, r(O), 

w- r(o)&rI]a(z) . (11) 
Defining Vah = (1 + 6,,,)a/8z,,, the z-space realizations of the 21 Sp(6) generators 

are given by 

r(&,) = Vor,, 

1-( C,,) = Cab + ZoPVPh = @t/r+ c$’ ) 

T(&J = -@++ - @t+pa - zag/,yVpv. (12) 

Summation convention is used for repeated (Greek) indices. Note the change of 

sign from the corresponding z-space realizations of Sp(6, R), (cf. refs. “,“)I. The 

Cu,, are the “intrinsic” U(3) generators which act only on the intrinsic states ][a]c~), 

i.e. the states of generalized SD-pair seniority u = (T, + (TV + (TV, the vector “vacuum” 

states of the Sp(6) symmetry which are annihilated by the favored SD-pair annihila- 

tion operators, A,,+,. The Cab commute with the zcd and Vcdr so that the Sp(6) algebra 

has been mapped into a direct sum of a 6-dimensional oscillator (Heisenberg-Weyl) 

algebra, generated by the z,d and Vcd, and an intrinsic U(3) algebra generated by 

the Cab. The 6-dimensional oscillator algebra generated by z-space polynomials in 

the 6-dimensional space of the zab must be reduced with respect to U(3). In the 

6-dimensional Bargmann space of the z,b, the oscillator functions are constructed 

through polynomials of degree n, + n2+ n3, 2[“~“2”~‘(~), carrying the “collective” 

U(3) quantum numbers [ n,n2n3] with n, all even integers, which can then be coupled 

to the “intrinsic” U(3) quantum numbers [(T~P~~~] 

[Z ‘n,n,nJ(z) x I[(T1f12~J)]~Iwz+ ) (13) 

where the square bracket denotes the U(3) coupling [[ff1~2~J x [n,n2n3]] + [w,wZwJ 

to states of resultant U(3) symmetry specified by [ w1w2wJ - [w]. The multiplicity 

label, p, is needed if the U(3) coupling [[o] X [n]] contains the resultant U(3) 
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representation [w] with a multiplicity greater than one. The labels n can be any 

convenient set of U(3) subgroup labels. (Note also that we adhere to a right to left 

U(3) coupling order in eq. (13)). 

The states of eq. ($3) form an orthonormal set with respect to a z-space scalar 

product with a Bargmann measure. Since the z-space realizations F(A,,), f’(Azh) 

of eq. (12) are not unitary with respect to this measure, the z-space realizations, 

T(A,,), T(A&) must still be transformed to unitary form, y(Aab), -y(ALh), via the 

K-operator ‘,“) 

y(A) = K-‘T(AfK, ?(A’) = K-‘S(A’fK, (14) 

where xi; is a U(3) scalar since it commutes with F(C) = y(C). The unitary require- 

ment Y(&) = (~(A~~})~ = K’zah(K-‘)’ leads to 

TfA;b)KK’= KK”zoh. (15) 

This will be solved for KX’ through the ~~trodu~i~n of the auxiliary ““Toronto 

operator,” &P., with the property 

[&,., G,I = I’(&,) (161 

and the solution 

&p, = - 5rc, + s,,n,)(G,, + ZfliL17Pa) 

+k&&&L~ + z,pv,, 

=-4C~~C~~+tCTrBIC~~iS.ZcypV,,r (17) 

with eigenvafue given by the U(3) Casimir invariants C~~,:C~~ and C”$tC~~t, with 
~~&L-~~~+C~ll_ 

&igen =-f~ll”(w*)+h2(w,)-th2(o,)~2hfo,)-2h(w3)] 

~fi[n:+n:+n:j_2n,-2n,]+n,-tn,~n,, (18) 

where 

h(Wi)=Ui-$Z, hfni)=82,, hfi&)=O;--_:fi. (191 

(Note that the dependents on the Cri is implicit only, through the coupling [a] x [n] + 

E@].) 

The important quantities are the eigenvafue differences 

AWW~ -A,,,,,, = --+(A w;+ L&O;+ A&) -(co1 + 1)&r - otdoz 

-(w,-l)Awj+f~++n,t-5-i, (20) 

where the U(3) coupling f wlwzwj] x [;?J+ [wiw&;] leads to the two possibilities 

AWj = 2 QP At+ = 1, dtt>k = 1; but Ani = 2 only for the coupling [ n,n,n,J X [2]+ 

[n;n;n;], and the index i in eq. (20) gives the row to which the 2 squares are added 



66 K.T. Hecht / Vector coherent state theory 

in this product. (Note also the difference in signs from the corresponding expression 

for Sp(6, R), cf. refs ‘,“).) 

The combination of eqs. (15) and (16) leads to the determination of KK’ through 

(&.~a,, - z,&XK+ = =‘a,~, . (21) 

Taking matrix elements between states /[[a] x [n]][w]p; 7) [cf. eq. (13)], on the 

right and a similar state ([[a] x [n’]][w’]p’; 9’) on the left, this leads to an equation 

for the recursive determination of the KK’ matrix elements. After factoring out a 

common SU(3) Wigner coefficient this leads to 

= [IZ,, (KK+Uw’l)) n [ ‘,p’,rrJpm~l x [~‘ll[~‘lP’llzll[[~l x [nll[wlp) , (22) 

where the SU(3) reduced matrix elements of z are given by 

= ~([~lr~l[~‘1r2l; [WIP-; ~~‘l~~‘~~~~‘lllzIl~~ll~ (23) 

The U-coefficient is a U(3), (or equivalent SU(3)), Racah coefficient in unitary form 

which is readily available through the code of Draayer and Akiyama 19). When not 

needed the multiplicity labels are replaced by a dash or omitted altogether. The 

SU(3) reduced matrix elements of the 6-dimensional z in the pure collective subspace 

~[~‘lll4[~ll g’ are iven through eq. (2.25) of ref. “). (The reduced matrix elements of 

eq. (2.25) of ref. “) are to be multiplied with an additional Ji factor to adhere to 

later normalizations; see p. 84 of ref. “).) The KKt submatrices, diagonal in [w], 

are labeled by row/column indices [n]p. In many of the states of low generalized 

SD-pair seniority, multiplicity labels p are not needed and [n] is uniquely deter- 

mined by [a] and [CO] so that the KK’ submatrix collapses to a simple 1 x 1 matrix. 

If both states [CO’] and [w] fall into the l-dimensional category, the reduced matrix 

elements of z drop out of eq. (22), and this equation collapses to a simple recursion 

formula 

(24) 

Note that in this case K = Kt and we have given KKt its more conventional *,12) 

name K2. 

In the general case, inversion of the relation y(AL,,) = Ktzab(K-‘)+ transforms 

the orthonormal Bargmann-space vectors of eq. (13) into the orthonormal base 

vectors 

I[uI[~li; v)= 15p (K~‘([WI))i,rnl,[zr”‘(At) X /[~])]l,“‘” n 
(25) 
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expressed in ordinary space. The z in Z[“‘(z) are replaced by the pair creation 

operators A’ in these polynomials. This involves the conversion of the KK” matrices 

to the K and K-’ form. If KKt is diagonalized by the unitary matrix, V, 

U(KK’~fUi = A (26) 

with h, = fi,h, the inverse of the K-matrix can be chosen as 

W’)i.L,l,> = G”K,.,, I (27) 

where hi is one of the nonzero eigenvalues of KC* Similarly 

(I() ‘.- u;+ihjfZ. inhi - (281 

In the present application the (KK’) are not only hermitian but real symmetric 

matrices, leading to real U. In eq. (25) we have converted (Km’)‘= U;n)p,<h;“’ to 

h;‘/2UiZRlP = K’. In the general case, eq. (25) leads to the W(3)-reduced matrix 

element of the pair creation operators, At, 

(~~l[~‘lj’IIA’IIE~l[~l~~ = [:, [z,, (K~..‘~Cwl))i,r”l,(K([w’l))~“,,~,~’ 

Li w~l~~3E~‘lPl; EwfP-; r~‘l-~‘~~~~‘lllzIlr~l>. (29) 

In the special case when k& initial and final state are simple, with l-dimensional 

KK’ submatrices for which [a] is uniquely determined by [a] and [w] and p is 

not needed, this collapses to the simpler formula 

~~~l~~‘lll~~l~C~l~~ll= ~~~~t~~~r~~r-~r~~r~~~l”“~~~‘lll~Il~~l> 

x ~~r~l~~l~~~l[~l; [@Ii ran (30) 

Note that for the AI,,,, defined according to the normalizations of refs. 4.6), as 

exhibited in eq. (2), the SU(3) reduced matrix elements of eqs. (29) and (30) must 

be multiplied by an additional factor of +x.“!. 

The SU(3) reduced matrix elements of the S,D pair a~nihiiation operators follow 

from hermitian conjugation 

([a][w]illAll[cr][w’]j’)= ~(-l)“.~~‘“~~“;‘~“~([n][w’]j’llAt~I[~][~]i). (31) Jr- 
3. States with generalized S,D-pair seniority ii =& I, 2 

If the favored S,D-pa.ir excitations of the Sp(6) 3 U(3) model dominate the 

low-energy spectra of a nucleus, states of low generalized &D-pair seniority may 

be of greatest relevance. However, it will be useful to be able to treat even and odd 

nuclei on an equaf footing and to be able to examine states with nonzero generalized 

seniority, u. States with u = 0, I, and 2 may be the most important. For these the 



68 K.T. Hecht / Vector coherent state theory 

KK’ matrices can be given in analytic form and in complete generality. For u = 0 

[(r,aza3] = [000], (A,/.J~) = (00) using Elliott SU(3) notation. For u = 1 [(T,v~(TJ = 

[ 1001, (A+.,) = (10). For u = 2 there are two possibilities: [ c~,a~aJ = [200], (h,~.,) = 

(20); or [(T,(T~uJ =[llO], (h,j~~) =(Ol). Since all of these have either A, =0 or 

j_~, = 0, no multiplicity labels are needed for the couplings [a] x [n], and the Racah 

coefficients of eq. (23) have a particularly simple form. Tables l-4 give all possible 

(A~_L) = (0, - w2, w2 - w3) for all particle numbers for these four cases for a j = 
LZSlY 22222-shell, with R = 15. The case u = 0 has recently also been discussed by means 

TABLE 1 

Possible (A/A) for the u = 0 states of a j =$$$gg shell, (a = 15). Sp(6) irrep (555). 

n (G) 

30 (00) 
28 (02) 
26 (04) (20) 
24 (06) (22) (00) 
22 (08) (24) (40) (02) 
20 (O,lO) (26) (42) (04) (20) 
18 (28) (44) (60) (06) (22) (00) 
16 (46) (62) (08) (24) (40) (02) 
14 (64) (26) (80) (42) (04) (20) 
12 (82) (44) (06) (60) (22) (00) 
10 (10,O) (62) (24) (40) (02) 

8 (80) (42) (04) (20) 
6 (60) (22) (00) 
4 (40) (02) 
2 (20) 
0 (00) 

TABLE 2 

Possible (hp) for the u = 1 states of a j =f$$gf shell, (0 = 15). Sp(6) irrep (554) 

29 (01) 

27 (03) (11) 

25 (OS) (13) (21) (10) 

23 (07) (15) (23) (31) (12) (01) 

21 (09) (17) (25) (33) (14) (41) (30) (03) (11) 

19 (19) (27) (35) (16) (43) (51) (32) (05) (13) (21) (10) 

17 (37) (18) (45) (53) (34) (61) (50) (07) (15) (23) (31) (12) (01) 

15 (55) (63) (36) (17) (25) (71) (52) (33) (41) (14) (03) (30) (11) 

13 (73) (81) (54) (35) (43) (16) (05) (70) (51) (32) (13) (21) (10) 

11 (91) (72) (53) (61) (34) (15) (23) (50) (31) (12) (01) 

9 (90) (71) (52) (33) (41) (14) (03) (30) (11) 

7 (70) (51) (32) (13) (21) (lo) 

5 (50) (31) (12) (01) 

3 (30) (11) 

l (10) 
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TABLE 3 
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Possible (APL) for the u = 2 states, (hvfim) = (Ol), of a j =f$$z$ shell, (Q = 15). Sp(6) irrep (544) 

n 
-- 

28 

26 

24 

22 

20 

18 

16 

14 

12 

10 

8 

6 

4 

2 

CAP) 

(10) 
(12) (01) 
(14) (03) (30) (11) 

(16) (05) (32) (13) (21) (10) 

(18) (07) (34) (1% (23) (SO) (31) (12) (01) 

(09) (36) (17) (25) (52) (33) (41) (14) (03) (30) (11) 

(27) (54) (35) (43) (70) (51) (16) (05) (32) (13) (21) (lo) 

(72) (45) (53) (34) (07) (15) (61) (50) (23) (31) (12) (01) 

(90) (63) (71) (52) (25) (33) (14) (41) (3oj (03) ill) 

(81) (70) (43) (51) (32) (05) (13) (21) (lo) 

(61) (50) (23) (31) (12) (01) 

(41) (30) (03) (11) 

(21) (10) 

(01) 

TABLE 4 

Possible (hp) for the u = 2 states, (A,+,) = (20), of a j =ft$if shell, (Q = 15). Sp(6) irrep (553). 

(20! 
(22)’ 

(24? 

(26)’ 

(36) 

(46) 

(64) 

(63) 

WY 

(421~ 

(22? 

(02) 

(11) (00) 
(32) (40) 

(34) (42)’ 

(44Y (17) 

(27) (54) 

(72) (45) 

(44Y (71) 

(43) (24)’ 

(23) (04) 

(11) (00) 

(13) (21) 
(15) (23) 
(25) (06)” 

(62? (35) 

(26)’ (53) 

(52) (60)’ 
(511 (32) 
(31) (12) 

(02? 
(04)2 (31) (20)2 (12) 

(52) (60) (33) (41) (14) (22)” (11) (00) 

(43) (24)’ (16) (08) (51) (40)’ (32) (13) (21) (02)’ 

(34) (42? (61) (80) (15) (04)2 (23) (31) (12) (20j2 

(25) (06) (33) (14) (41) (22)’ (11) (00) 

(4OP (13) (0212 (21) 

t20iz 

of a boson mapping procedure “); but the more cumbersome boson 

techniques of ref. ‘“) would be difficult to generalize to states with u # 0. 

3.1. STATES WITH w =0 

mapping 

In this case u); = nj; all K2 submatrices are l-dimensional, and the K2 ratio of 

eq. (24) becomes 

K2([n’l) 
K%nl) 

=ff;3-n,+i-1, (32) 
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where n: = ni +2; (i gives the index of the tableau row to which the two squares 

are added). This leads at once to 

K2([n,n2n31) = 
($n+2)!!(@+1)!!(50)!! 

($R--n,+2)!!(+0-n2+1)!!($L!-n,)!!’ 
(33) 

(U=O[n’]JJAtllu=O[n])=J(fn-ni+i-1)([n’]Ilzli[n]). (34) 

Note also that the factor f0 - ni + i - 1 would be replaced with $0 -$u - ni + i - 1 

in states with u = 3,6.. . but (A,+,,) = (00). The maximum possible n, values are 

f(n -u). 

3.2. STATES WITH w= 1 

In this case [o] = [loo], (A,J_L,) = (10). The possible [w] are [n, + 1 n,n,], [n,n,+ 

1 n,], [n,n,n,+ l] each with the unique [n] value of [n,n,n,]. (Recall that the ni are 

all even). Eqs. (24) and (20) at once lead to 

w2hmr.,r”, = 2 
($+2)!!($+1)!!($-2)!! 

(,fL-n,+2-A,)!!($-n,+l-A,)!!(fn-n,-A,)!!’ 
(35) 

where 

Now 

A, = 2 ifwj=nj+l, 

A, =0 for the other two factors. 

where (A,,t.~)=(w;-w;,wL- w;), e.g.; and where there are in general 5 possible 

[n], [w] combinations for each [w’]. For convenience, the possible A,,,,,,,., -A,,,,,, 

for the u = 1 states are given in table 5. 

3.3 STATES WITH u = 2, (A,pq) = (01) 

In this case, with [a] = [ 111, there are again only three possible [w], with [w] = 

[n, + 1 n,+ 1 n,], [n, + 1 n2 n,+ 11, or [n, n,+ 1 n,+ 11. Since the ni must all be even 

the [n]-values are uniquely determined by [w]. Eqs. (24) and (20) now lead to 

W’GJI)),“,,“, = 2 
(@+2)!!(fR-l)!!($-2)!! 

(,f2-n,+2-A,)!!(ffl-n,+l-A2)!!($f2-n,-A,)!!’ (37) 

where 

A, = 2 if oj = nj+ 1 

A, = 0 for the third factor. 
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3.4. STATES WITH u =2, (h,/.~,)=(20) 

11 

With [a] = [200], there are two basic types of U(3) representations. First, for [w] 

with two odd values of w,, [n] is uniquely determined by [w] and this case leads 

to l-dimensional K2 matrices. 

With[n]=[n,n,n,]and[w]=[n,+ln,+ln,],[n,+ln,n,+l],or[n,n,+ln,+ 

11: 

W2(bl)h.,r., = 2 
($+2)!!($&1)!!($-4)!!($) 

(-a-n,+2-A,)!!($R-n,+l-A,)!!(+fl-n,-A,)!! (38) 

where 

Aj = 2 if wj = nj+ 1 

A,= 0 for the third factor. 

For the second type of [w], with all wi even, [n] can, in general, have three 

possible values, and the most general KK’ submatrices for this type of [w] will be 

3 x 3 matrices. (Note: Since many of these 3 x 3 matrices will have zero eigenvalues, 

we will use the forms given by eqs. (27) and (28) for K-' and K and will therefore 

not use the language K2). In this case, eqs. (22) will lead to a system of linear 

equations for the KKt matrix elements for [w’] in terms of known KK' matrix 

elements for [w] with Ci o, = (1, w:) -2. The needed SU(3) U-coefficients can be 

read in analytic form from table 5 of ref. *‘) with the use of eq. (18) of ref. *I). Some 

of the calculational details for this case will be given in appendix A. The final results 

are: 

With wi all even, and the common factor defined by 

[C.F.] = 
($+2)!!(;0-l)!!($-4)!! 

($-w,+2)!!(~n-w,+l)!!(~n-w,)!!’ 

TABLE 5 

The (.4,,,,,,, - A,“,,_,) factors for u = 1 states 

[w’l [WI [Cl (11 ,“,,w’,- I$,,,,,) 

[n, -2 n, nil 
[n, n,-2 n,l 
[n, “r n3 - 21 
In, n,-2 fill 
[n, n2 nj-21 
[fl, -2 nZ n31 
[n, ~~-2 n,l 
[n, “Z “j-21 
[fl, -2 n2 %I 
1% “z n, - 21 
In, -2 nZ nJ 
[n, n,-2 ~~1 
[n, n2 n,-21 
[n, -2 n, nJ 
In, HZ-2 nJ 

W-n,) 
(jfbn2+3) 
a-n,+4) 

($2 -n,) 

(in-n,) 
($0 -?I, +2) 

($I-n,+l) 

($Ln,+4) 

(fiRpn,+l) 

($R-n,+l) 

(fiR-n,+2) 

($O-nz+3) 

($.R-n,+2) 

a-n,+2) 

ts-n,+2) 

(39) 



= -[C.F.] x 
J(,, +2)(w*+ I)( ~l-~z)(~,-~*+2)(~,-~~+l)(~z-~3) 

(w,-w~+1)J(w,-w~+2)(w~-w~+1) ' 

(4W 

(KK+([WIW2W31))[w,-2~~~~,~~,~~~~-~, 

= -[C.F.] x 
J(@, +2)%(@r - WZ)(W, -w3+l)(w,-w3+3)(w2-w3+2) 

(w,-wj+2)J(o,-w~+1)(w~-oj+1) ' 

(40b) 

(KK+([~lW2W31))[w,w2-*~~,~~*~~~~-~~ 

= -[C.F.] x 
Jcwz+ IMW -02+2)( ~l-~j+3)(~2-~d(~2-~j+2) 

(w2-03+1)J(w,-w2+1)(w,-wj+2) ' 
(4Oc) 

(KK+(rW,W*W31)[w,~2wzW,ICWIZW2W,I 

= [C.F.] x $&?(gn-o,+l)- 
(w,+2)(w,-o,)(o,-w,+l) 1 (wl-W~+l)(q-Wg+2) ' 

= [C.F.] x $($-f&+2)- 
(%+I)(W,-%+2)(%-%) 

I (w,-w*+1)(wZ-w3+1) ’ 

= [C.F.] x $(3.n-0,+3)- 
w3(q -w,+3)(02--Wj+2) 1 (w,-w,+2)(w,--~~+l) ' 

(404 

(doe) 

(4Of) 

These 3 x 3 matrices reduce to simpler matrices in many cases. Since these special 

cases are often cases with zero eigenvalues it is important to examine them in some 

detail in order to determine the Pauli-allowed domain of the Sp(6) irrep ($0 ifl in- 

2). 
(i) With 02= w3 = 0 the KKt-matrix for [w] = [w,OO] is a 1 x 1 matrix with 

KK+= (S.n-4)ll 

($-q-2)!! 
(41) 

In this case the highest possible o, is ($0 -2), (not $fi as in the u = 0 case). 

(ii) With wj = 0 the KK’ matrix for [w] = [ w,wzO] is a 2 X 2-matrix, in general 

with two nonzero eigenvalues. In the special case with w, = $0 this 2 x 2 matrix has 

the form 

KK+ = [C.F.l(w, = 84 ~3 = 0) 

(WI-%+11 

-J+,+~)(w::w,)(w,-w,+2) 

-Jo+, + l)(w, -wz)(wl - w2+2) 

> (w,+l)(~,-d(w1-%+2) . 

(42) 
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It can be seen at once that the determinant of this matrix is zero. One of the 

eigenvalues is zero, and there is only one Pauli-allowed state of the type [w,020] 

with w, = $0, corresponding to a specific linear combination of states with [n] = 

[w, -2w,O] and[w,w,-201. This explains why states with n = 12, (ALL) = (82); n = 14, 

(Ap) = (64) in table 4 are simple rather than 2-fold. 

(iii) With w2 = w, the KK’ matrix for [w] = [ w,wzw2] is again a 2 x 2 matrix with 

two possible [n] = [w, - 2wzwz] or [ w,wzwz - 21, in general. In the additional special 

case with wi = j0 this 2 x 2 matrix has the form 

KK+ = [C.F.l(w = ifA ~3 = 4 

(WI -%+2) 

( 2w2 -J2wz(w,+2)(“,-wz)(w,-w~+3) 

x -J2w*(o,+2)(w~-w~)(w,-w~+3) > (w,+~)(vw~)(w,-o~+~) . 

(43) 

This again has zero determinant and hence only one nonzero eigenvalue and thus 

only a single Pauli-allowed state. This explains why the state with n = 14, (A/L) = (80) 

in table 4 is simple rather than two-fold. 

For particle numbers n > 0, matrix elements are determined most readily from 

particle-hole conjugation, using the states with n = 20 - u as the vector “vacuum” 

states and polynomials Z(A) in the pair annihilation operators for the state construc- 

tion. However, this is not necessary. States with n = 20 and (Ap) = (42) in table 4, 

e.g., could be constructed through the 3 x 3 KK.’ matrix for [w] = [ 10 6 41. This has 

the numerical value 

8 - 14J6 
12.10.9.7.6.4.2 

KK’= X -14J6 272 
5 

(44) 

-6J35 -2J210 

Again, the determinant is zero. This KK’ matrix has only two nonzero eigenvalues. 

There are only two Pauli-allowed states with n = 20 (A/L) = (42) in agreement with 

the findings for n = 10 (Ap) = (24). 

4. Concluding remarks 

If the k-active Sp(6) 2 U(3) branch of the favored SD-pair algebra yields an 

approximately good symmetry for nuclei in certain mass regions, then states of low 

generalized SD-pair seniority may be of greatest relevance for the low-lying states 

of such nuclei. The state construction of such low-seniority states has been given 

in very general and explicit form via vector coherent state techniques. States of even 

higher seniority may be constructed by the same techniques, although it may be 

necessary to treat specific cases numerically. For u = 3, e.g., with (A-/-L,,) = (30), (1 l), 
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or (00), it may not be worthwhile to derive general algebraic formulae. For (A,+,) = 

(11) multiplicity labels, p, begin to come into play and general algebraic expressions 

become cumbersome. 

With the results given in sect. 3 it is straightforward to evaluate matrix elements 

of fermion hamiltonians of the type used in the interacting boson model, i.e. 

hamiltonians built from the group generators themselves. Moreover, such hamil- 

tonians can be treated on an equal footing for both even and odd nuclei. Positions 

of higher seniority states can easily be determined, and with somewhat generalized 

hamiltonians an assessment could be made of the effects of higher-seniority admix- 

tures into the dominant low-seniority states. 

Appendix A 

The method of calculation of the 3 x 3 KK’ submatrices for general [w], with all 

wi even integers, for the u = 2 case with [a] = [200] will be sketched in this appendix. 

The basic equation for the recursive determination of these matrix elements is eq. 

(22), where [w’] is such that xi wi =Ci Oi +2. By choosing [w] = [n, + 1 n,+ 1 n,] 

and the fixed [n’]=[n,+2n,n,] or [n, n,+2n,] for [w’]=[n,+2n,+2n,], two 

equations are obtained for the unknown KK ‘( [ co’]) in terms of the known quantities 

given by eq. (38). Altogether this type of choice for the fixed representations [w], 

[w’] and [n’] leads to six equations. With the shorthand notation 

(KK+(wlw:o;l)),,;-,,;,;,,,;-~~~~~,’(KK+),, , 

(KK+([w:w;w;l))[,i-*,;,;l[,l,jzw;l G (KK+)II, etc., 

these six equations are 

(KK+),,-x(KK+),~=($-o;+l)K;, 

(KK+)22-;(KK+),,=(jR-w;+2)K;, 

(KK+),,-y(KK+),,=($L-w;+l)K;, 

(KK+),,-;(KK’),,=(:h;+3)K;, 

(KK+),,-z(KK+),,=($-coo:+2)K:, 

where 

K;= ($+2)!!(f0-1)!!($&4)!!($) 

(;n-CfJ;+2)!!(~R-w;+l)!!(3R-w,)!!’ 

(A.11 

(A.2) 
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and 

J (w:+2)(w: -w;)(w:-w;+l)(w;-w;+l) 

x= (w;+1)(w;-CLJ~+2)(w;-w~+2)(w;-w;)’ 
(A.3) 

(0~+1)(w;-w;+2)(w:-w;+2)(w:-w~) 
z= 

w;(w;-w;+l)(w;-w;+3)(wS_wjf2) ’ 
(A.4) 

y=xz. (A.51 

Because of the last relation the six equations (A.l) are not independent, and these 

are therefore not sufficient to solve for the six unknowns (IN+),,. Eq. (22) can, 

however, also be used to get a simple recursion equation for matrix elements such 

as (KK+),, 

(W:-w;+3) 

J 

w;(w; -w;+3)(6J; -w;+4)(w;-w;) 

=(‘“-W’+4)(w;-o;+l) (w;-2)(w’l-wj+2)(w;-o;+5)(w;-w;+4)’ 

(A.@ 

This can be used to relate (KKt)23 to the specific (KK’([w{w:~]))~~, which can be 

simply related to KK ‘([w;w~]) matrix elements with two-rowed [w’]. The matrix 

elements of the latter can be determined from the first two of eqs. (A.l) with wi = 0, 

and the simple recursion formula 

(KK+([w;w~l))rw;-zwi~r,i,i_zl 
(KK+([w;w; -21))[Wi-2W;-2][W;Wi-41 

(A.7) 
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