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A microcomputer based on-line bearing condition monitoring system was developed. 
Employing synchronised segmentation and parametric spectral comparisons, the system 
enabled on-line identification of defect sensitive resonances for an investigated bearing 
system at an early stage of damage. A matched filter was designed to keep track of the 
energy contributed by these resonances throughout the rest of bearing life. The magnitude 
of the energy was found to be well correlated with the development of bearing localised 
defects. It takes 38 sec for the identification of defect sensitive resonances and 7 sec for 
the matched filter to report each new assessment of bearing condition on a programmed 
PC-AT. 

1. INTRODUCTION 

Within  industry the ability to assess the extent of  beating damage has many uses. When 
the extent of  bearing damage is taken into account with other factors such as production 
schedule, spares availability etc., an optimal decision may be made when the bearing 
should be changed. Some signal processing techniques [1]-[8] were developed to detect 
the onset of  beating defects based on the identification of characteristic defect frequencies 
(Appendix A) or the observation about the changes from the normal signals. However,  
neither the characteristic defect frequencies nor the pattern of  the changes will consistently 
reflect the severity of  damage throughout the entire process of  beating damage [1]. 

The passing of  a rolling element upon a localised defect generates a wide band impulse. 
Particular resonances in the bearing system and nearby structure are excited more by the 
impulses resulting from damage than by normal operation of the machine or other sources 
of  excitation. They are denoted as "defect sensitive resonances". In a bearing system, 
either the enlargement of  defects or the increase in the number  of  them will result in the 
increase of  the vibration energy contributed by defect sensitive resonances. 

This paper  presents a newly developed scheme for the assessment of  the severity of  
beating damage and an on-line implementation of  the scheme. Employing synchronised 
segmentation and parametric spectral comparisons,  the scheme enables on-line iden- 
tification of  defect sensitive resonances for a given bearing system without having recourse 
to the beating's  historical data. Using the defect sensitive resonances as a template,  a 
matched filter designed to watch the variations of  energy contributed by the defect sensitive 
resonances is used to assess the condition of  the bearing throughout the rest of  its life. 
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During normal operation, the vibration of a bearing system is monitored by the pattern 
classification technique to detect the onset of bearing localised defects [9]. The detection 
of the onset of defects will trigger the synchronised segmentation on the signal of bearing. 
The synchronised segmentation will generate two subsequences between which defect 
sensitive resonances contribute different amounts of energy. Thus, defect sensitive reson- 
ances may be identified by the template learning machine which compares the difference 
in the energy of each resonance between these two subsequences. 

Bearings with simulated defects are monitored for changes in signals due to the 
development of damage. To provide a comparison, some of the state-of-the-art techniques 
and the proposed scheme are applied to assess the extent of the damage. Their effectiveness 
and efficiency are evaluated and compared. 

2. SYNCHRONISED SEGMENTATION 

It was found that one usually has no easy way of knowing the resonances of  a given 
bearing system, much less to say which of these are going to be excited by impulses 
generated by a damaged bearing [1]. One can either guess the band in which such a 
resonance will be or wait until a bearing gets damaged to identify the exact frequency 
of  such a resonance by comparing signals measured at different stages of damage. 

Neither of the two approaches will be useful for on-line applications for the following 
reasons: 

a. The guess may turn out to be wrong. There is no guarantee of a correct guess. 
b. Before one can identify any defect sensitive resonance through the com- 
parisons of bearing signals, the bearing has to be damaged at least once, which 
is a very significant limitation. 
c. Because signals have to be measured at different stages of bearing damage, 
it is possible that some of  the differences between them will have nothing to 
do with the damage of the bearing. 

In order to enable the on-line identification of  defect sensitive resonances, a technique 
denoted as "synchronised segmentation" and a template learning machine were developed 
to identify defect sensitive resonances in a "single shot" manner. The segmentation 
technique is able to generate two subsequences from a single piece of signal measured 
at a bearing's early stage of damage. Simply comparing these two subsequences by using 
the template learning machine will reveal the defect sensitive resonances. Thus, the 
identification of  defect sensitive resonances may be carded out without having recourse 
to historical records of  bearing signals. 

At the initial stage of  bearing damage, an impulse train at one of the characteristic 
defect frequencies excites the bearing system's resonances to generate a series of  regularly 
spaced vibration bursts (Fig. l(a)). A sequence starting at the beginning of any one of  
the bursts ending right before the beginning of the next one is denoted as a "burst 
sequence" (Fig. l(a)). 

The synchronised segmentation technique works as follows. After the detection of  the 
onset of  defects, every vibration burst is highlighted by the short-time signal processing 
techniques (Appendix B). Note how the peaks in the short-time energy function reflect 
the vibration bursts in the bearing signal (Fig. l(b)). Because damage related bursts 
should occur at the rate of  one of the characteristic defect frequencies, a spurious burst 
may be easily rejected if it does not occur at the right moment. Then, every defect related 
burst sequence is segmented out of  the bearing signal and cut into two halves. The first 
halves of  these burst sequences are combined into subsequence one. Subsequence two is 
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Figure 1. Subsequence formation by synchronised segmentation. (a) The bearing vibration. (b) Short-time 
energy function. (c) The first subsequence. (d) The second subsequence. 

formed in a similar manner from the second halves of the burst sequences. Figures l(c) 
and l(d) are subsequences formed from the bearing signal displayed in Fig. l(a). 

It is evident that a defect sensitive resonance will have a larger amplitude at the 
beginning of  a burst sequence than at the end of it. Therefore, vibrational energy 
contributed by any defect sensitive resonance in subsequence one will be significantly 
higher than that in subsequence two. 

3. IDENTIFICATION FOR DEFECT SENSITIVE RESONANCES 
VIA A TEMPLATE LEARNING MACHINE 

Defect sensitive resonances are identified in the following way. First, every recognisable 
resonance in both subsequences is identified. Among them, a resonance contributing 
significantly more energy to subsequence one than to subsequence two is regarded as a 
defect sensitive resonance. A template learning machine employing Dynamic Data System 
(DDS) methodology was designed to carry out the above stated process. The DDS 
methodology is outlined first. 

3.1. DYNAMIC DATA SYSTEM METHODOLOGY (DDS) 

The DDS is a modeling technique which uses the operating data in the form of  a time 
series to develop difference/differential equations [ 10]. If  a physical system under investi- 
gation can be approximately represented by a linear differential equation, then it is 
possible to fit a difference equation, called an Autoregressive Moving Average (ARMA) 
model, to the uniformly sampled operating data from the system. For an nth order 
continuous model of the system, it can be mathematically shown that there is an 
ARMA(n, n - 1) model in discrete form as 

X ,  - d ~ l X , - i  . . . . .  ~ , x , _ ,  = a ,  - 0 1 a , - 1  . . . . .  O , - l a , - , + l  (1) 

where X, is the time series, O, are the moving average parameters, a, are the residuals 
with NID (0, tr 2) and ~, are the autoregressive parameters. 

To estimate the modal parameters, O,'s and O,'s from a given series of  observations, a 
sequential modeling strategy is employed. It involves fitting models of  higher order using 
the method of  non-linear least squares which minimises the sum of  squares of  the residuals, 
a,, until a satisfactorily adequate model is obtained. A detailed illustration of this 
procedure is given in ref. [10]. The adequate model contains pertinent information 
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available from the system. The system's frequency spectrum can be estimated from the 
model's parameters by the transformation as 

2 ]e~.-~),~, _ Ole(n-2)i ,o _ 02e(,,-2)i~o _ . . . .  On_l[2 
f(to) o'. 

=2--7 le"'°' - cb,e("-')'~ - 4~2e("-2)'~" - . . . .  ~b,[ 2 (2) 

where to is the frequency in radians. 
The fitted model ARMA(n,  n -  1) has its eigen-equation 

A" - ~ ~bjA "-' = 0 (3) 
j - 1  

and 
n - I  

v"-' - Y~ Ojv "-1 j = 0 (4) 
j = l  

where ;t and v are characteristic roots of  the autoregressive part and the moving average 
part respectively. 

The complex conjugate characteristic roots (A, A*) represent the dynamic models 
generated by vibration sources of  the underlying system. The total energy of  the vibration 
signal can be expressed by 

Vat (x,) = To (5) 

1 
yo = ~ L g,gj o 2 -  (6) 

i=n j=l 1 -AiAj 
n - I  / 

& = 1-[ (1 - VkAf l) leI (1 --AkAj-1), (7) 
k=l  k = l ( k # j )  

Each term in equation (6) represents the contribution due to the mode (Ai, A*) to the 
total energy. The percentage, in which each mode contributes to yo, is called dispersion 
P,, 

L gi&tr~ 1 
i=~ 1 - -  AiA j 

P~ =° 100%. (8) 
2/0 

The damping ratio ¢ and natural frequency f .  of  the corresponding mode can be 
obtained as 

~ = In ( A A * ) / ~ / [ l n  (),A*)]2 + 4 [ c o s - 1 ( ~ )  ] 2 (9) 

= ~  ~/[ ln (AA,)]2+4 cos_, ~ +__~h, 2 

The S-plane characteristic root pair of  this mode may be easily computed from the 
= -2~toL relat ionship: /z/x* = to. and t* + ~ *  

To summarise, the natural frequency, damping ratio and energy dispersion of  each 
underlying system's resonance and a parametric spectrum of the operation data can be 
developed directly from the operational data through the use of  DDS methodology. 

3.2. TEMPLATE LEARNING MACHINE 

The schematic block diagram of  the learning machine is shown in Fig. 2. Subsequences 
one and two are processed independently by DDS methodology so that every resonance 
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Figure 2. Block diagram of  template learning machine. 

as well as its energy dispersion are estimated. Thus, one will obtain one set of roots and 
their corresponding energy from each subsequence. 

The minimum distance classifier identifies two pairs of roots that represent the same 
system mode from the first and second set of  roots respectively. The difference of the 
energy dispersion of this mode between two subsequences is computed by the comparator. 
Resonances with large energy differences are regarded as the defect sensitive resonances. 

3.3. MINIMUM DISTANCE CLASSIFIER 

Representing the same system mode, two pairs of  roots estimated from two subsequences 
respectively will not have identical values. This is due to the inexactness of  the ARMA 
parameter estimation procedure. Given two sets of roots, one will have to make stochastic 
decisions about which two pairs of  roots are most likely from the same system's mode. 
A minimum distance classifier employing Bayes' decision theory was designed to minimise 
the probability of making a wrong decision. 

TO facilitate the following illustration, a hypothetical distribution of  characteristic roots 
is given in Fig. 3. Since the distribution is always symmetric to the real axis, only the 
upper half  plane including the real axis is shown. Clearly, only one characteristic root 
will appear in this portion of  the S-plane for each resonance. Roots estimated from 
subsequence two are indicated by circles and labeled in lowercase characters. Roots 
estimated from subsequence one are indicated by square boxes and labeled by numbers. 
Energy dispersion values are given near each root. 

The two categories Bayes' decision rule for minimising the probability of  decision error 
is: 

Decide to~ if P ( to t ly )>  P(to2[y); otherwise decide to2. 

where y represents the observed feature vector and to = {tot, to2} represents the set of  

Imaqmary 

® 
® 

m, ® 
m® 
9 

~- Real 

Figure 3. The distribution of  roots in a complex plane. 
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possible categories. According to the Bayes rule: 

p(yl %)P(wj) 
p((oj fy) - 

P(Y) 
(11) 

where 

P(Y) = ~ P(Yl oJj)P(~;). (12) 
j = l  

An equivalent decision rule by applying the Bayes rule will be: 

Decide to~ if p(y] wOP(tOl) > p(y] to2)P(w2); otherwise decide w2. 

A discriminant function derived from this theory is defined as: 

d,(y) = log [P(Yl oJ,)e(oJ,)]. (13) 

Then, the Bayes decision rule becomes: 

Decide class i if d~ > dj. 

Now, if one assumes: 
(a) densities p(y] w~) are of  multivariate normal distribution. Let 

P(Yl w,) ~ N(Ix,, ~,).  

where I~ is the distribution mean vector and I£ is the distribution covariance matrix. 
(b) each component in the feature vector y is independent, and each has the same 

variance (~ = o,2I, where I is the identity matrix), and 
(c) priori probabilities P(w~) are the same for all classes. 
Then the discriminant function becomes: 

Ily- ,lb 
d,(y) = 2tr2 (14) 

where [[. [] is the Euclidean norm. 
In this case, the optimum decision rule can be stated as follows: To classify a feature 

vector y into one of the n categories, one measures the Euclidean distance [[Y-I~il[ from 
y to each of  the n mean vectors, and then classifies to the category of  the nearest mean. 
Such a classifier is called a minimum distance classifier. 

The above derived relationship, equation (14) is applied in a straightforward manner. 
The feature vector, y, is the co-ordinate pair of the real and imaginary part of a characteris- 
tic root. The set of  possible categories for a root in the first set of  characteristic roots is 
the complete second set of characteristic roots. Thus, the discriminant function is the 
distance measured in the S-plane from this root to any root in the second set. 

The procedure of root classifying is illustrated by using Fig. 3. Since a resonance with 
higher energy dispersion should be given priority, the root classifying is performed in 
descending order of energy dispersion. Starting with the root which has the largest energy 
dispersion value in the first set of characteristic roots (root 2 in this case), the minimum 
distance classifier classifies it into the nearest root (root b) in the second set. Then, both 
of them are dropped from both sets to keep them from being involved in further 
classification procedure. The same procedure continues with the remaining roots until 
all the roots in the first set are successfully classified. 
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Figure 4. Block diagram of matched filter. 

4. DAMAGE SEVERITY ASSESSMENT VIA MATCHED FILTERING 

Once the defect sensitive resonances are identified, total energy contributed by them 
is a good indication about the extent of damage. For the purpose of  estimating the energy 
contributed by defect sensitive resonances is bearing signals, an efficient matched filter 
technique is used based on the known defect sensitive resonances. 

The block diagram of  the matched filter is presented in Fig. 4. The defect sensitive 
resonances are input from a template data file in the form of characteristic roots and 
corresponding energy dispersion values. An adequate model of the incoming bearing 
signal is estimated by DDS methodology. The S-domain mapping of  model's AR charac- 
teristic roots and their energy dispersion are computed. Among these characteristic roots, 
the minimum distance classifier considers the one with the shortest distance from a defect 
sensitive resonance to be generated by the same vibration mode behind that defect sensitive 
resonance. 

The vibrational energy associated with such a root is calculated by multiplying its 
energy dispersion by the square root of the bearing signal's variance. The sum of  energy 
contributed by all of them is used as a severity index of  the bearing damage. 

5. ON-LINE BEARING CONDITION MONITORING SYSTEM 

5.1. SYSTEM ORGANISATION 

In the on-line implementation, there are a data acquisition stage and a data processing 
stage. The data acquisition stage includes four pieces of hardware: (a) an accelerometer, 
(b) a charge amplifier, (c) a band pass filter, and (d) an analog to digital (A/D) converter. 
Also, there are four functional units in the data processing stage: (a) the defect detec- 
tion/diagnosis unit, (b) the unit of synchronised segmentation, (c) the template learning 
machine, and (d) the matched filter. The defect detection/diagnosis unit is responsible 
for detecting the onset of  localised defects [9]. The other three units have been discussed 
in sections 2, 3 and 4 of  this paper respectively. Figure 5 is the block diagram which 
illustrates the organisation of the system. 

In the center of the system, a supervisor is responsible for the proper logic sequence 
of  system operation, the control of the data flow between each functional unit and the 
global data base, and the management of the global data base. 

The use of  a global data base implemented on the mass storage equipment of the 
computer system facilitates the exchange of  information among the data acquisition stage, 
the four functional units of the data processing stage, and the system's interface. There 
are two more advantages for using such a data base, namely (a) not all of  the data have 
to reside in the computer 's memory simultaneously, (b) the data base can be used to 
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Figure 5. Block diagram representation of on-line bearing monitoring system. 

preserve short-term data prior to the shutdown of the monitored system or monitoring 
system itself. 

5.2. SYSTEM OPERATION 

Upon receiving the necessary information from a human operator (e.g. bearing 
geometry), the supervisor activates the A / D  converter. The data supplied by the A / D  
converter are formulated into records and written on to a general purpose data file. 

The data are first processed by the defect detection/diagnosis unit. The process of  data 
measuring and processing will be continuously carried out until the detection and diagnosis 
of  any localised defect. In the case of such an event, a warning message will be displayed 
on the CRT to alert the operator. Following this, two subsequences are generated by 
synchronised segmentation and stored in the subsequence data files. 

With these on-line generated subsequences, the template learning machine identifies 
defect sensitive resonances and writes them into a template data file. Thus, the defect 
sensitive resonances become available for the matched filter. 

The matched filter then keeps track of the vibration energy contributed by defect 
sensitive resonances and outputs it as the severity index for bearing damage periodically. 

6. E X P E R I M E N T A L  SET-UP A N D  RESULTS 

6.1. EXPERIMENTAL SET-UP 

The schematic diagram of the experimental set-up which consists o f  a spindle driven 
by an AC motor and a mechanical platform is shown in Fig.  6. The mechanical platform 

EL,, 
r- 

ii 
Accele r o m e t ~  l 

Spindle 
' /  "1 I~echonica, piot;orm 

ToNe ~ I 

Figure 6. Schematic diagram of experimental set-up. 
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enables the adjustment for the following: the thrust load, the angular misalignment, and 
the position of  the center of  the bearing. The cup and cone of a taper roller bearing under 
test are mounted on the platform and the spindle respectively. The number and location 
of defects imposed on the tested bearings by an electrical discharge machine included 
the following: (1) single outer-race defect, (2) single roller defect, (3) both single roller 
and outer-race defect, (4) three outer-race defects, and (5) six outer-race defects. The 
size of  the defects is 60/1000 in. in diameter by 5/1000 in. in depth which is typical [ 11]. 
General purpose grease was applied to each of the bearings for lubrication. 

A PCB 303A02 accelerometer was mounted on the outer surface of  the bearing housing 
to pick up its vibrations in the radial direction. These vibrations are bandpass filtered 
(5-25k) and digitised before they are sent to the signal processing computer (a PC-AT). 

6.2. R E S U L T S  O F  D E F E C T  S E N S I T I V E  R E S O N A N C E  I D E N T I F I C A T I O N  

The ability to identify defect sensitive resonances of a given bearing system was tested 
by experiments carried out on the experimental set-up using a bearing with an outer-race 
defect and a bearing with a roller defect. 

AR(20) models were used to implement the template learning machine. Table l(a) and 
l(b) list the three strongest resonances found in the signals. The defect sensitive resonance 
is assumed to be the resonance that has the largest difference, P1 - P2, in energy dispersion 
value between two subs equences (P  1 and P2 denote the energy dispersion of the resonance 
estimated from subsequences 1 and 2 respectively). It can be seen from Table l(a) that 
no matter how the rotational speed or the load were varied, the resonance at approximately 
21-5 kHz was consistently identified as the defect sensitive resonance by the template 
learning machine for the outer-race damaged bearing. Similarly, the resonance at 10.5 kHz 
was identified as the defect sensitive resonance for the roller damaged bearing (Table l(b)). 

6.3. D A T A  P R O C E S S I N G  R E S U L T S  O F  M A T C H E D  F I L T E R I N G  

The matched filter was designed to compute the energy (not energy dispersion) con- 
tributed by defect sensitive resonances in bearing signals. Bearing signals can be considered 
to consist of two components: one related to defect sensitive resonances, the desired 
"signal", and the other from all other sources, the unwanted "noise". Using the template 
(a defect sensitive resonance) extracted by the template learning machine, the matched 
filter recovers the "signal" component from bearing signals and estimates the vibration 
energy contributed by it. 

The output of the matched filter, the energy contributed by the defect sensitive resonance 
in the vibration of damaged bearings, is plotted against the number of  outer-race defects 
in Fig. 7(a). The energy is estimated by multiplying the square root of the sum of  square 
of  a vibration sequence and the dispersion, P, of  the resonance. We adopted the absolute 
energy instead of the dimensionless energy dispersion, P, because the dispersion of  a 
defect sensitive resonance may be affected by the change of the strength of  other resonances 
that have nothing to do with the damage. It is the trend of  the absolute energy contributed 
by a defect sensitive resonance which reflects the condition of  a bearing. 

Three different levels of thrust load were applied to all the test bearings. Each curve 
presents the trend of  the vibration energy contributed by the defect sensitive resonance 
under one of the loading conditions. Regardless of  the loading conditions, all the curves 
indicate monotonic up-hill trends as the number of outer-race defects increases. 

In contrast to the matched filtering scheme, the trends displayed by state-of-the-art 
techniques like peak to peak, variance, crest factor, kurtosis and HFRT techniques are 
not able to fully reflect the real condition of  the bearing (Fig. 7(b)-(f)).  Generally speaking, 
peak to peak values or variance values of  bandpassed bearing signals do increase as the 
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TABLE 1 

Defect sensitive resonance identified by the template learning machine 

( a ) Outer-race damaged bearing 

Natural Natural 
Thrust frequency P1 P2 P1 - P2 frequency 

r/min load (Hz) (%) (%) (%) (Hz) 

1 2038 Small 21236 24-36 11.25 13.11 18545 
2 2038  Moderate 21489 20.28 6.42 13-86 18583 
3 1804  Moderate 21579 29.15 7.9 21.25 18480 
4 2030 Large 21794 17-36 9.44 7.92 18501 
5 2172 Large 21211 14.38 1.74 12.64 18336 

Natural 
P1 P2 PI - P2 frequency P1 P2 P1 - P2 

(%) (%) (%) (Hz) (%) (%) (%) 

i 17.33 16.72 0.61 10300 21.64 16.24 5.40 
2 29.21 27.7 1.51 10235 14.52 11.0 3.52 
3 31.62 35.38 -3.76 10277 7.88 19.41 -11.53 
4 26.01 20.34 5.67 10610 6.12 12.98 -6.86 
5 5.15 3.4 1.75 10046 7.51 5.51 2.00 

( b ) Roller damaged bearing 

Natural Natural 
Thrust frequency P1 P2 P1 - P2 frequency 

r/min load (Hz) (%) (%) (%) (Hz) 

1 2032 Small 21546 15'26 7'53 7"73 18284 
2 2032  Moderate 21518 8.18 8.04 0.14 18431 
3 2032 Large 21949 12.01 10.60 1.41 18420 

Natural 
P1 P2 P1 - P2 frequency P1 P2 P1 - P2 

(%) (%) (%) (Hz) (%) (%) (%) 

1 20.57 28,91 -8.34 10217 31"86 8"99 22.87 
2 10.45 9.27 1"18 10523 22"60 12"16 10.44 
3 25"6 25.2 0"4 10404 21"5 13"19 8.31 

number of defects increases. However, neither of them was monotonic under all three 
loading conditions. Both crest factor and kurtosis performed very poorly in reflecting the 
extent of  damage. The performance of HFRT is better than the crest factor analysis and 
the kurtosis analysis but worse than the variance and peak to peak value. 

Due to the complexity of the non-l inear least square algorithm required by the DDS 
model estimation, fixed ordered AR approximat ion was used instead of  the ARMA(n,  n - 
1) model in the on-line implementat ion of the proposed scheme. The approximat ion 
simplifies the implementat ion of both template learning machine and matched filter and 
reduces a great deal of data processing time. However, the best possible performance of 
the matched filter and the template learning machine was sacrificed. 

Both the matched filter and the template learning machine were implemented using 
AR(20) models. In order  to probe the effect of  this approximation,  we carry out matched 
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Figure 7. Damage severity index. (a) Matched filtering. (b) Peak to peak. (c) Variance. (d) Crest factor. (e) 
Kurtosis. (f) HFRT. [~, Small thrust loads; 0, moderate thrust loads; I ,  large thrust loads. 

filtering on a signal to which increasing amounts of  random noise are added. The 
benchmark used was the simulated response of a single degree-of-freedom system subjec- 
ted to white noise excitation obscured by random noise. The natural frequency and 
damping ratio of  the system are 50 rad/sec  and 0.01. 

Some quantitative results of  the matched filter acting on the benchmark signals are 
shown in Table 2. In all cases, ARMA(4, 3) were found to be adequate for modeling the 
contaminated signals. Generally speaking, the signal can be recovered with good accuracy 
before the signal to noise (S /N)  ratio is dropped to - 2 0  dB. However, the lower the S / N  
ratio the bigger the error of  signal recovery. Note that the error in the estimation of  
damping ratio is more sensitive to the noise contamination. The result of  using AR(4) 
models in the matched filter acting on the benchmark signals are also shown in Table 2. 
The amount  of  the degradation is noticeable. 

TABLE 2 

The effect of  S~ N ratio upon matched filtering 

Matched filtering 

ARMA(4, 3) AR(4) approximation 
Signal/noise 

ratio(dB) to (rad/sec) ~ o) (rad/sec) 

oo 49.98 0-0083 49-61 0.0099 
1 50.78 0.015 48-49 0.083 

-10 50.39 0-0274 47.99 0"2 
-20 47.81 0.37 51-25 0.44 

The natural frequency and damping ratio of the system are 50 tad/see and 0-01. 
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The on-line implementation of the ARMA model estimation will become feasible as 
emerging high performance microprocessors and computer  algorithms specially tailored 
for the DDS models become available. Once this is achieved, the condition of the bearing 
will be assessed on-line more precisely by the matched filter. I f  a matched filter is expected 
to recover signals at even lower S /N  ratio (e.g. < - 2 0  dB), one will have to employ more 
advanced modeling strategies such as non-linear DDS[12]. 

7. CONCLUSIONS 

1. A self-learning scheme for in-process identification of defect sensitive resonances 
was developed to identify on-line the system dependent  defect sensitive resonances for 
a bearing system. This scheme is (a) able to identify the bearing defect sensitive resonances 
without human intervention, and (b) does not need any historic records of  the investigated 
bearing system. 

2. The matched filter has proven to be an effective on-line bearing condition assessing 
scheme. Compared  with the other existing bearing condition monitoring techniques, the 
matched filter (a) gives a clearly increasing trend as the number  of  defects increases, and 
(b) may be used for recovering signals buried in noise. 

3. The performance of both the template learning machine and the matched filter can 
be improved further once the on-line ARMA modeling become available. 

4. The designed template learning machine and matched filter can also be applied to 
any computerised signal processing system that is required to carry out spectrum com- 
parisons and template matching. 

5. An on-line bearing condition monitoring system was integrated based upon the 
developed schemes. 
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APPENDIX A: CHARACTERISTIC DEFECT FREQUENCIES 

During the bearing operation, impulses are generated from the rolling element-race 
way contacts. At the initial stage of bearing damage, each defect in the main bearing 
elements (inner-race, roller or outer-race) has a characteristic frequency at which impulses 
are generated (J~,,f~o and for). They are denoted as characteristic defect frequencies. 

n /1 BD io,=Ti, 
n [ BD 

f~, = ~ f , [  1 + ~--~ cos (f l ))  

BD cos (/3)) 
2 

\ B D ]  

(A1) 

(A2) 

(A3) 

wherefo, is the characteristic defect frequency for defect on outer-race; f~, is the characteris- 
tic defect frequency for defect on inner-race; f,o is the characteristic defect frequency for 
defect on roller; BD is the roller diameter; PD is the bearing pitch diameter; f ,  is the 
bearing rotating speed; fl is the contact angle between race and ball. 

APPENDIX B: SHORT-TIME SIGNAL PROCESSING TECHNIQUES 

There are a variety of  "short-time" processing methods in which short segments of  a 
bearing signal are isolated and processed as if they were short segments from a sustained 
bearing vibration signal with fixed properties. This is repeated periodically as often as 
desired. Such processing produces a new time-dependent sequence which can serve as a 
representation of the vibration signal. 

The short-time energy function of a signal is defined as 

En = ~ x 2 ( m ) w ( n - m )  ( a l )  
m ~ - o o  

where w(n)= 1 if 0 ~  < n ~  N - l , = 0  otherwise. Other short-time signal processing 
techniques include short-time average zero crossing rate, median smoothing, short-time 
Fourier analysis, and short-time autocorrelation [13]-[15]. 


