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A numerical model of a low pressure parallel plate rf glow discharge is presented based on a 
self-consistent formulation of the energy-momentum conservation equations for electrons, the 
continuity equations for both electrons and ions, and Poisson’s equation. Various explicit 
finite-difference numerical methods are discussed in terms of stability and overshoot proper- 
ties. Stability considerations for the numerical method that was implemented, including the 
initial and the boundary conditions, are examined. Results from a large-signal simulation of a 
low pressure argon rf glow discharge are presented. c 1988 Academic Press, Inc. 

I. INTRODUCTION 

Over the last decade, plasma processing of semiconductor materials has achieved 
widespread popularity in the microelectronic industry. Low pressure parallel plate 
rf glow discharges at 13.56 MHz are used to generate chemically reactive gas phase 
species in plasma etching [ 1 ] and plasma-enhanced chemical vapor deposition 121. 
Moreover, these discharges can provide a means of physically bombarding a 
semiconductor surface with “heavy” positive ions, thereby enabling sputtering and 
anisotropic plasma etching [3]. As the industry focuses on process automation, the 
need to quantitatively understand some of the fundamental components of 
integrated circuit manufacturing becomes increasingly important. Since many of the 
physical and chemical processes are analytically too complex, it appears necessary 
to develop accurate numerical models for such purposes. 

An rf glow discharge is a weakly ionized plasma which under ordinary conditions 
does not reach a state of local thermodynamic equilibrium. The “hot” electrons are 
responsible for ionization, excitation, dissociation, etc., of the “cold” neutral gas 
atoms and/or molecules, resulting in a self-sustaining discharge that produces 
chemically reactive gas phase species at temperatures far lower than otherwise 
possible. More specifically, the electrons are heated by the rf electric field and can 
lose significant amounts of energy only through inelastic collisions, Consequently, 
the electrons must heat to energies above inelastic thresholds before cooling can 
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occur. On the other hand, the ions remain cool since they continually transfer 
energy and momentum to neutrals through elastic collisions. 

The electrical properties of an rf glow discharges are primarily attributed to 
highly nonlinear carrier dynamics, electrode sheath effects, and interaction with an 
external circuit (i.e., a power source and matching network). Since the electrons 
cannot transfer significant energy and momentum to neutrals during elastic 
collisions (due to the high neutral to electron mass ratio), it becomes important to 
consider electron momentum and energy effects when modeling rf glow discharges. 
Self-consistent numerical models [4, 51 based on the electron and ion continuity 
equations and Poisson’s equation do not account for these effects. The continuum 
model [6], which includes an energy balance equation, loses its potential for 
properly modeling the electron energy effects by assuming constant electron 
mobility, diffusivity, and ionization coefficient. The only nonlinear coupling 
between the electron energy balance equation and continuity equations in this 
model occurs through the generation rate term which is simply the ionization 
coefficient times an exponential containing the electron energy. 

A fully comprehensive numerical model of an rf glow discharge must take into 
account transport properties under dynamic conditions. This could in theory be 
accomplished using Monte Carlo methods or by solving the Boltzmann equation. 
Monte Carlo methods have been used to model electron swarms [7-91 and more 
recently electron properties in rf glow discharges [lo]. Numerical solutions of the 
Boltzmann equation based on spherical harmonic expansions have also been 
developed [ 11, 121. While these approaches are quite useful for specific 
applications, none are capable of self-consistently modeling rf glow discharges due 
to the extreme computational complexity that is involved. In this paper, a transport 
model of an rf glow discharge is presented which can be self-consistently solved 
(numerically) using explicit finite-difference methods for compressible inviscid fluids 
in one dimension on a staggered mesh. The numerical method used is outlined and 
compared with other explicit finite-difference schemes in terms of stability and 
accuracy, Finally, some large-signal simulation results are presented for a 300 mT 
argon rf glow discharge at 13.56 MHz, illustrating some of the physics of these 
discharges. 

II. THE TRANSPORT MODEL 

The starting point for the rf glow discharge model is to assume the Boltzmann 
equation accurately describes particle transport [13]. This equation is given by 

?f- at’ -fi.v?f- $VJ+ g 1 
( > collisrons 

where f is the distribution function, t the time, r, the position U the velocity, F the 
external force, and m the particle mass. The transport model is derived by taking 
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moments of Eq. (1) and making certain simplifying assumptions [ 143. The carrier 
density, the mean carrier momentum, and the mean carrier energy are defined by 
the zeroth, first, and second velocity moments off, 

n(r, t) = jf(f, 0, t) d3v, (2) 

mn(?, I)$?, t)=/mtf(?, V, t)d’v, (3) 

n(F, t) w(F, t) = [ $rnC*f(J, 6, t) d3v, (4) 

where n is the carrier concentration, U the average velocity, and w  the average 
energy. 

The one-dimensional forms of the first three moment equations for electrons are 
given by 

an 4un) +cm 
at=-ax ’ 
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(6) 

(7) 

Equation (5) is the usual form of the particle continuity equation where n 
represents the electron density, u the electron average velocity in the x direction, t 

the time, and ctn the approximate form for the zeroth moment of the collision 
integral. Similarly, Eqs. (6) and (7) denote the standard forms of the per carrier 
average velocity (i.e., momentum) and energy transport equations. In these 
equations, w  is the average electron energy, E the electric field in the x direction, m 
the electron mass, P the electron pressure, and w0 the thermal energy associated 
with the neutral gas reservoir (i.e., 0.0258 eV). The first and second moments of the 
collision terms are approximated by relaxation terms containing the effective 
momentum and energy relaxation time, i.e., t, and T,, respectively. The equation of 
state for an ideal gas P = nk, T is used to define the electron pressure P where kb is 
Boltzmann’s constant and T the electron temperature. In keeping with the usual 
concept of temperature, the thermal component of w  is defined by 

$kb T= w  - imu 

and the pressure term reduces to 

P = $n(w - tmz4”). 

(8) 

(9) 
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A more complete derivation of the first three moments of Boltzmann equation 
(commonly known as the conservation equations) can be found in a number a 
references, e.g., see Refs. [14-171. 

The ion transport can be accounted for using a simpler model (for computational 
efficiency) when it is assumed that the ions are in equilibrium with the electric field. 
This transport model includes the continuity equation, 

aP 1 aJ --“A-n,, 
at’ qax (10) 

where p is the ion density and q the electronic charge. The ion flux (i.e., the density 
times the average velocity) has been replaced by an expression for the ion current 
given by 

ap Jp = qvp - qD ax’ 

which includes a field-driven drift term and a gradient-driven diffusion term. 
In Eq. (1 l), v is the ion drift velocity, and D the ion diffusion coefficient. This 
transport model has been used quite extensively in glow discharge theory, e.g., 
see Ref. [ 18-201, and can be derived in a very straightforward manner from the 
conservation equations when certain simplifying assumptions are valid. 

The effects of space charge are accounted for by including Poisson’s equation, 

in the transport model where Ed is the permittivity of free space. To obtain a 
large-signal solution, the system of nonlinear coupled partial differential 
equations, including Eqs. (j)-(7), (10) and Poisson’s equation, must be solved 
self-consistently. In Section IV, a numerical method is presented for this purpose. 

III. THE COLLISION TERM AND TRANSPORT COEFFICIENTS 

For a collision-dominated transport model formulated by taking successive 
moments of the Boltzmann equation, the accuracy by which the model describes 
the true physical situation is largely dependent on the forms used to approximate 
the moments of the collision integral. The approach utilized in this study is to use 
first-order terms which suitably approximate the rates by which n, p, U, and w  are 
changing due to collision processes. In accordance with Ref. [21], a three-level 
model consisting of a ground state, an excited state with E, = 11.60 eV (representing 
the first four excited states Pz, Pi, Pi, and Pi with threshold energies 11.55, 11.62, 
11.74, and 11.83 eV, respectively), and an ion ground state with e2 = 15.76 eV. The 
total cross section data as a function energy has been obtained from standard sour- 
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ces [ 22, 231. Electronelectron, electron-ion, and electron-metastable collisions are 
neglected since at low pressures the degree of ionization is typically lop6 to 10e4 
and the degree of excitation about 1O-3 to lo-* in an argon rf glow discharge at 
13.56 MHz [3]. It is also reasonable to assume that attachment processes and 
three-body recombination (except at the electrode surfaces) can be neglected in an 
argon discharge. The problem of approximating the collision integral is thereby 
reduced to calculating tl, zV, and TV, as a function of the average electron energy and 
11 and D as a function of the electric field. 

To formulate data sets for electron collision parameters, the Boltzmann equation 
is solved under “uniform” dc conditions where the dc electric field is varied each 
time a solution is reached until a large enough number of solutions are available to 
approximate functional curves (with average energy as the independent axis.). The 
method of solution used for this purpose is a single particle Monte Carlo simulation 
described in detail in Ref. [S]. Under “uniform” conditions (i.e., all spatial and 
temporal gradients are zero), Eqs. (6) and (7) reduce to 

r,=llU 
qE 

and 

w-w0 
z 

M.=4UE’ 

(13) 

(14) 

closed form terms for the relaxation times [ 141. These effective relaxation times are 
analogous to those used by Blotekjaer [24] for electron transport in semiconduc- 
tors. The primary justification for using these forms is based on the assumption that 
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FIG. 1. Monte Carlo transport and rate data for electrons in argon at 300 mT: (a) Electron impact 
rate coefficients vs average electron energy. The solid line indicates ionization and the dashed line 
excitation. (b) Effective relaxation times vs average electron energy. The solid line indicates momentum 
and the dashed line energy. 
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the distribution function is approximately isotropic in velocity space (i.e., the 
thermal energy is much greater than the drift energy). 

The average velocity and average energy are direct results of the Monte Carlo 
simulation and o! is calculated by integrating the total ionization cross section times 
the velocity with the distribution function. For the data plotted in Figs. la and b, 
the dc electric field was varied from 1 to 500 v/cm for an electron in argon at 
300 mT. In the actual large signal computer program described later in this paper, 
these values are smoothed and stored in look-up tables for computational efficiency. 
Intermediate values between data points are determined by interpolation. Data 
curves for argon ion drift velocity and diffusivity at 300 mT as a function of the 
electric field using this method are presented in Ref. [S]. 

IV. THE NUMERICAL MODEL 

1V.A The Basic Scheme 

The transport model, i.e., Eqs. (5k(7), (lo), and (12), cannot be solved 
analytically without drawing on assumptions that are not valid under normal rf 
glow discharge operating conditions. With this in mind, a suitable alternative is to 
incorporate finite-difference numerical methods into a computer simulation. Hence, 
a numerical method must be implemented which is computationally accurate, 
stable, and efficient. Due to stability problems which occur as a result of source 
terms, relaxation terms, boundary conditions, and initial conditions, most com- 
monly used finite-difference numerical methods in fluid dynamics [25] which 
appear to be suitable for this purpose cannot be used. 

The primary stability problem arises in the numerical solution of the three 
equations governing electron transport. These coupled equations tend to oscillate 
close to the boundary points regardless of the numerical method used. Several 
numerical methods from fluid dynamics (for solving inviscid compressible flow 
equations) were unsuccessfully implemented. These include standard upwind dif- 
ferencing [25], Lax’s method [26], a two step Lax-Wendroff method [27] and 
MacCormack’s method [28]. The Lax-Wendroff and MacCormack methods 
reached a steady-flow solution when artificial explicit duffusion of the Longley type 
[29] was included. Since neither of these methods possess the transportive property 
[25], excessive wiggles in the solution propagated throughout the region of 
simulation, removing the effects of the sheath regions (i.e., to behave as capacitan- 
ces which give rise to displacement current in the terminal discharge charac- 
teristics). More of the details pertaining to this type of nonlinear instability will be 
discussed in Sectin 1V.C. 

The numerical method used for the electron transport equations is a modified 
form of upwind differencing utilizing a staggered space grid. This particular mesh 
system is depicted in Fig. 2, where certain dependent variables are defined on each 
set of space points. Throughout this section, the ion/electron densities will be 
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FIG. 2. Finite-different space-time diagram. 

defined on the points with space index j whereas all other dependent variables (i.e., 
u, w, and E) and parameters which are functions of these quantities will be defined 
on points with the space index i. The i and j space indices will be referred to by 
variable subscripts and the timestep index k by a variable superscript in the tinite- 
difference notation. 

Throughout the evolution of the finite-difference scheme used for the electron 
transport equations, the damping of certain nonlinear instabilities seemed to be the 
most elusive problem to solve. To obtain a usable solution, all advected terms 
require finite difference operators that are transportive and all terms that are in 
conservation form must be conservatively difference. A numerical scheme has been 
implemented which utilizes the staggered mesh system and the following finite- 
difference operators: 

1. An upwind difference operator originally developed for two-terminal semi- 
conductor device simulations [30] which is applied to the flux gradient term in the 
continuity equation. This operator is an offshoot of the second-order accurate 
“donor cell” method [ 3 1 ] and possesses both the conservative and the transportive 
properties. 

2. The “donor cell” method [ 311 or second form of upwind differencing [25] 
for the velocity gradient term in the velocity equation and the resistive loss (or 
flow-work) term in the energy equation. Although this operator is conservative, it 
can be applied to the velocity gradient term (which is in nonconservative form) 
by changing u(&/ax) to its equivalent form $(a(u’)/ax). This method is also 
transportive. 

3. A space-centered difference operator is applied to the pressure gradient 
term in the velocity equation. Since this operator is conservative but not trans- 
portive, pressure gradient effects are felt upstream as would be physically 
expected [25]. 

4. A standard upwind difference operator, [32] which is transportive but not 
conservative during velocity reversals, for the energy gradient term in the energy 
equation. 

Using the notation previously discussed, the finite-difference form of the electron 
transport model can be written as 
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nk+l-nk 
J ,-1 JNf+,-JNf 
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+ aknk 
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where At is the timestep and Ax is the spacestep. In Eq. (15), JN is the total 
electron current density defined on the ith point by 

(18) 

The ionization rate a is approximated with a first-order term and computed as a 
function of the average energy (using a look-up table for efficiency) on the i space 
points and then averaged between adjacent points to determine the value at the jth 
point. In Eq. (16) the quantity UT is determined by averaging between the values at 
points i and if 1; similarly, the quantity nf is determined by averaging between the 
values at points j and j- 1. The subscripts L and R are indexes (also used in 
Eq. (17)) determined by 

R=i UJ” >, 0 

=i+l u,” < 0 

L=i-1 ~ik_~>O 

= i ui”- * < 0. 

The pressure at the ith point is defined by 

P”2n) 
[ 
w+41,2 . 1 

The index I in Eq. (17) is equal to i when U; > 0 and i + 1 when U: c 0. Finally, the 
energy and momentum relaxation terms are computed using a first-order, advan- 
ced-time approximation as a function of the average energy (using table look-ups). 
It has been shown [14] that this method of approximation improves stability and 
eliminates a limitation on the timestep (i.e., that the timestep must be smaller than 
half of the smallest relaxation time). 

The finite-difference form of the ion drift-diffusion equation has already been dis- 
cussed in Ref. [S]. In brief, a two-step method using upwind differencing for the 
drift term and a fully implicit difference operator for the diffusion term has proven 
to be very successful. The first step, i.e., the explicit step, is identical to Eq. (15) with 
the exception that the current is the ion drift current rather than the total ion 
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current. The second or implicit step applies a tridiagonal matrix solver for 
numerical efficiency to the diffusion term. In finite-difference form, the ion “drift- 
diffusion” continuity equation becomes 

4 
p,” + ’ - p,” _ JP:, 1 - JP; _ JPD;:,’ - JPD; + ’ + clknk 

At - - Ax Ax I J’ (20) 

where the ion drift and diffusion currents are respectively given by 

and 

JPDf+‘= -40; 
pJkf’ -pi”:, 

2Ax ’ 

(21) 

(22) 

The ion drift velocity v and the ion diffusivity D are computed as functions of the 
electric field using table look-ups. 

The one-dimensional form of Poission’s equation is computed in a very 
straightforward manner using a forward difference to approximate the space 
differential given by 

(23) 

This relationship determines the relative electric field values at each i space point. 
The absolute values of the electric field must be determined by the boundary 
conditions which are discussed in the next section. 

1V.B. Initial and Boundary Conditions 

A system of partial nonlinear differential equations requires the accurate 
specification of the initial and the boundary conditions for a correct solution. In a 
finite-difference numerical model, this is further complicated by the introduction of 
certain destabilizing numerical artifacts even when the physical problem is suitably 
described. For the transport model outlined in Section IV.A, live independent sets 
of boundary conditions on n, u, W, p, and E or some dependent variables must be 
specified for time advancement. The initial conditions at t = 0 include the values of 
the live dependent variables as functions of distance. 

The boundary conditions at the nonemitting electrodes must include the effects of 
outflow and electrode charging. Moreover, in order to satisfy Gauss’s law at all 
times charge must be strictly conserved. For the electron transport quantities, n, U, 
and W, the boundary conditions are set on the electron current and the pressure. 
First, the slope of the electron pressure at the electrode is set to zero requiring the 
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slopes of the electron transport quantities to be independently set to zero. This type 
of Neumann boundary condition [25] is suitable for u and w  but it allows for elec- 
tron inflow (which does not physically occur when the electrodes are nonemitting). 
Therefore, this condition is modified by setting the electron current to zero when 
the velocity is in the inflow direction. Similarly, the boundary condition for the ion 
density is set so that no ion drift current can flow into the discharge. The slope of 
the ion density at the electrodes is set to zero so that there is no ion diffusion 
current at the electrodes. Mixed boundary conditions of this type are often referred 
to as Robbin’s boundary conditions [25]. 

The finite-difference form of Poisson’s equation (i.e., Eq. (23)) only determines 
the relative values of the electric field. The absolute values are determined by the 
boundary conditions which include the effects of an equivalent external circuit and 
the charge on the electrodes. The electrodes are assumed to be coated with a 
100 pm layer of an oxide with a relative dielectric coefficient K of 4.0. Subsequently, 
the relative field level E, in the insulating coating is calculated using the 
relationship between the surface charge and the normal electric fields [33] given by 

KE,- E=e, 
60 

(24) 

where ps is the surface charge density stored at each timestep. Once all relative field 
values have been computed, the absolute levels are determined using an equivalent 
external circuit of an rf power source and matching network. The circuit depicted 
in Fig. 3 is suitable for this purpose where it is asumed that an optimum match 
has been achieved. In brief, the circuit-discharge interaction at each timestep is 
computed in the following manner: 

1. The relative field is integrated across the discharge to determine the instan- 
taneous rf voltage. 

2. The total discharge instantaneous rf current I,,, is calculated using a 
discrete form of 

Ztot(t) =$ jaw ( JN,,, + JP,,, + E ; dx, 

where A is the discharge area. 

(25) 

FIG. 3. Equivalent external circuit for boundary condition. 
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3. The true discharge voltage is computed by using the value of I,,, and the 
stored values of the inductance current and the capacitance voltages from the 
previous timestep. 

4. The electric field is adjusted so that the true voltage equals the instan- 
tenous voltage. 

The proper specification of the initial conditions is of fundamental importance to 
the convergence exhibited by the numerical method described in this paper. When 
the rf power is below a certain level, the constraints on the initial conditions are less 
restrictive. In this case, the electron energy and the particle densities are set to 
spatially uniform levels; the space charge and the electron velocity are set to zero 
across the discharge; the terminal voltage is set to zero and no charge is assumed to 
reside on the electrodes. On the other hand, this type of initial condition is 
unsuitable once the rf power surpasses a certain level. One logical alternative then 
would be to use the values of all the dependent variables from a steady state 
solution at a lower rf power as a starting point for a higher power solution. 
Fortunately, a steady state solution for a particular set of input conditions can be 
obtained at a reasonable power level using the less restrictive conditions. This 
solution is then used as the starting point for higher power solutions and the 
process can be repeated if necessary. 

1V.C. Stability Considerations 

The development of nonlinear instabilities in the finite-difference forms of the 
electron transport equations poses a serious problem when calculations involving a 
large number of iterations are necessary (e.g., a steady state solution). MacCormack 
has identified a particular nonlinear instability arising from the loss of sign infor- 
mation in the velocity flux gradient term of the velocity transport equation [28]. In 
an rf glow discharge at 13.56 MHz, the average electron velocity reverses direction 
twice during each rf cycle in a nonlinear manner (i.e., the velocity at each 
meshpoint does not change sign during the same timestep). Therefore, a situation 
can occur whereby a quantity of negative momentum can be transported out of a 
meshpoint containing only positive momentum, resulting in the formation of 
undamped oscillations in the spatial velocity profile. The use of the “donor cell” 
method for the finite differencing of this term alleviates this problem. 

Another nonlinear instability in the electron transport finite-difference equations 
develops when the numerical boundary conditions are improperly specified. For 
this particular problem, the average energy is observed to become negative during 
velocity reversals at the second meshpoint from the electrode. Setting the electron 
pressure and current boundary conditions described in Section 1V.B forces the 
finite-difference equations to permit average energy outflow only as electrons are 
absorbed by the electrodes. Other choices of numerical boundary conditions have 
been observed to violate the physical situation. 

A linearized stability analysis based on the study of the amplification of Fourier 
components of the solution by the difference method [ 14, 25, 281 is not included 

5x1.77 1.5 



64 BARNES, COTLER, AND ELTA 

here since it does not predict any of the instabilities that develop. This type of 
analysis does however impose a limitation on the timestep equivalent to the 
Courant-Friedrichs-Lewy (CFL) condition for a compressible inviscid fluid [25]. 
In other words, there is a stability constraint on the speed at which a pressure 
disturbance can propagate (i.e., a pressure disturbance can propagate no more than 
one meshpoint per timestep). This is given by 

(26) 

and reduces to the incompressible form when the average velocity is replaced by the 
drift velocity and the pressure term is omitted [S]. 

The timestep is also limited by a space charge stability condition and an electric 
field stability condition. A space charge instability usually occurs when the electric 
field is low, the particle densities are high, and the space charge is almost neutral 
and uniform [4]. When solving the continuity equations numerically, it is assumed 
that the rate of change of net charge is constant during a timestep and follows the 
tangent line of a decaying exponential curve. To prevent the net charge from chang- 
ing sign during a timestep, the timestep must be less than the dielectric relaxation 
time, i.e., 

At 6 E,,/o, (27) 

where u is the conductivity. Similarly, a field instability usually occurs where there 
are large particle gradients, such as those encountered in the electrode sheaths. 
When this instability occurs, the net space charge accumulated during At will be so 
large as to make E overshoot its true value. This results in the development of 
undamped oscillations in subsequent timesteps. The timestep limitation which must 
be satisfied to eliminate this problem is also given by Eq. (27). 

1V.D. Large-Signal Simulation Results 

In order to obtain large-signal results, the external equivalent circuit values and 
the discharge parameters must first be specified. The circuit values are chosen so 
that the parallel tank circuit in Fig. 3 is resonant at 13.56 MHz. The blocking 
capacitance C, and the tank capacitance C, are set to 100 pF and the tank induc- 
tance L to 1.378 PH. Other combinations of L, C,, and C, are feasible but 
numerical stability and computational stability are sacrificed to some degree. It has 
been observed that increasing the capacitances increases the computation time 
necessary to reach a steady state, whereas decreasing the capacitances can cause the 
simulation to go unstable. The source resistance R, is arbitrarily set to 1 MQ to 
minimize its power dissipation. (The complete omission of R, can result in the 
development of numerical instabilities.) 

A steady state large-signal solution for an rf source current magnitude of 1A is 
illustrated in Figs. 4 and 5. In this particular case, the chamber pressure is 300 mT, 
the electrode radius is 10 cm and the electrode separation is 2 cm. The discharge is 
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time (ps) 

FIG. 4. Results from the large signal rf glow discharge simulation for argon at 13.56 MHz and 

300 mT: (a) terminal current (solid line), terminal voltage (uneven dashed line) and plasma region 
voltage (large dashed line); (b) cathode particle fluxes (solid line for electrons and uneven dashed line for 
ions). 

divided into 25 “cells” (i.e., this is equivalent to 25 points with index j and 26 points 
with index i). Fig. 4a illustrates the terminal current and voltage waveforms as a 
function of time. These are Fourier analyzed to obtain the steady state rf power dis- 
sipation and the impedance. In this particular case, the rf power dissipation is 
129.0 W and the impedance at 13.56 Mhz is 7.275 - ~29.52 Q. From the cathode 
particle fluxes depicted in Fig. 4b, the number of particles impinging on the cathode 
per unit time can be calculated. Moreover, averaging the velocity of all incident 
ions (to the cathode) during an rf cycle yields an average incident Ar + ion energy 
of 37.62 eV. By time-averaging the spatial voltage distribution, the average potential 
well which confines the electrons in the discharge is obtained (see Fig. 5). (The 
reason for the hollow in the center of the potential well will be discussed along with 
convergence criteria later in this section.) The instantaneous dependent variables 

FIG. 5. Time-averaged voltage and field profiles corresponding to simulated results in Fig. 4 (solid 
line for voltage and uneven dashed line for electric field). 



66 BARNES, COTLER, AND ELTA 

FIG. 6. Dependent variable spatial profiles plotted 32 times during the last simulated rf cycle: 
(a) electron density, (b) ion density, (c) electric field, (d) average electron energy, md (e) average elec- 
tron velocity. 
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FIG. 7. Particle current spatial profiles plotted 32 times during the last simulated rf cycle: 
(a) electron current and (b) ion current. 

can be examined throughout the rf cycle as shown in Figs. 6ax. The results in these 
figures corresponds to the second rf cycle in Fig. 4, i.e., t = 1.03 to t = 1.18 ps. The 
electron and ion particle currents are illustrated for the same time period in 
Figs. 7a, b. As expected, in the center of the discharge or “plasma” region the 
current is primarily carried by electrons; in the electrode sheath regions there is a 
significant ion current but most of the current is due to the displacement of the 
time-varying electric field. 

Using the data plotted in Fig. la, a metastable excitation rate (see Fig. 8a) is 
calculated for the same rf period as the ionization rate, depicted in Fig. 8b. (The 
excitation rate r, is the product of the excitation rate coeffkient and the electron 
density.) Using this rate data, a steady state calculation of the discharge radiation 
output is performed in an approximate manner by using a quasi-two-dimensional 

FIG. 8. Electron impact particle generation spatial profiles plotted 32 times during the last simulated 
rf cycle: (a) excitation rate and (b) ionization rate. 
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metastable balance equation which solves the metastable continuity equation along 
the axis including an approximate loss term due to radial diffusion. This is given by 

(28) 

where A4 is the metastable density, D, the metastable diffusion coefficient, A the 
radial diffusion length, and rClf the effective radiative lifetime. The diffusion coef- 
ficient is estimated to about 100 cm’/s by extrapolating the argon ion diffusion coef- 
ficient [S] to zero electric field and the diffusion length can be calculated using the 
expression A = R/2.405, where R is the reactor cylinder radius [35]. Finally, the 
effective radiative lifetime is calculated with the expression used in Ref. [21 J to be 
3.24 x low5 s. Using a tridiagonal solver to implicitly solve Eq. (28) for lo4 rf cycles, 
the halftone plot of the radiation output (i.e., Prad = ME,,+,) in Fig. 9 is generated. 
The radiation output is constant in time as expected since the radiative lifetime used 
is several orders of magnitude larger than the rf period. Furthermore, the regions of 
brightness correspond to those observed in experimental rf glow discharges [36]. 

The numerical model has been developed in order to achieve a large-signal steady 
state solution. The criteria for a steady state are twofold: 

1. The voltage and current waveforms are Fourier analyzed every two rf 
cycles. The rf power and impedance are then calculated at the fundamental (i.e., 
13.56 MHz) and checked against the values from the previous two rf cycles. When 
the percent difference is less than 5%, this criterion is satisfied. 

2. The net charge impinging on the cathode is checked during each rf cycle. 
For a steady state, the total number of electrons and ions striking the cathode 
during one complete rf cycle must differ by less than 1%. 

In the actual computer model, the impedance/power criterion is checked first; the 
net charge is examined once this condition has been satisfied. 
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FIG. 9. Halftone plot of the radiation output for an rf cycle. A sixteen level scale is used where the 
darkest regions correspond to 1.83 x lo’* and the lightest regions to 3.64x 10”evcm-js-‘. One rf 
period equals 73.7 ns. 
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Other more stringent convergence measures could be utilized but the criteria 
outlined in the previous paragraph are adopted since they are relatively 
straightforward to evaluate numerically and have been found to represent a point at 
which the dependent variables no longer vary significantly from one rf cycle to the 
next. One of the problems with these criteria is evident in Fig. 5 whereby the hollow 
in the middle of the time-averaged voltage profile indicates that ions are being 
directed into the center of the discharge and particle number is not being conserved. 
A more thorough examination reveals that there is a net (equal) flow of both elec- 
trons and ions as shown in the plot in Fig. 10 of the time-averaged particle currents. 
These currents have little effect on the particle density and other dependent quan- 
tities. If, on the contrary, there was a net space charge developing in some region as 
a result of these currents then more rigorous conditions for convergence would be 
necessary. These currents could be attributed to particle loss due to radial 
ambipolar diffusion or to volume recombination loss but these are not included in 
this study since it is felt they are second-order effects. For capacitively coupled rf 
glow discharges where the electrode separation is less than approximately half the 
electrode radius, it has been shown in previous work that radial ambipolar diffusion 
loss has no significant effect on particle densities [S]. 

The timestep advancement of this simulation is performed in a multistep manner 
to facilitate computational efficiency as well as satisfy the stability conditions (26) 
and (27). At the start of the simulation, a “global” timestep is set to the rf period 
divided by 64. Before updating any of the dependent variables, the CFL condition 
(26) is computed. The “global” timestep is then subdivided, if necessary, into “local” 
timesteps which satisfy the CFL condition. This process is then repeated every 
“local” timestep for the dielectric relaxation timestep constraint. As a result, the 
actual timestep used in the finite difference equations can be several orders of 
magnitude less than the original “global” timestep. The execution time for the 
results presented in Figs. 4-10 was approximately 30 h using FORTRAN 77 on an 
Apollo Domain Series 3000 workstation. 
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FIG. 10. Time-averaged particle currents corresponding to simulated results in Fig. 4 (solid line for 
electron current and uneven dashed line for ion current). 
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V. CONCLUDING REMARKS 

The motivation for the development of the numerical model described in this 
paper arises from the need to quantitatively understand the physical/chemical 
mechanisms in microelectronic plasma chemical processing. In particular, the 
energy-momentum electron transport model is used to facilitate the understanding 
of the nonequilibrium electron effects which other models [S, 61 are unable to 
predict due to their governing assumptions. The finite-difference formulation of the 
self-consistent rf glow discharge model (consisting of the continuity equations for 
electrons and ions, the energy and momentum conservation equations for electrons, 
and Poisson’s equation) poses a serious numerical stability problem. Its numerical 
complexity is further augmented by the need to preserve the transportive property 
for all advected quantities as well as maintain strict charge conservation to 
implicitly satisfy Gauss’s law. The resultant numerical scheme utilizes several linite- 
difference operators, a staggered spatial grid, and a method of subdividing the 
timestep to alleviate these problems. Future work by the authors involving rf glow 
discharge modeling will include a thorough comparison of this model with a quasi- 
static “drift-diffusion” model [S] to investigate nonequilibrium electron effects and 
the development of experiments to further examine the model’s validity. Moreover, 
the potential for utilizing a multi-group electron model [21] to include electron- 
electron and superelastic collisions will be investigated. 

APPENDIX: LIST OF SYMBOLS 

the single variable differential operator 
the gradient operator 
the particle distribution function 
the general particle vector velocity; later redefined as the ion drift 
velocity 
the external force exerted on a particle 
the electron rest mass 
the particle position 
the time 
the electron density 
the electron average velocity 
the electron average energy 
the electron pressure 
Boltzmann’s constant 
the electron temperature 
the electron impact ionization rate 
the electron effective momentum relaxation time 
the electron effective energy relaxation time 
the thermal energy associated with the neutrai gas reservoir 
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the ion average density 
the electric field 
the total ion current 
the electronic charge 
the ion diffusivity 
the one-dimensional spatial independent variable 
the timestep 
the space step 
the total electron current 
the ion drift current 
the ion diffusion current 
timestep superscript index 
spacestep subscript indexes 
the free space dielectric permittivity 
the relative dielectric coefficient 
the electric field level in the insulating coating of the electrodes 
the surface charge density on the electrodes 
the terminal discharge current 
the electrode area 
the electrode separation distance 
the particle conductivity 
the blocking capacitance 
the tank capacitance 
the tank inductance 
the power source current 
the metastable density 
the metastable diffusion coefficient 
the effective radiative lifetime 
the ith atomic energy level (or threshold) 
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