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We show that Theorem 1 in [ 1, p. 2361 about linear programs is incorrect as stated. We provide 
the correct version of this theorem and an elementary proof of it. 

The result 

In a recent paper [l] Chandrasekaran stated the following theorem (about linear 
programs without proof (this is Theorem 1 in [l. 0. 2361; the wording of our state- 
ment is different, but the content is the same). 

Theorem 1. Consider the convex polyhedron defined by the system of constraints 

Ax=b, xr0. 

Let cx, c”x be two linear objective functions defined on this polyhedro E. The dvfer- 
ence between these two linear functions, (c - c’)x, is a constant over this polyhedron 

iff there is some u such that c - c’ = UA . 

This theorem is incorrect as stated. We provide the following counterexample. Let 

X = (X,9 X2, X3, X4, X5, X& 

c = (3, 9, -7, 8, 1, 2), c’ = (19, 0, 18, 4, 1, 2); 

Let P={x: Ax=b, x20}, ~iiviih the above data. It can be verified that 
X1=X2=X3=X4 = 10 at all points XE Hence (c - c’)x = 0 for all x E and yet there 
exists no u such that (c- c’) = uA, in this case. 

The purpose of this note is to give the correct version of Chandrasekaran’s result, 
together with an elementary proof of it. 

* Partially supported by NSF grant ECS-8521183. 
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If E is any matrix, we will denote its ith row by Ei. If S and r are arbitrary sets, 
we will denote the set of all elements in S which are not in T by S \ T. 

Correct version of Theorem 1 for generai systems of hear constraints 

Theorem 1’. Let A, B, b, d, c, c’ be given real matrices of orders m x n, p x n, m x 1, 
p x 1, 1 x n, 1 x n, respectively. Let rhe convex polyhedron K be he set of feasible 
solutions of 

Ax= b, Bxzd. (1) 

We assume that K# 0. An inequality constraint in (l), say 

B,. x 2 dr, 

is said to be a “binding inequality constraint’ in (1) iff B,, x = d, for all x E K. Let 

J = (r: 1s rs p and Br.xr d, is a binding inequality constraint in (1)). 

Then (c- c’)x is ct constant over K iff (c- c ) is in the linear hull of 

r= (Ai.: i= l,..., m}U{$.: rEJ). 

Proof. If (c- c’) is in the linear hull of r, there exists Vi for 1 s i 5 m, and u, for 
r E J such that 

C-Cc’ = E ViAi_ + C u,B~_. (2) 
i=l reJ 

From the definition of J, B*.x = d, for all r E J and XE K. So, (2) implies that 

(c-. C’)X = f vibi + C u,dr 
i=l rEJ 

‘1 

a constant? for all XE K, establishing the ‘if’ part of the theorem. 
To prove- the ‘only if’ part, we now assume that (c-c’) is not in the linear hull 

of K We will show that this implies that (c- c’)x is not a constant over K. 
From the hypothesis in the theorem, K is the set of feasible solutions of the system 

Ai.X= big i= I,...,m, 

re;i= (I,.-.,p) \ J, (3) 

and for each r E- , there exists an XE satisfying & x > d,. 

Let q= rank of the set of vectors. Since we assumed that the vector c - c’ is not 
in the linear hull of 4 c n. From linear algebra, we know that the system of linear 

equations, 
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Ai.x= bi, i= i,..., m, 

B,,x = dr, I-E 

can be transformed by the Gauss-Jordan elimination method into an equivalent 
system which expresses 4 of the variables among xl, . . . ,xn as affine functions of 
the remaining n-q variables. Without any loss of generality, assume that this 
equivalent system is 

xi =u&+ i aGxj, i = 1, ...9q. 0 
j=q+ 1 

Substitute the expressions for xi, . . . , xq from (4) in (c - c’)x. Suppose this leads to 
the affine function 

n 

Cl+ 2: CyXja 
j=q+ 1 

Since (c - c’) is not in the linear hull of r, (c,“, 1, . . . , CD #O. 
Substitute the expressions for x 1w . . . , xq from (4) in the inequality &xl dr, for 

r ~3. Suppose this transforms it into 

So, the system (3) is equivalent to 

xi =a&+ i &$Xj, i= l,...,q 
j=q+l 

n 

C b;XjZd:‘, r& 
j=q+ 1 

So, K is the set of feasible solutions of (5). (c - c’)x is a constant for all XE 

C C$kj 
j=qil 

is a constant over the set of feasible solutions of 

(6) 

in the space of the variables X= (x4+ 15 l I . :xajT. Let A denote the set of feasible 

solutions of (6). From our hypothesis, there exists a point x E which satisfies each 
_ --2°C 

of the inequality constraints in (5) as a strict inequality, this implies that thert: BREWS 
an XE A which satisfies each of the inequalities in (6) as a strict inequ 
A has an interior point in the space of X. en.ce, in the space of X, 
dimension (i.e., dimension of A is n - a). 

Let n 

I(X) = 
j=q+ 1 

C@Xj l 
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If l(X) is a constant over A, say a, then A is a subset of the hyperplane defined 
by a(X) = a in the space of X, contradicting ?.he fact that A has full dimension in 
the space of X. So 1 (X) is not a constant over A, this implies that (c- c’)X is not 
a constant over K, completing the ‘only if’ part of the theorem. Cl 

Corollary 1. Let cx be a linear objective function defined on which is the set of 
feasible solutions of (1). cx is a constant over K iff c is in the linear hull of r= { Ai. : 
l=irm}W{B,,: ~EJ). 

Corollary 2. Let P be the set of feasible solutions of 

Ax= b, x10, 

where A is a given real matrix of order M x n and rank s. If P+0, and P has dimen- 
sion n -s, the linear objective function cx is a constant over P iff c is in the linear 
hull of rows of A. 

We should point out that even though Theorem 1 in [l, p. 2361 is incorrect as 
stated, all the other results about tk assignment and traveling salesman problems 
derived there using Theorem 1, are correct, since the stronger conditions in Cor- 
ollary 2 here, hold for those problems. 
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