NOTE

A CORRECTION TO A RESULT IN LINEAR PROGRAMMING

Katia G. MURTY
Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109-2117, USA

Received 20 February 1987
Revised 31 July 1987

We show that Theorem 1 in [1, p. 236] about linear programs is incorrect as stated. We provide the correct version of this theorem and an elementary proof of it.

The result

In a recent paper [1] Chandrasekaran stated the following theorem about linear programs without proof (this is Theorem 1 in [1, p. 236]; the wording of our statement is different, but the content is the same).

Theorem 1. Consider the convex polyhedron defined by the system of constraints

$$
A x=b, \quad x \geq 0 .
$$

Let cx, c'x be two linear objective functions defined on this polyhedron. The difference between these two linear functions, ($\left.c-c^{\prime}\right) x$, is a constant over this polyhedron iff there is some u such that $c-c^{\prime}=u A$.

This theorem is incorrect as stated. We provide the following counterexample. Let

$$
\begin{aligned}
& x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)^{\mathrm{T}}, \\
& c=(3,9,-7,8,1,2), \quad c^{\prime}=(19,0,18,4,1,2) ; \\
& A=\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right), \quad b=\binom{0}{1} .
\end{aligned}
$$

Let $P=\{x: A x=b, x \geq 0\}$, with the above data. It can be verified that $x_{1}=x_{2}=x_{3}=x_{4}=0$ at all points $x \in P$. Hence $\left(c-c^{\prime}\right) x=0$ for all $x \in P$, and yet there exists no u such that $\left(c-c^{\prime}\right)=u A$, in this case.

The purpose of this note is to give the correct version of Chandrasekaran's result, together with an elementary proof of it.

* Partially supported by NSF grant ECS-8521183.

If E is any matrix, we will denote its i th row by E_{i}. If S and T are arbitrary sets, we will denote the set of all elements in S which are not in T by $S \backslash T$.

Correct version of Theorem 1 for general systems of linear constraints

Theorem 1'. Let $A, B, b, d, c, c^{\prime}$ be given real matrices of orders $m \times n, p \times n, m \times 1$, $p \times 1,1 \times n, 1 \times n$, respectively. Let the convex poiyhedron K be ,he set of feasible solutions of

$$
\begin{equation*}
A x=b, \quad B x \geq d \tag{1}
\end{equation*}
$$

We assume that $K \neq \emptyset$. An inequality constraint in (1), say

$$
B_{r .} x \geq d_{r},
$$

is said to be a 'binding inequality constraint' in (1) iff $B_{r} x=d$, for all $x \in K$. Let

$$
J=\left\{r: 1 \leq r \leq p \text { and } B_{r} . x \geq d_{r} \text { is a binding inequality constraint in (1) }\right\} .
$$

Then $\left(c-c^{\prime}\right) x$ is a constant over K iff $(c-c)$ is in the linear hull of

$$
\Gamma=\left\{A_{i .}: i=1, \ldots, m\right\} \cup\left\{B_{r .}: r \in J\right\} .
$$

Proof. If $\left(c-c^{\prime}\right)$ is in the linear hull of Γ, there exists v_{i} for $1 \leq i \leq m$, and u_{r} for $r \in J$ such that

$$
\begin{equation*}
c-c^{\prime}=\sum_{i=1}^{m} v_{i} A_{i}+\sum_{r \in J} u_{r} B_{r .} \tag{2}
\end{equation*}
$$

From the definition of $J, B_{r} x=d_{r}$ for all $r \in J$ and $x \in K$. So, (2) implies that

$$
\left(c-c^{\prime}\right) x=\sum_{i=1}^{m} v_{i} b_{i}+\sum_{r \in J} u_{r} d_{r}
$$

a constani, for all $x \in K$, estaiolisining the 'if' part of the theorem.
To prove the 'only if' part, we now assume that $\left(c-c^{\prime}\right)$ is not in the linear hull of Γ. We will show that this implies that $\left(c-c^{\prime}\right) x$ is not a constant over K.

From the hypothesis in the theorem, K is the set of feasible solutions of the system

$$
\begin{align*}
& A_{i .} x=b_{i}, \quad i=1, \ldots, m, \\
& B_{r .} x \begin{cases}=d_{r}, & r \in J, \\
\geq d_{r}, & r \in \bar{J}=\{1, \ldots, p\} \backslash J,\end{cases} \tag{3}
\end{align*}
$$

and for each $r \in \bar{J}$, there exists an $x \in K$ satisfying $B_{r} . x>d_{r}$.
Let $q=$ rank of the set Γ of vectors. Since we assumed that the vector $c-c^{\prime}$ is not in the linear hull of $r, a<n$. From linear algebra, we know that the system of linear equations,

$$
\begin{array}{ll}
A_{i} . x=b_{i}, & i=1, \ldots, m \\
B_{r} . x=d_{r}, & r \in J
\end{array}
$$

can be transformed by the Gauss-Jordan elimination method into an equivalent system which expresses q of the variables among x_{1}, \ldots, x_{n} as affine functions of the remaining $n-q$ variables. Without any loss of generality, assume that this equivalent system is

$$
\begin{equation*}
x_{i}=a_{0 i}^{\prime \prime}+\sum_{j=q+1}^{n} a_{i j}^{\prime \prime} x_{j}, \quad i=1, \ldots, q \tag{4}
\end{equation*}
$$

Substitute the expressions for x_{1}, \ldots, x_{q} from (4) in $\left(c-c^{\prime}\right) x$. Suppose this leads to the affine function

$$
c_{0}^{\prime \prime}+\sum_{j=q+1}^{n} c_{j}^{\prime \prime} x_{j}
$$

Since $\left(c-c^{\prime}\right)$ is not in the linear hull of $\Gamma,\left(c_{q+1}^{\prime \prime}, \ldots, c_{n}^{\prime \prime}\right) \neq 0$.
Substitute the expressions for x_{1}, \ldots, x_{q} from (4) in the inequality $B_{r} x \geq d_{r}$, for $r \in \bar{J}$. Suppose this transforms it into

$$
\sum_{j=q+1}^{n} b_{r j}^{\prime \prime} x_{j} \geq d_{r}^{\prime \prime}
$$

So, the system (3) is equivalent to

$$
\begin{align*}
& x_{i}=a_{0 i}^{\prime \prime}+\sum_{j=q+1}^{n} a_{i j}^{\prime \prime} x_{j}, \quad i=1, \ldots, q \\
& \sum_{j=q+1}^{n} b_{r j}^{\prime \prime} x_{j} \geq d_{r}^{\prime \prime}, \quad r \in \bar{J} \tag{5}
\end{align*}
$$

So, K is the set of feasible solutions of (5). $\left(c-c^{\prime}\right) x$ is a constant for all $x \in K$ iff

$$
\sum_{j=q+1}^{n} c_{j}^{\prime \prime} x_{j}
$$

is a constant over the set of feasible solutions of

$$
\begin{equation*}
\sum_{j=q+1}^{n} b_{r j}^{\prime \prime} x_{j} \geq d_{r}^{\prime \prime}, \quad r \in \bar{J} \tag{6}
\end{equation*}
$$

in the space of the variables $X=\left(x_{q+1}, \ldots, x_{n}\right)^{\mathrm{T}}$. Let Δ denote the set of feasible solutions of (6). From our hypothesis, there exists a point $x \in K$ which satisfies each of the inequality constraints in (5) as a strict inequality, this implies that there exists an $X \in \Delta$ which satisfies each of the inequalities in (6) as a strict inequality, that is Δ has an interior point in the space of X. Hence, in the space of X, Δ is of fuii dimension (i.e., dimension of Δ is $n-a$).

Let

$$
l(X)=\sum_{j=q+1}^{n} c_{j}^{\prime \prime} x_{j}
$$

If $l(X)$ is a constant over Δ, say α, then Δ is a subset of the hyperplane defined by $l(X)=\alpha$ in the space of X, contradicting the fact that Δ has full dimension in the space of X. So $l(X)$ is not a constant over Δ, this implies that $\left(c-c^{\prime}\right) X$ is not a constant over K, completing the 'only if' part of the theorem.

Corollary 1. Let cx be a linear objective function defined on K, which is the set of feasible solutions of $(1) . c x$ is a constant over K iff c is in the linear hull of $\Gamma=\left\{A_{i}\right.$: $1 \leq i \leq m\} \cup\left\{B_{r .}: r \in J\right\}$.

Corollary 2. Let P be the set of feasible solutions of

$$
A x=b, \quad x \geq 0
$$

where A is a given real matrix of order $m \times n$ and rank s. If $P \neq \emptyset$, and P has dimension $n-s$, the linear objective function $c x$ is a constant over P iff c is in the linear hull of rows of A.

We should point out that even though Theorem 1 in [1, p. 236] is incorrect as stated, all the other results about the assignment and traveling salesman problems derived there using Theorem 1, are correct, since the stronger conditions in Corollary 2 here, huld for those problems.

References

[1] R. Chandrasekaran, Recognition of the Gilmore-Gomory traveling salesman problem, Discrete Appl. Math. 14 (1986) 231-238.

