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We point out that the anomalous U(1)’s arising frequently in nonstandard embeddings of orbifold compactification 1s the
needed Peccei—-Quinn symmetry which can be broken at the intermediate scale We show this 1n an orbifold model with the
mimmal gauge group SU(3)®SU (2)@U(1)"

1. Introduction

Recent four-dimensional string theories [ 1-4] seem to contain a phenomenoclogically satisfactory supersym-
metric standard model In particular, the orbifold compactification with Wilson lines [5] 1s simple enough to
pursue toward a supersymmetric standard model Indeed, chiral supersymmetric models with gauge group
SU((3)®SU(2)®U(1)"® (hidden sector nonabelian gauge groups ) have been obtained [6] Further study on
three-generation models were obtained, but with extra unbroken hidden-sector nonabelian gauge groups [ 7]

Obviously, there are a few obstacles to overcome 1n this type of compactification as discussed by Casas et al
[18] Among these problems, the most serious one seems to be the Yukawa coupling problem

In this paper, we discuss the strong CP problem 1n these orbifold compactifications ¥' Even though the orbi-
fold models have not produced a realistic model so far, the strong CP problem can be attacked now This 1s
because we know how to calculate the U (1) charges of the various U(1)’s arising in these compactifications

Another byproduct of this investigation is the construction of a three-generation SU(3)®SU(2)®
U((1),®U(1)"®U(1), model which 1s by far the simplest one 1n this category It does not include any extra
unbroken nonabelian gauge group so that there would not appear the difficulty of the two-6 problem and any
assumption on the condensation of fermions transforming nontrivially under the additional unbroken nonabe-
han gauge group to understand the strong CP problem

The strong CP problem 1n superstring models has been discussed previously [9,11-13] The discussion relies
on the antisymmetric tensor field B,,, (M,N=1,2, ,10) In any compactification schemes, B, (u.v=1, ,4)
plays the role of an (model-independent) axion Depending on the compactification schemes, B,,,, (m,n=35, ,10)
can be an (model-dependent) axion or not However, the world-sheet instantons on some Calabi-Yau space
compactifications remove B,,,, from the light particle spectrum, excluding 1t from solving the strong CP problem
[13] Also, the decay constant of the model-independent axion B, 1s greater than 10'> GeV, which 1s not cos-
mologically favorable Thus the solution of the strong CP problem is not found 1n superstring models 1n the form
originally concerved [9] There may arise approximate and acceptable global symmetries [ 14} which may solve
the strong CP problem as studied in ref [15]

There 15 one important aspect 1n the whole discussion This 1s the nonlinearly realized *t Hooft mechanism

' On leave of absence from Department of Physics, Seoul National University, Seoul 151-742, Korea
*! For the Calabi-Yau space compactifications, 1t has been studied previousty [9] The D=10, N=1 field theory study can be found in
ref [10]
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[16] The first example 1n the literature appeared 1n the monopole compactification of Witten [17,9] Here, we
present the second example It has been known previously [9,17], but the present study of U(1) charges make
1t possible to figure out to see 1ts realization The essence 1s the following In some nonstandard orbifold com-
pactifications, one encounters an anomalous U (1) gauge group, which has been noticed before [18,6] This
anomalous U (1) gauge boson obtains a mass through the Green-Schwarz term [18,6] Then, there results a
global symmetry below the compactification scale which we interpret as the Peccel-Quinn symmetry

2. Model building with orbifolds

Model building on orbifold 1s well known by now [1-8,19,20] Here, we use the notation given n refs [5-
8] Our model employs the phenomenologically desirable Z, orbifold [3] It needs a shift vector v’ and Wilson
lines @/ where 1=1,2, 6andI=1,2, ,16 In fact, there are only three independent Wilson lines

a{=all+la l=1>3a5’ (1)

because a rotation by 27/3 relates two SU(3) lattice vectors The Z; orbifold has 27 fixed points These v’ and
a! must satisfy the modular invariance condition

3(v'+nal)*=2m, n,=0,*1, meZ (2)

There are two types of closed strings, untwisted and twisted Untwisted strings are closed on tor1 Twisted
strings propagate around one of the fixed points Thus, there are twenty-seven twisted sectors We denote the
twisting 1n the positive direction as v’ £a!/ +  and their CPT conjugatesas — (v'+al+ ) We have the follow-
1ng constraints for massless modes

gauge multiplet (untwisted sector)

p*=2, p'v'=integer, p’a/=1nteger, foralls, (3a,b,c)
matter from untwisted sector

p?=2, pv'=1 modinteger, p’a!=1integer, foralls, (4a,b,c)
matter from twisted sector

(p’+v'+ )*=%, formuluphcty=1, (p’+v'+ )>=3, for multiplicity=3 (5a,b)

Without any nonvanishing a,, there 1s only one kind of twisting (v’) and hence twenty-seven fixed points are
identical With one nonvanishing a, (e g a’ =a% #0) twisting 1s grouped 1nto three (v, v'+af, and v'—ay)
and hence twenty-seven fixed points are divided 1nto three groups with nine 1dentical copies 1n each group The
model we present here employs three nonvanishing @, (a} =a}, al =a}, ai=al), and hence all twenty-seven
fixed points are distinguished

3 The model and U(1) charges

We take the embedding
@)=(4153041) (341000443), (al)=(34434000)(00000300),
(a})=(00000003%) (41120004%), (af)=(0000000%) (03400000) (6)

It can be easily checked that the modular invanance conditton (2) 1s satisfied
The untwisted sector gives the gauge bosons and the gauginos
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p=%(1,-1,0,0,0,0,0,0)(0,0,0,0,0,0,0,0), p=%(0,0,0,1,1,0,0,0)(0,0,0,0,0,0,0,0),
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where the underlining of the numbers means that all permutations are included These roots correspond to

SU3)®SU(2)®U(1)*®@[U(1)®] (7)
The matter fields from the untwisted sector (UT) are
r=(1,0,0,1,0,0,0,0)(0,0,0,0,0,0,0,0), p=(1,0,0,0,-1,0,0,0)(0,0,0,0,0,0,0,0), (8a)
plus 3 X 8 =24 singlets The representation (8a) corresponds to
3(3%,2) (8b)
under SU(3)®SU(2)
Twenty-seven twisted sectors are denoted as
TT=v, TNTl=v+a,, TNT2=v—a,,
TNT3=v+a;, TNT4=v—-as, TNTS5=v+as,
TNT6=v—-as;, TNT7 =v+a, +as, TNT8=v+a, —as;,
TNT9=v—a, +a;, TNTI10=v—a, —a;, TNTIll=v+a, +as,
TNTI12=v+a, —as, TNT13=v—a, +as;, TNT14=v—a, ~as,
TNTI5=v+a;+as, TNT16=v+a;—as;, TNT17=v—a; +as,
TNT18=v—a; —as, TNT19=v+4a,+as;+as, TNT20=v+a, +as;—as,
TNT21=v+a, —a;+as, TNT22=v+a,—-a;—as, TNT23=v-a,+a;+as,
TNT24=v—a, +a; —as, TNT25=v—a,—as+as, TNT26=v—a,—~a;—a; (9)
For example, TNTS8 contains the twisting wrapped with Wilson lines
(V+al—af)=(3, 1L 1,1,0,4, =5)(0.0, -4 =30, L. ) (10)
With (10), the following (p’) satisfieseq (5a),
(rH=(-1,-1,0,-1,-1,0,0,0)(0,0,0,1,0, -1,0,0) , (11)

which 1s (3*, 1) representation under SU(3)®SU(2) In this way all the massless matter fields are obtained
Putting the contributions from all the sectors, we obtain

3{(3,2)+2(3%, 1)+ (1,2)+1}+12(1,2)+216-1=285,

(12)

where we have taken the opposite chiralities of the untwisted and twisted sectors This model contains three
chiral fermion generations, 12 Higgs doublets and 216 singlets But there 1s no extra nonabelian gauge group
Thirteen U (1)’s are labelled by

U, (11100000)(0 0)’, U, (0001-1000)(0 0)', U, (00000100)(0 0)',

U, (00000010)(0 0)’, Us (00000001)(0 0)', Ug (0 0)(10000000)",

U, (0 0)(01000000)’, Us (0 0)(00100000)’, U, (0 0)(00010000)’,

U, (0 0)(00001000)', U,; (0 0)(00000100)’, U,, (0 0)(00000010)’,

U,; (0 0)(00000001)’ (13)
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Tt 1s easy to calculate the U(1) charges For example, the representation (11) has (p+v+a, —a;)=(—4 —

120004 —1)(00 —440041), and hence has @, =0, @, =0, @ =0, Q, =2, Qs = —2, etc , which 1s shown 1n table
1 We have calculated all thirteen U (1) charges for 285 chiral fields Among these, we present U (1) charges for
quarks and SU (2) doublet representations in table 1 and table 2, respectively

4. The anomalous U(1)y and the electroweak U(1),

In addition to tables 1 and 2, we also have
TrQ, =-432, TrQ,=-432, TrQ,=144, TrQ;=72, TrQs=-72, TrQ,,=144 (14)

The other seven U(1)’s are anomaly-free Out of the anomalous U(1)’s given 1n (14), we can construct five
anomaly-free combinations

P=(1//10)(Q —Q:), P.=3(Q7+0Qs), Ps=4(Qs—01) ., (15a,b,¢)
Pi=(1//5)(1Qs— Q0+ Qs +3012), Ps=(1/60)(Qi+30,+3Q:+30:—30s+301,) (15d,e)

The other seven anomaly-free U(1)’s with proper normalization are called 3s, Os, @5, Os, 10, 011, and 0,5,
1e, Q3=Q3/\/§, etc The remaining U (1) which 1s orthogonal to the above twelve anomaly-free U(1)’s 1s
called U(1),

X=01+30:—0u—30,+10s— 01> (16)

This U (1) gauge boson obtains a mass through the Green—Schwarz term, eating the model-independent axion
from,e g

flluﬂamﬂl’q”B/w TI'F;,\:,(an)Tr <qu><Frs> tn

Thus the anomalous X symmetry becomes the global symmetry and the theory 1s renormalizable below the
compactification scale This 1s the so-called t Hooft mechanism [16] Except the gauge boson mass term (17),
the Yukawa couplings respect the X symmetry Thus the X symmetry in the form of global one must exist below
the scale defined by eq (17) Because the matter fields are singlets under the shift of the model independent
axion, the global X charge 1s the same as the original anomalous gauge charge These X quantum numbers of the
model are also shown 1n tables 1 and 2 From table 1, we note that 1t 1s the Peccei—-Quinn symmetry, and when
the X symmetry 1s broken at the intermediate scale, the strong CP problem can be solved
We also note

Tr X0, =Tr XP,= —2160, TrX=—1440, (18,19)

where 1=3,5,6,9, 10,11 and 13, and j=1-5 To compare with Tr X SU(3)?*=Tr X SU(2)?= —60 obtained
from tables 1 and 2, eq (18) should be divided by (6)? because U (1) charges in these tables are multiplied by
6./2 Thus we agree with the observations of refs [8,18],

T = —(60/327%) (G2, G + W', W™+ Fr, Fr _RR) , (20)

where Gy, W,,, and F}, are gluon, the SU(2) and twelve properly normalized U (1) field strengths
One possible electroweak hypercharge 1s

16 13 19 23 26 7
Y=—550,+35602 — 150 Q4 — 1500Q7 T 550s + 55 Q12 (21)

For quarks and SU(2) doublets, 1t 1s shown 1n tables 1 and 2 However, this hypercharge assignment 1s not
successful, because 1t leads to weird charges for singlet fields Nevertheless, (21) gives mine Y= +1 singlets,
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three Y= — 1 singlets, nine Y=0 singlets from the untwisted sector, and eighteen Y=0 singlets from the twisted
sectors Y= +1 singlets contain the charged leptons All the Y'=0 singlets carry nonvanishing X charges and
hence when these singlets obtain nonvanishing VEV’s at an intermediate scale the Peccei-Quinn symmetry can
be broken and the invisible axion can result ¥ However, the problem 1s whether these Y=0 singlets repeat the
’t Hooft mechanism or not In our model, there are enough Y=0 singlets (more than eleven corresponding to
U (1) gauge groups which must be broken above the electroweak scale ), and the breaking of the Peccei~Quinn
symmetry at an intermediate scale 1s a possibility The remaining 180 singlets carry funny hypercharges Thus
this model cannot be realistic However, we found that there are many more choices for Y in which all the quarks
have the desired hypercharges Then 1n this case, the SU(2) doublets have so many possibilities for acceptable
Y for which we did not exhaust all the alternatives One of these may not allow weird singlet charges

Naively, one would expect the vacuum degeneracy of 120 (see table 1) because the munimum | X| quantum
number for the 285 chiral fields 1s 1 However, the invisible axion model presented here has the domain-wall
number Npw =1 because the model-independent axion connects the degenerate vacua as discussed 1n refs
[22,12] Here, we have an example in which a “naive” domain-wall problem in gauge theories may not be a
problem 1n the full theory The axion decay constant problem, F,<2x10!'GeV, 1s equivalent to
VEV=120F,<2 4x10'3GeV (:f one Higgs field breaks the X symmetry) which 1s closer to the GUT scale

5. Conclusion

We have shown explicitly by constructing and SU(3)®SU(2)®@U(1),0U(1)"'®U (1) orbifold model
that the nonstandard embedding with anomalous U (1)’s leads to the global symmetry below the compactifica-
tion scale This global symmetry 1s the much needed Peccei—-Quinn symmetry for the strong CP solution 1n string
models There are enough SU(3)®@SU(2)®U(1)y singlets to assign nonvanishing VEV at an intermediate
scale This solution 1s the type encountered 1n gauge theory models and any string effects will not remove the
resulting invisible axion from the low energy spectrum
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