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We show that Theorem 1 in [1, p. 236] about linear programs is incorrect as stated. We provide
the correct version of this theorem and an elementary proof of it.

‘The result

In a recent paper [1] Chandrasekaran stated the following theorem about linear
programs without proof (this is Theorem 1 in [1, p. 236]; the wording of our state-
ment is different, but the content is the same).

Theorem 1. Consider the convex polyhedron defined by the system of constraints
Ax=b, x=0.

Let cx, ¢’x be two linear objective functions defined on this polyhedron. The differ-

ence between these two linear functions, (c — ¢’)x, is a censtant over this polyhedron

iff there is some u such that c—c’ =uA.

This theorem is incorrect as stated. We provide the following counterexample. Let

X = (Xg, X3, X3, X4y X5, Xg) '
c=@3,9, -7,8,1,2), ¢ =(90,184,1,2);
111100 0
A‘(o 0 0 01 1)’ b_(l)'
Let P={x: Ax=b, x=0}, wiih the above data. It can be verified that
X| =X, =X3=x,=0 at all points xe P. Hence (c—c')x=0 for all xe P, and yet there
exists no u such that (c—c’)=uA, in this case.

The purpose of this note is to give the correct version of Chandrasekaran’s result,
together with an elementary proof of it.
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If E is any matrix, we will denote its ith row by E;. If S and T are arbitrary sets,
we will denote the set of all elements in § which are not in T by S\ T.

Correct version of Theorem 1 for general systems of linear constraints

Theorem 1’. Let A, B, b, d, c, ¢’ be given real matrices of ordersmxn,pxXn,mx1,
pX1, 1Xn, 1 Xn, respectively. Let the convex poiyhedron K be .ke set of feasible
solutions of

Ax=b, Bx=d. a
We assume that K+9. An inequality constraint in (1), say

B, x=d,,
is said to be a ‘binding inequality constraint’ in (1) iff B, x=d, for all xe K. Let

J = {r:1=r< pand B, x=d, is a binding inequality constraint in (1)}.
Then (c—c')x is a constant over K iff (c— ) is in the linear hull of

Ir={A;:i=1,..,m}U{B, :rel}.

Proof. If (c—c’) is in the linear hull of I, there exists v; for 1=i=<m, and u, for
reJ such that

m

c—¢’'=Y viA,+ Y u,B,. Q)
relJ

i=1

From the definition of J, B, x=d, for all reJ and xe K. So, (2) implies that

m
(c=c)x= Y vibj+ L ud,

i=1 redJ

a constani, for all xe K, establishing the ‘if’ part of the theorem.
To prove the ‘only if’ part, we now assume that (c—c’) is not in the linear hull
of I'. We will show that this implies that (c—c’)x is not a constant over K.
From the hypothesis in the theorem, K is the set of feasible solutions of the system

Aix=b;, i=1,...,m,

=d,, rel,
B"x{zd,, reJ={1,...,p} \J, @

and for each reJ, there exists an xe K satisfying B, x>d,.
Let g=rank of the set I of vectors. Since we assumed that the vector ¢ — ¢’ is not

in the linear hull of I', g < n. From linear algebra, we know that the svstem of linear
equations,
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A,-_x= b,‘, i= i,..., m,

B, x=d, rel,

mnsmofammead e tlan MNavean Femomelm o B2 _a® . ___ 2L S __a

an be transformed by the Gauss-Jordan elimination method into an equivalent
system which expresses g of the variables among x,,...,x, as affine functions of
the remaining n—q variables. Without any loss of generality, assume that this

nivalant cvctam ic
ul'u“ll. h,:a“..l a0

(¢

ao,+ E alxj, i=1,..,q. @
j=q+1

Substitute the expressions for x;i, ..., X,

11C 3 S stg * 11 % 1

the affine function

co+ E c/x;.
Jj=q+1

Since (c—¢’) is not in the linear hull of I, (c7,,..., ;) #O0.
Substitute the expressions for x;....,X, from (4) in the inequality B, x=d,, for
reJ. Suppose this transforms it into

): byx;=dj.

j=q+1

So, the system (3) is equivalent to

x;=ag+ Z alx;, i=1,..,q

n Jj=q+1 _ (5)
Y bixi=d;, rel.

Jj=q+1

So, K is the set of feasible solutions of (5). (c—c’)x is a constant for all xe K iff

n

Y o

J=q+1
is a constant over the set of feasible solutions of

n
Y byxj=zd;, rel 6)
Jj=q+1
in the space of the variables X=(x;,,..- ,x.)T. Let 4 denote the set of feasible
solutions of (€). From our hypothesis, there exists a point x € K which satisfies each
of the inequality constraints in (5) as a strict inequality, this implies that there exists
an X € A4 which satisfies each of the inequalities in (6) as a strict inequaliity, that is
A4 has an interior point in the space of X. Hence, in the space of X, 4 is of fuii
dimension (i.e., dimension of 4 is n—a).
Let n
IX)= Y ;.

j=q+1
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If /(X) is a constant over 4, say @, then 4 is a subset of the hyperplane defined
by I{X) =« in the space of X, contradicting *he fact that 4 has full dimension in
the space of X. So /(X) is not a constant over A4, this implies that (c—c’)X is not
a constant over K, completing the ‘only if’ part of the theorem. [

Coroliary 1. Let cx be a iinear objective function defined on K, which is the set of
Jeasibie soiutions of (1). cx is a constant over K iff c is in the iinear huii of = {A,.:
I<i=m}U{B,:rel}.

Vo P8 _ AN ______ A r 2 WD X 4) . __a _LHL_ Rl P _ac*____ _ L
Corollary 2. Lei P be ine sei of feasibie soiutions o
Ax=b, x=0,

sselemmn A So co srirsnse maml 2armtuiee AL nmodnse san s 22 mand wmsade o TLED LM mased D Lo Adieennea
wneIrc /1 o u given 1 & ITTue Jjurucc it A nnunu it ma.yr+v,ucurn asrricre-
oFTNM o $hn Iinnone nhiontivn fasmntinem nyv 1o m namnctmmd avae D 2 6F A ia T tlorn I3srnreme
QUL IR O3y EHFET RRNICW UUJCLCIVCJ“IILIIUII CA O U LUIDIUIINL UvVeTr 1 JJ | O3 7k LI LFiCUI
"l"’ l\’ N0 nf A
TeiR88 U T wo UJ e T

We shounid paint out that even thoue henrem 1 in [1 n 2741 ic incarract ac

v AR A rvlll‘v WA LALWAS WV Wil I-ll\luall A RAWNJA WwiaaA A ASR l.’ ‘-’. H.’vl Ay ALLWNWE AWwwh WY
stated, all the other results about the assignment and traveling salesman problems
derived there using Theorem 1, are correct, since the stronger conditions in Cor-
ollary 2 here, huld for those problems.
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