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We develop a game-theoretic approach to partition theorems, like those of Mathias, Taylor,
and Louveau, involving ultrafilters. Using this approach, we extend these theorems to contexts
involving several ultrafilters. We also develop an analog of Mathias forcing for such contexts
and use it to show that the proposition (considered by Laver and Prikry) “every non-trivial
c.c.c. forcing adjoins Cohen-generic reals or random reals” implies the non-existence of
P-points. We show that, in the model obtained by Lévy collapsing to @ all cardinals below a
Mahlo cardinal x, any countably many selective ultrafilters are mutually generic over the
Solovay (Lebesgue measure) submodel. Finally, we show that a certain natural group of
self-homeomorphisms of fw — @, chosen so as to preserve selectivity of ultrafilters, in fact

Introduction

Three different meanings of ‘homogeneity’ are relevant to this paper. The first
is the homogeneity of the sets whose existence is asserted by various partition
relations. Cur central theorems are partition relations extending Mathias’s
version [19, Theorem 13}, involving selective ultrafilters, of Silver’s theorem [28]
on analytic partitions. Among the consequences of these theorems are several
that shed light on a second sort of homogeneity, the informal idea that selective
ultrafilters look alike, that they cannot be distinguished from each other by
reasonable combinatorial properties. Finally, in a section that is independent of
the rest of the paper except for the preliminaries, we consider topological
homogeneity, viewing ultrafilters as points in the Stone—Cech compactification of
a discrete space, as in [25].

After a section in which we explain our terminology (inciuding the terminology
used in this introduction) and record some preliminary facts, we devote Sections 2
through 4 to the proofs of our partition theorems. Mathias’s theorem, which
asserts that every selective ultrafilter contains homogeneous sets for all partitions

“of [@]® into an analytic and a coanalytic piece, as well as theorems of Taylor [31]
and Louveau [17] dealing with non-selective ultrafilters, will be generalized to
deal with several ultrafilters. For example, our results imply that, if [w]” is
partitioned into an analytic and a coanalytic piece, and if %% and %, are P-point
ultrafiiters, then there exist sets Ag€ U, A, € U,;, and a function g:®— @ such
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that one piece of the partition contains every set
X={x<x < <X <Xp1<**‘}c@

such that, for all n, x5, € Ag, X24+1 € 4;, and g(x,) <X,.+,. Our approach to these
partition theorems uses game-theoretic ideas to simplify the unwieldly com-
binatorics that would otherwise arise in generalizing Mathias’s techniques; a
significant part of the complexity of the argument can be isolated in the intuitively
natural principle that “infinite strings of generalized quantifiers are unam-
biguous”, which we present in Section 2. As a by-product of this approach, we
find a connection between partition relations and games, a connection that makes
the Galvin—Prikry theorem [11] on Borel partitions (strengthened to assert that
the homogeneous set is in a specified selective ultrafilter) an immediate
consequence of Borel determinacy [18]. In proving our main results, in Sections 3
and 4, we do not invoke Borel determinacy, but a crucial part of the argument is
closely related to Wolfe’s proof of F,-determinacy [33].

In Section 5 we recall, in a form suitable for cur purposes, information about
various forcing constructions, primarily Mathias forcing [19] with respect to a
selective ultrafilter, forcing to add a generic ultrafilter on @, and Lévy forcing [29]
to collapse to @ all the cardinals below an inaccessible x. We discuss analogs of
Mathias forcing for non-selective ultrafilters, and we recall from [19] some
properties of the Lévy model when k is a Mahlo cardinal.

Section 6 is devoted to studying selective ultrafilters in the Lévy model
obtained from a Mahlo cardiral x. We show that any such ultrafilter is generic,
and any countably many non-isomorphic such ultrafilters are mutually generic,
over the submodel HDVR of sets hereditarily ordinal definable with real
parameters and parameters from the ground model. This result implies that, in
this Lévy model, all selective ultrafilters look alike in certain senses. (Similar
techniques were used in [6] to show that, if two non-isomorphic selective
ultrafilters are viewed as type two objects in the sense of higher-type recursion
theory, then neither is recursive in the other.)

Finally, in Section 7, we obtain a negative result about an attempt to modify, so
as to apply to selective ultrafilters, the topological homogeneity result of W.
Rudin [25]. Rudin showed, assuming the continuum hypothesis, that the P-point
ultrafilters constitute a single orbit of the self-homeomorphism group of the space
Bo — o of non-principal ultrafilters on . This group has a subgroup, with a
simple topological definition, whose members preserve selectivity, and it was
reasonable to hope that the selective ultrafilters would constitute a single orbit of
this subgroup. We shall dash this hope by showing that the orbits of this subgroup
are in fact just the icomorphism classes of ultrafilters.

1. Preliminaries

Throughout this paper, ‘ultrafilter’ will mean ‘non-principal ultrafilter on a
denumerable set’. We shall often formulate definitions as though all ultrafilters
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were on the set @ of naaral sumbers. Concepts so defined are to be transferred
to ultrafilters on cther . cnuinc.uble sets via bijections with w; the choice of
bijection will never matter.

If % is an ultrafilter, we shall say that a statement @(n) is true for ¥-almost all
n, and we shall write (%n) @(n), to mean that {n | p(n)} € %. The definition of
‘ultrafilter’ implies that the quantifier (%n) commutes with negation and
conjunction and therefore with all propositional connectives.

An ultrafilter % is selective (resp. a P-point) if every function on @ becomes
one-to-ore (resp. finite-to-one) or constant, when restricted to a suitable set in .
Although the existence of ultrafilters, in fact of 22° ultrafilters, on @ can be
proved without any unusual hypothesis (unless one considers the axiom of choice
unusual), the existence of selective ultrafilters, or even of P-points, cannot
[15, 26, 32). The continuum hypothesis (CH), however, is more than enough to
ensure the existence of selective ultrafilters and non-selective P-points in great
profusion [8, 24, 4].

Ramsey’s theorem [22] asserts that, for any » € o, if the set [@]" of n-element

subsets of @ is partitioned into finitely many pieces, then there is an infinite set
H c o that is homogeneous in the sense that [H]" is included in one of the pieces.
Kunen showed [8] that an ulirafilter % is selective if and only if the homogeneous
set H in Ramsey’s theorem can always be taken to be an element of 4. For this
reason, selective ultrafilters are often called Ramsey ultrafilters.
" The natural generalization of Ramsey’s theorem for the family [w]® of infinite
subsets of w is false. It is not difficult (with the axiom of choice) to partition [©]®
into two pieces so that any two sets that differ by a single element lie in different
pieces; clearly such a partition has no homogeneous set. The generalization
becomes true, however, if the partition is required to be well-behaved. More
precisely, Silver [28] showed that homogeneous sets exist for any partition of [w]®
into an analytic set and a coanalytic set, and Mathias [19] showed that a
homogeneous set for such a partition can be found in any prescribed selective
ultrafilter. The topological notion of ‘analytic’ (= continuous image of a Borel
set =X}) refers to the topology on [w]® given by the following metric: If the
longest common initial segment of X and Y has size n, then the distance between
X and Y is 27" Thus, a typical basic open set consists of all the X € [w]” that
have a fixed finite set as an initial segment; note that such a basic open set is also
closed.

UMrafilters on o are the points of the so-called Stone-Cech remainder,
pw — w. (Had we admitted principal ultrafilters, we would have obtained the
whole Stonc-Cech compactification fw.) A basis for the topology of Bw @
consists of the sets

A={UePo-w|Aecu)

for all Ac . It is easy to verify that the operation ~ commutes with finitary
Boolean operations, that A c B if and only if A — B is finite (which is sometimes
expressed by saying that A is almost included in B), and that fo—w is a
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compact Hausdorff space. ¥ is a P-pcint if and only if every countable
intersection of neighborhoods of 4 is again a (not necessarily open) neighbor-
hood of ¥. It follows that self-homeomorphisms of fw — @ send P-points to
P-points, and Rudin [25] showed that CH implies the converse: any P-point can
t= mapped to any other by a self-homeomorphism of S — w. (By contrast, every
self-homeomorphism of fw is induced by a permutation of w, so there are only
2% of these, whereas CH yields 22° P-points.) Since selective ultrafilters are
P-points, one can view Rudin’s result as a homogeneity result for selective
ultrafilters, but such a view is distorted because self-homeomorphisms of fo — @
fail to preserve selectivity. In Section 7, we shall consider a natural restricted class
of self-homeomorphisms that can be shown to preserve selectivity. The result we
obtain (assuming CH) is, however, just the opposite of homogeneity.
K U is any ultrafilter on @ and f : @ — o is not constant on any set in ¥, then

fW={Acolf(4)eu}

is an ultrafilter. It is the image of % under the unique continuous extension of f to |
f:Bo— Bo, and it satisfies the equivalence

F(Wn) o(r) < (Un) @(f(n)).

The Rudin—Keisler (RK) order of ultrafilters [8, 24] is defined by putting % < V" if
and only if % =F(¥) for some f. If % =7(¥) for some f that is one-to-one on a
set in ¥, then in fact % =f(¥) for some permutation f of @, and we say that U
and V¥ are isomorphic (%= 7). A basic, but not entirely trivial, result about
mappings of ultrafilters is that £(4) = % only if f(n) = n for %-almost all n. This
implies that % < ¥ =< 4 is equivalent to % = ¥, so the RK order induces a partial
order of isomorphism classes. The selective ultrafilters are precisely the RK-
minimal ultrafilters, and the set of P-points is closed downward in the RK order.

A stronger relation, the Rudin-Frolik (RF) order, is defined by putting
U<geV if and only if there exist ultrafilters W,, for n € w, such that ¥ is
isomorphic to the ultrafilter '

ULV, = {X c o X o |(Un) (W:k) (1, k) € X}

on o X w, called the Y-sum of the %,,. An equivalent statement is that ¥ is the
limit, with respect to %, of some discrete sequence in S — w. (Had we allowed
the ultrafilters W, to be principal, the definition would have yielded <y instead
of <gg.) Since the projection from @ X w to the first factor o sends U-Y, %, to
%, we see that the RF order is stronger than the RK order. Furthermore, this
projection is neither constant nor finite-to-one on any set in ¥%-Y,,%,, so this
ultrafilter is not a P-point; all P-points are therefore RF-minimal. We write
UR® W for U-Y, W, when all of the W,, are the same ultrafilter .

In Section 8, we shall need two facts about sums of ultrafilters. The first is part
of a theorem of M.E. Rudin [23}; it asserts that, if

q"Enm = m"znw:v
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then either

(a) for %-almost all n, W, =¥,-X, W, for some ultrafilters ¥,, or

(b) for %'-almost all n, W, = ¥,-X.,,W,, for some ultrafilters ¥,, or

(c) for ¥U-almost all n, W, is isomorphic to some ¥,
The second is a characterization, given in [3], of the RK-predecessors of 4 ® ¥
when V' is a P-poi.  These predecessors are of three sorts: the RK-predecessors
of ¥, the RK-predecessors of ¥, and ultrafilters isomorphic to ¥%'-X,¥",, where
YU <<Yand ¥V,<Y¥ for all n.

2. Quantifiers and games

We shall need some facts about the semantics of infinite strings of the ‘almost
all’ quantifiers (¥n) associated to ultrafilters %. Some of these facts seem to be of
sufficient independent interest to warrant a presentation in somewhat greater
generality than we shall actually uced. We therefore devote the first part of this
section to a discussion of infinite strings of generalized quantifiers. Afterward, we
relate this discussion to partition relations and specialize to quantifiers of the form
(Un).

Consider an infinite expression of the form

(WO)(Q(m)xl)' * '('oz(xo....,x,._,)xn)' * '(xO’ XiyeoesXnyo- -) € x) (1)

where the variables x,, range over some set A, where £ < A®, and where 2, is, -
for each finite sequence s € A<, a (generalized) quantifier on A, that is, a family
of subsets of A closed under supersets. To simplify notation, we shall write 2 for
the entire system of quantifiers 2, indexed by A~®, and we shall abbreviate (1) as
(2x) x € Z, where x means (xg, Xy, . . . , X, - . .). We shall also use the symbol ~
for concatenation of sequences.

The semantics of a single generalized quantifier 2 is defined by

(2x) p(x) « (3X e 2)(VxeX)p(x)
o {xeA|p(x)}el.

The semantics of an infinite string (1) of ordinary quantifiers ¥ and 3 (which are
identified with the generalized quantifiers {A} and {X c A | X #0} respectively)
is usually given in terms of 2 game between two players, V and 3, who
consecutively choose values in A for xo, x4, ..., X,,.... At move n, when the
values of x,, . . . , x,_; have already been chosen and are known to both players,
,,,,, x,_p chooses a value for x,. The outcome of a play is that 3 (resp. V)
wins if the sequence x of chosen values is in (resp. out of) Z. If 3 has a winning
strategy in this game, then we say that (1) is true. We shall refer to the game just
described as the game for (1). Note that the quantifier system 2 alone determines
what counts as a play of the game; Z is involved only in deciding the outcome.
Thus, it makes sense to speak of ‘playing the game 2’ in the sense of having V

()
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and 3 select values for x in accordance with the rules, but it does not make sense
to speak of the outcome of the game unless & is also specified. Again, we can
speak of ‘strategies for the game 2’, but the concept of a winning strategy
depends on &.

When the qrantifiers in (1) are not ordi:iary oues, it is natural to replace them
with pairs of ordinary quantifiers by formally in~oking the equivalence (2) and
then to interpre: the resulting formula by means of games as just described. Thus,
we arrive at the notion of the canonical game for (1). The game consists of stages
of two moves each. At stage n, values of x,, . . . , X,—, have already been chosen
and are known to both players. Player 3 begins stage n by choosing a set
X, € 9, ..., ,)» and player V responds by choosing a value for x,, € X,,. (This part
of the description covers playing the canonical game 2.) Player 3 wins a play if
the chosen values satisfy x € ¥, and (1) is, by definition, true if and only if 3 has a
winning strategy. This approach to interpreting infinite strings of generalized
quantifiers was used (with all the 9, equal) in [1].

The reduction (2) of generalized quantifiers to ordinary ones is not the only
such reduction. For example, the quantifier ‘for infinitely many natural numbers’,
given by

®={X< »| X is infinitc},
is usually reduced to ordinary quantifiers by means of the equivalence
(@x) @ix) © (Vk € 0)(3x =k) p(x). )

More generally, if 2 is any quantifier on a set A, we define its dual by
9={YcA|A-Y¢2)}
={YcA|(VXe2)XNY+@},
and we have the reduction

(@) 9(x) © (VY e )@ e ) ox) | @

of 2 to ordinary quantifiers.

The definition of truth for (2x)x €  depended on singling cut a particular
‘canonical’ reduction {2) which leads to the canonical game for this formula. It is
certainly debatable whether the adjective ‘canonical’ is appropriate, since (2)
doesn’t seem intrinsically prefezable vo (3), say. But we shall show that the debate
is unpecessary: 2ll reductions lead to the same truth condition for (1). Before
reading further, the reader ms; find it instructive to compare the canonical
reduction

(3Xo € @)(Vxo € Xo)(3X, e ®)(Vx, € X,)- - xe X )
of

{ooxg)(0xy)- - -x e X
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with the alternative reduction obtained from (3)
(Vko € w)( e ko)(Vkl € a))(axl = kl) -xe&. (6)

In particular, suppose that you are player ¥V and you have a winning strategy for
the game for the canonical reduction; how do you go about winning the game for
the alternative reduction?

We shall prove two versions of the result that dnfferent reductions yield
equivalent truth conditions. The first version covers only the canonical reduction
(2) and its dual (4). This version is indirectly proved (when all the 2, are the
same) in [1], and it is all we shall need for our study of ultrafilters. The second
version, covering arbitrary reductions, is included to avoid leaving an obvious
gap. It is somewhat more complicated than the first version, but the extra
- complexity arises mostly from the nreed to say what an arbitrary reduction is.

If we replace each generalized quantifier in (1) by its reduction via (4), we
obtain the formula

(VYo e dg)(3xo € Yo)- - '(VY.. €dyy.r, ) 3Xn€Y)---xe€X,

whose game, which we call the dual game for (1), also consists of stages of two
moves each. At stage n, x, . . . , X,—; are already known, V begins by choosing
Y, €9, ._, and 3 replies by choosing x, € ¥,. As before, 3 wins if x € Z.

Theerem 1 (preliminary version). The canonical and dual games for (2x)xe€ X
are equivalent in the sense that a player who has a winning strategy in one of the
games also has a winning strategy in the other.

Proof. We prove the theorem for the case where 3 wins one of the games; the
proof for V is the same. So we assume that 3 has a winning strategy o for one of
the games, and we give instructions for how 3 should play the other game. These
instructions will define a strategy, and we shall see that it is a winning strategy.
The instructions will always involve having 3 pretend that he is playing, in
addition to the actual game, an auxilisry play of the other game. 3’s moves in the
auxiliary game will be in accordance with o, so he will win the auxiliary play.
Furthermore, the instructions will tell 3 what moves he should pretend that V is
making in the auxiliary game. These moves will be chosen so that the x’s selected
in the actual and auxiliary games are identical. Since the outcome of each game is
determined by whether x ¢ Z, and since 3 wins the auxiliary game, he also wins
the actual game.

Suppose first that o is a winning strategy for 3 in the canonical game. Here are
the instructions 3 should follow when playing the dual game and pretending to
play an auxiliary canonical game. At stage n, you have already arranged that the
sequence s of previous choices X, . . ., X,—; is the same in both games. If your
actual opponent now selects Y, € 3,, use o in the auxiliary game to select X, € 2,.
By definition of J,, there is an element x,, € X, N Y,,. Play such an x,, in the actual



ys73 A. Blass

game, and pretend that V played the same x, in the auxiliary game. Thus, the
sequence of choices is still the same, namely s7(x,), in both games, as required.

Now suppose o is a winning strategy for 3 in the dual game. Here are the
instructions 3 should follow when playing the canonical game and pretending to
play an auxiliary dual game. At stage n, you have already arranged that
§$={(Xg, - - « » Xa—1) is the same in both games. You are required now to choose
X, € 9,. Consider all possible moves ¥, € 4, that V could make in the auxiliary
game, and let X, be the set of all o’s responses to these moves;

X,={o(W,Y,)|Y,e4,}

where W stands for all the moves already made in the auxiliary game. By
definition, X, contains at least one element from each Y, e, so A-X,¢9,,
which means that X, € 2,. Thus, X, is a legal move in the actual game; play it. If
V responds with x, € X,,, then, by definition of X,,, there is a ¥, € 4, to which ¢
would respond by choosing x,. Pretend that V played such a Y, in the auxiliary
game and that you responded, using o, with x,. Again, the sequence of choices
s7(x,) is the same in both games, so the proof is complete. O

We return to the general situation. By a reduction of a quantifier 2 on A we
mean a finite string of ordinary quantifiers plus a function,

@%°NQ'y")- (@Y ). S ™

where each Q' is V or 3, where each y* ranges over some set (that may depend on
the values of y°, ...,y "), where f(y° y,...,y* ") eA for y’s in the ap-
propriate sets, and where

2={XcA|(@%NQY") - (@Y )OOy, ..., ¥ )eX)
For any such reduction, we have the schema

@x) o(x) < (QYNQY)--- (@Y ) o(F(%y" .-, ¥ ), ()

and we refer to (7) as the reduction described by the schema (8). Thus, for
example, the reduction described by (2) has k=2, 0°=3, Q'=V, y° ranging
over 2, y' ranging over y°, and f(°, y') =y’

A reduction (7) defines a ‘pseudo-game’ between two players V and 3. At
move i, where 0<i<k, player Q', knowing the values of ;°, y',...,y",
chooses a value for y’ in the appropriate set. The outcome of a play is not a win
or loss for either player (hence the terminology ‘pseudo’) but rather the element
FOO ¥, ...,y ) of A

Suppose we are given a formula of the form (1) and reductions (7,) of all the
quantifiers 9, occurring in it. We refrain from writing out (7,) explicitly; the
reader can obtain it by attaching a subscript s to every occurrence of Q, y, k, fin
(7). The schemas (8;) describing these reductions can be used to formally replace
the generalized quantifiers in (1) with ordinary quantifiers. The game associated
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to the resulting formula can be described as follows. Players V¥ and 3 begin by
playing the pseudo-game defined by (7g). If the outcome is xo € A, then they play
the pseudo-game defired by {7,,). If the outcome of this stage is x, € A, then
they play the pseudo-game defined by (7,,..,)), and so forth. Finally 3 (resp. V)
wins the play if (xo, x;, . . .) is in (resp. out of) . We cali this game the game for
(1) reduced by (7,).

Theorem 1 (general version). Suppose two reductions are given for each of the
quantifiers 2,. Then the games for (2x)x € Z, reduced by these two reductions,
are equivalent in the sense that, if a player has a winning strategy for one of the
games, then he also has a winning strategy for the other.

Proef. We refer to the two reductions as (7,) and (7;) and to the corresponding
games as G and G'. Suppose o is a winning strategy for 3 in G. We shall give
instructions whereby 3 can play G’ and pretend to play an auxiliary play of G, in
such a way that, first, he plays G in accorda.uce with o and therefore wins the
auxiliary game and, second, the outcome x,, of each stage is the same in the actual
game and the auxiliary game. Since the condition for winning, x € %, depends
only on the sequence x of these outcomes, it follows that 3 will also win the
actual game G’. We shall therefore have, in these instructions, a winning strategy
for 3 in G'. This will complete the proof of the theorem for 3; the proof for V is
the same.

Here are the instructions for 3 to follow at stage n. You have already arranged
that s=(xo, ..., X,-1) is the same in both games. Let S be the set of all
outcomes x,, that could arise in stage n of the auxlhary game G if you continue to
follow o while V plays arbitrarily: Then

%)@Yy - (@Y NFOO Y, ...y eS| ©)

holds, where subscnpts s (on Q, y, k, f) have been omitted. Indeed, the game
interpretation of this sentence is that you have a strategy forcing the outcome of
stage n to be in S, and, by definition of S, o is such a strategy. (Technically, it is
not o but the part of o that deals with stage n, given the chosen moves at
previous stages.) Thus, by (8;), we have (2,x,) x,, € S, and, by (8;), it follows that
the formula that is like (9) but has a prime (in addition to the s already
suppressed) on every Q, y, k, f to refer to (7;) also holds. In other words, there is
a strategy whereby you can play stage n of the actual game G’ so as to ensure that
its outcome x,, is in S. Use this strategy in the actual game. When the 2ctual stage
n is finished, let x, be its outcome. So x,, € S. This means, by definition of S, that
there is a play of stage n of the auxiliary game in which you use o and the
outcome is the same x,,. Pretend that this play occurs in the auxiliary game. The
sequence of outcomes, s7(x,,), is still the same in both games, so the instructions
work as desired. 0O
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Theorem 1 assures us that the preference given to the canonical reduction ia
the tcuth definition for (1) is only apparent; any reduction could be used.

Oneeangenemhze'lheorem 1 a bit by allowing the quantifier Q" in a reduction
to depend on the values of y%, . . ., y*~*; the proof is unchanged.

It is convenient to describe strategies for 3 in the canonical game for -
(2x)x € £ in terms of certain trees. A 2-tree is a nonempty subset ¥ of A< (the
set of finite sequences from A) satisfying

T is ciosed under initial segments, and : (10)

for each s € 7, the ‘branching set’ (11)
T(s)={xecA|s"(x)eT}

belongs to 2, i.e., (2,x)s"(x)eT.

If o is a strategy for 3 in the canonical game for (1), then the finite initial
segmeats of infinite sequences (x, x,, . . .) produced when 3 uses o and V plays
arbitrarily constitute a 2-tree T,,. Conversely, every 9-tree T is T, for a unique o,
namely the strategy: after your opponent has chosen the terms of a sequence s,
reply by choosing T'(s). Thus, we may identify strategies for 3 with 2-trees. The
infinite sequences (xo, X, . - .) that can arise when 3 uses o are precisely the
(unions of) paths through 7;,. Thus, @ is a wirning strategy if and only if all paths
through T, lie in &, and (1) holds if and only if there is a 2-tree all of whose
paths lie in &. If o and t are strategies such that 7, c T;, then we call ¢ an
improvement of t; the terminology is justified by the observation that, if 7 is a
winning strategy for (2x)x € %, then so is 0.

Observe that the canonical game for (2x)xe X and the dual. game for
(9x) x ¢ Z differ only in that the names of the players have been interchanged.
Thus, V has a winning strategy ir the cancaical game for (2x) x € Z if and only if
(9x)x ¢ Z is true. The formula (9x)x ¢ 2 can be formally obtained from the
negation of (2x)xeX by applying infinitely often the ‘premex operation’
indicated by

(2x) p(x) < (9x) ().

This equivalence is always correct, by defirition of 4, but its infinite iteration is
justified only when the (canonical) game for (2x)x € & is determined. (We have
parenthesized ‘canonical’, and we shall omit it altogether in such contexts in the
future, since Theorem 1 assures us that the game for (2x)x € Z reduced in any
other way is determined if and only if the canonical game is determined.) The
following theorem summarizes the preceding discussion.

Theoremn 2. The following are equivalent.
(a) Either (2x) x € Z or its ‘formally prenexed negation’ (3x) x ¢ % is true.
(b) The game for (2x)x € ¥ is determined.
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(c) Eiiher there is a 2-tree all of whose paths are in & or there is a $-tree none
of whose paths are in Z.

In the situation of particular interest to us where all the quantifiers 2, are
ultrafilters %, on , several simplifications occur. The first is that, since
ultrafilters satisfy 4¢ = % by definition, we can omit the dualizations in Theorem
2. The second is that, since ultrafilters are closed under finite intersect’Hn, the
intersection of finitely many ®-trees is a ¥U-tree. The third is that, since all our
ultrafilters are assumed to be non-principal, the tree of strictly increasing finite
sequences from o is a U-tree, which we identify with the set [@]<” of finite
subsets of @ (ordered by ‘initial segment’) by identifying a subset of @ with its
increasing enumeration. Similarly, we identify the set of paths through [w]=®
with [@]°. In virtue of tae sec.nd and third of the preceding observations we can,
when discussing U-trees, usually confine our attention to subtrees of [@]=, and
.we shall do so without further comment.

Combining our observations, we immediately obtain the following corollary of
Theorem 2.

Coroliary 2.1. If the game for (Ux)x € % is determined and if all the %, are
ultrafilters, then there is a U-subtree of [0]~* all or none of whose paths are in Z.

If Z is a Borel subset of {@]®, then the game mentioned in Corollary 2.1 is a
Borel game over o U(Power set of w), because the auxiliary conditions
X,eY,, ., and x,€X, are all clopen. Since Martin’s proof [18] of Borel
determinacy works over arbiirary sets, the hypothesis of the corollary is
automatically satisfied.

Corollary 2.2. If A, is an ultrafilter for each s € [0]=® and if Z is a Borel subset of
[@]®, then there is a U-tree all or none o whose paths lie in Z.

From this corollary, we easily obtain a proof of the Galvin—Prikry partition
theorem [11] for Borel sets. Since a direct proof of the Galvin-Prikry theorem is
simpler than any known proof of Borel determinacy, this result should be viewed,
not as an alternat: method for establishing the Galvin—Prikry theorem, but rather
as a clarification of a connection between determinacy and partition properties.

Corollary 2.3 (Galvin—Prikry). If Z is a Borel subset of [®]“, then there is an
infinite H c w all or none of whose infinite subsets are in Z.

Proof. Let % be an ultrafilter, and take all %, = % in the preceding corollary. Let
T be a U-tree (i.e., a U-tree with all U, = %) all or nonc of whose paths lie in Z.
We shall complete the proof by finding an infinite H c w such that every infinite
subset of H is a path through T. Equivalently, we find H such that every finite
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subset of H is a node of 7. But this is easily accomplished by choosing the
elements of H inductively. After the set H, of the first n elements of H has been
determined, let x be any element of the intersection of the sets 7'(s) for all
s c H,; such an x exists as all of the sets T(s) belong to the ultrafilter 4. Then set
H, ., =H_ U {x}; it is clear by induction on n that every subset of H, is a node of
T, s0 H =, .o H, has the desired properties. O

In the next section, we shall need some notation for dealing with games ‘started
in the middle’. To be more precise, consider a formula (2x) x €  as before, and
consider a finite sequence s € A<®. Then the canonica! game for (2x)xe ¥
starting at position s is defined to be the canonical g=me for (2'x) s"x € X where
2, =9, To play this game, one essentially piays the canonical game for
(8x)x €& beginning at stage length(s) and pretending that the previous
(omitted) stages resuited in the sequence of outcomes s. A strategy o to: 3 in this
game can, of course, be described by a 2'-tree T,,, but we prefer to append s at
the beginning and set

T,.={s"t|te T,} U {initial segments of s}.

Then o is a winning strategy for the canonical game for (2x)x € & starting at s if
and only if all paths through 7, lic in #. Also, when writing the formula
(2'x) s"x € X out explicitly, we prefer to start the indexing of the variables x at
& =length(s) rather than at 0, and we may then write (x,, . . . , Xx—;) for s.

3. Amalytic determinacy for ultrafilter games

Our proof of Corollary 2.3, the Galvin—Prikry theorem, required the hypothe-
sis that & is a Borel set in order tc use Martin’s general theorem on Borel
determinacy. The same technique can be used to establish Silver’s partition
theorem [28] for analytic sets, but we can no longer rely on general determinacy
results. Rather, we prove a determinacy theorem for games of the specific sort
needed for partition properties. This section is devoted to this determinacy
theorem, from which Silver’s theorem follows. In the next section, the same
determinacy theorem will be used to establish partition relations involving
ultrafilters, generalizations of the theorem of Mathias quoted in the introduction.

We begin by fixing some notation. Let ¥ be a system of ultrafilters 4, on o,
indexed by the finite subsets s of w. If ¥ c[w]“, we refer to the canonical game
for (Ux) {x} € ¥ as the Z-game, and we define the Z-game starting at position
s € [0]=* similarly. Here {x} means the set whose members are the terms of the
infinite sequence x. Recall from Section 2 that, since the %, are ultrafilters, we
can confine our attention to plays whose outcomes x, are in increasing order, so
that x and {x} are essentially equivalcnt. We write s— £ to mean that 3 has
a winning strategy in the Z-game starting at s, in other words, that
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(U'x) s U {x} € Z in the notation of Section 2. Our primary interest will be in the
relation §— &, but the more general relation s— Z is needed in the analysis of it.
Note that §— & simply means that 3 has a winning strategy in the &-game; he
can choose sets X, € Yy, .. ..., so that, no matter what x, € X, his opponent
chooses, the set of all the selected x’s is in Z. And, by Theorem 1 and the
discussion preceding Theorem 2, §— [@]® — & is equivalent to the statement that
V wins the &-game.

Let C be the collection of those £ c [w]® such that, for every s € [@]<®, either
s— ¥ or s—[w]”— Z. Thus, ¥ belongs to C if and only if the &-game, and also
the &¥-game starting at any position, are determined. Let I be the subclass of C
consisting of those & such that, for every s € [@]=®, s— [0]® — &; for such an %,
V can win the ¥-game starting at any position.

Theorem 3. (a) C is a Boolean o-algebra of subsets of [@]®, and it contains all
basic open sets.

(b) I is a o-ideal in C and is closed under arbitrary subsets.

(c) Any family of disjoint sets in C — I is countable.

(d) For any set ¥ c [®]®, there exist an F,-set £~ and a Gs-set Z* such that
X cXc X and no subset of X — X~ or of &+ — & liesin C — I

Before proving the theorem, we point out some of its consequences.

Corellary 3.1. C is closed under Souslin’s operation A. In particular, if Z is
analytic then the X-game is determined.

Proof. Either parts (a), (b), and (c) or parts (a), (b), and (d) of the theorem
yield the first sentence of the corollary, by classical results of Szpilrajn [30]. (The
proof using (a), (b), (d) is given in [16] and [20], while the one using (a), (b), (c)
is given in [19].) The last part of the corollary follows, since £ € C, so §— Z or
g—w]”-%2. O

Corollary 3.2. If Z is an analytic subset of [w]®, then there is a U-tree all or none
of whose paths are in Z.

Proof. Combine Corollaries 2.1 and 3.1. O

Corollary 3.3 (Silver [28]). I Z is an analytic subse: of [w]®, then there is an
infinite H c w all or none of whose infinite subsets are in Z.

Proof. Proceed as in the proof of Corollary 2.3, using 3.2 in place of 2.2. O

If all the ultrafilters %, are equal to a single ultrafilter %, then the class C
coincides with the class %, introduced (with a different definition) by Louveau



28 A. Blass

[17]. It is shown in [17] that this class is the class of subsets of [@]” having the
Baire property in a certain topology, similar to the topology introduced by
Ellentuck [10]. Since Louveau’s topology satisfies the countable antichain
condition for open sets, his resuit gives an alternate proof of parts (a) through (c)
of Theorem 3 as well as the corollaries above, for the case that all ¥, are equal.

Mot'l‘bem&ltxsclearﬁomthe definitions that C is closed under
complementation, that I is closed under subsets, and that I c C. That C contains
all basic of :n sets is a consequence of open detcrminacy. A simpler proof is to
verify directly that, if

% = {X e[w]” | t is an initial segment of X},

then s— Z if ¢ is an initial segment of s, and s— [@]” — & otherwise.

We shall complete the proof of part (a) of the theorem by showing that C is
closed under countable unions. Let &, € C for every n e o, let £ =U,c0 %, and
let s={xq, ..., X;—1} € [@]". We must prove that s— & or s— [0]” - Z. We
distinguish two cases, according to whether the formula

(m&xk)(q‘su{xg}xk-l-l)' ° '[am 3n {xm R ST xk-l-m—l} - xn]» (12)

which we abbreviate as (U'x) [3m 3ns U {x | m}— Z,], holds.

Case 1: The formula (12) holds. This case hypothesis means that, starting at
position s in the &-game, player 3 can play so as to ensure that, at some finite
stage of the game, he will be able to win the Z,-game for some ». If he plays in
this manner until he reaches a position from which he can win an Z,-game and
then plays so as to win that &,-game, then he wins the Z-game, since %, c &.
Therefore, s— &.

Case 2: The formula (12) does not hold. The part of (12) in square brackets
defines an open subset of {@]”, so, by open determinacy and Theorem 1, falsity
of (12) means

(U'x)[VmVnsU{z|m}-Pp Z,).

Since &, € C, we can infer (U'x) [Vm VnsU {x | m} - [0]®~ Z,]. Thus, I has
a strategy 7 for the canonical game for %' whereby he can ensnre that, at any
stage of the game, he can play, from that point on, so as to forc: the final resuit
s U {x} out of any prescribed &,. We define an improvement o of 7 that will force
sU {x} out of Z. Recall from Section 2 that an improvement is simply a o which,
in every situation, chooses a subset (in the appropriate %, of course) of the set
that 7 chooses; recall also that any improvement o of 7 wins every game that T
wins, so our description of 7 above applies equally to o. The instructions for
will tell 3 not only what to choose at each stage but also how to construct a
sequence of auxiliary strategies p,. Here are the instructions for stage m.

You have already constructed po,...,p,-;, and the outcomes
Xk, - - - » Xk+m—1 Of the previous stages are (because o improves 1) such that you
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can win any presciibed [w]”— %, starting at ¢, = {xo, Xy, ..., Xkem—1}- In
particular, you can win {w]” — &, starting at ¢,, by means of some strategy p,,.
Play, as X,,, a set in ¥, that is a subset of each of the sets chosen by
7, Pos - - - » Pm at position &,,. Such an X,, exists as ¥,_ is an uitrafilter.

If 3 follows these instructions then, from stage m on, he is using an
improvement of p,, which guarantees that the final result s U {x} will be outside
Z.,.. This holds for all m, so the result is outside &. Therefore, s— [w]” — &. This
completes the proof of part (a).

To prove part (b) it remains only to check that I is closed under countable
unions. The proof of this is like the proof for C just completed, except for the
simplification that Case 1 never arises and in Case 2 7 is not needed.

Part (c) is easy if we recall, from Scction 2, that the intersection of two ¥U-trees
is a U-tree, sc that any two strategies have a common improvement. It follows
that, if s— & and s— ¥, then s— Z N ¥. In particular, if £ and ¥ are disjoint,
then no s can simultaneously satisfy s— Z and s — ¥. But, by definition of C and
1, for each & € C — 1. there is an s with s— Z. There are only countably many
s € [@]=* and disjoint &’s require distinct s’s, so there cannot be uncountably
many disjoint ¥ e C — 1.

To prove {4}, it suffices to prove the part about Z~, as the rest follows by
complementation. Let & be given. For each s € [w]~ such that s— &, fix a
winning strategy o, for 3 in the Z-game starting at s, and let & be the set of all
possible outcomes s U Y € [w]®, where Y is the set of ¥’s choices in some play of
this game in which 3 uses strategy o,. As o, wins for 3, # c Z. % is a closed
subset of [w]”, namely the set of all paths through the tree T, .. We define £~ to
be the union of the & for all s such that s— Z, so £~ is clearly an F, subset of Z.
To ccmplete the proof, we suppose that ¥eC—1 and ¥c X -2, and we
derive a contradiction. Since ¥ € C — 1, there is an s such that s—> ¥; fix such an
5. As Yc Z, we have s—> Z, so o, and & are defined. Note thai s— & by
definition of %,. Therefore s— % N ¥. But this is absurd, as ZN¥Yc X NY =
g. O

4. Ultrafilter partition theorems

This section is devoted to partition theorems, for analytic sets, in which
homogeneous sets of various sorts are found in prescribed ultrafilters. All these
results are based on Corollary 3.2, which asserts, for partitions of [@]® into an
analytic piece and a coanalytic piece, the existence of a W-tree that is
homogeneous in the sense that all its paths lie in the same piece of the partition.
We shall show that, in various situations, the concepts of ¥-trees and paths
through them can be replaced by simpler concepts.

For our first result, we specialize to the case that all the ultrafilters % in the
system ¥ are the same ultrafilter %; in this case we refer to AU-trees as Y-trees.
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Theorewm 4. Let U be an ultrafilter on o and let Z be an analytic subset of [@]”.
(a) There are sets HoHyoHy2---2H,2- - - in U such that ¥ contains all
or nonz of the infinite sets X c H that satisfy

Vx,yeX[x<y—yeH]

(b) There is a set H € U and there is a function f:0—> @ such that f is not

bounded on any set in ¥ and ¥ contains all or none of the infinite sets X c H that
Vx,yeX[x<y— x<f(y))

{e) (Taviar [‘Iﬂ see also [7 Theorem 2 1]\ If % is a P-point, then there is a

v \a&yavs goagy &y asdonraeana ey weere SRSl

setHe'&mdthmuaﬁmcaong m—»wsuchﬂzat&’contamsallornoneofdze
infinite sets X c H that satisfy

Vx,yeX[x<y— gx)<y}

(d) (Mathias [19]). If U is selective, then there is a set H € U such that X
contains all or none of the infinite subsets of H.

Remark. Consider the following very special case of the theorem. Let [w]* be
partitioned into two pieces for some finite k. Let & consist of those infinite
subsets of @ whose k smallest elements form a set in the first piece of [w]*. Then
the theorem applies to & since & is clopen. Part () gives us Kunen’s theorem
that every selective ultrafilter contains a homogeneous set for the given partition
of []*. Part (c) gives us a theorem of A. Taylor (see [2, Theorem 2.3]) that
every P-point contains a set H that is homogeneous in the weak sense that all
sufficiently spread-out (i.e., x <y — g(x) <y) k-element subsets of H lie in the
same piece of the given partition. It is easy to see that the spread-out condition is
needed for non-selective P-points and that it does not suffice for ultrafilters
that are not P-point. Indeed, if f:w— w, then thc partition of [w]* into
{{x, y} |f(x)=Ff(y)} and its complement has the property that on any homo-
geneous set f is one-to-one or constant, and on any set that is homogeneous in the
weaker spread-out sense f is finite-to-one or constant. Part (b) of Theorem 4
gives, for arbitrary ultrafilters on w, a partition theorem similar to the one for
P-points but with an even v/~2ker sort of homogeneity. This theorem does not

seem to be explicit i~ ¢+ “‘ -s~‘ure, but it is (for k = 2) essentially equivalent to a
theorem of P . Jzsceibing generating sets for ultrafilters of the form
U %U.

The prou: . theorem 4 reduces, by virtue of Corollary 3.2, to the following
result (a special case of Theorem 4).

Theorem 4'. Let U be an ultrafilter on w and let T be a U-tree.
() There are sets HoHyoHy2---2H,2- - in U such that every infinite
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X c H satisfying
Vx,yeX[x<y—> yeH)]

is a path through T.
(b) There is a set He U and there is a function f:0— o such that f is not
bounded on any set in U and such that every infinite X c H satisfying

Vr,yeX[x<y = x<f(y)]

is a path through T.
(c) If U is a P-point, then there is a set H € U and there is a function g: 00— o
such that every infinite X c H satisfying

Vx,yeX[x<y— g(x)<y]

is a path through T.
(d) (Grigorieff [12]). If ¥ is selecuve, then there is a set H € U such that every
infinite X c H is apath through T.

Proof. Since T is a U-tree, we have, for eachse T,
T(s)={xew|sU{x}eT}e%.
(a) Let H=T(f#) and, for each n € w, let
H,= () T(s);

seT

max(s)<n

this is a finite intersection, so H, € ¥U. If X c H satisfies the condition in (a) and if
Xo, X1, . . . are the elements of X in increasing order, then x, € T(#) and, for each
B, Xp41 € H, c T({xo, X3, . . . , x,}). Therefore X is a path through T.

(b) Let HoHyoH, - - - be as in (a) and assume, by removing all numbers
less than n from H,, that (),., H, =#. Define f : o — o by

f(n) = the smallest k such that n ¢ H,.

Then f is not bounded by any k € @ on any A € U, because otherwise H; and A
would be disjoint whereas they are both in %. The definition of f implies that any
X satisfying the condition in (b) also satisfies the condition in (a).

(c) Let H' € % and f have the properties specified in (b). Since % is a P-point
and f is not constant on any set in %, f must be finite-to-one on some set H € U,
which we can take to be a subset of H'. As f is finite-to-one on H, there exists,
for each x € w, an upper bound g(x) for the elements of H that f maps to values
=<x. Thus, for any y € H,

gx)<y = x<f(y),
so the condition on X in (c) implies the one in (b).
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(d) Having mentioned Kunen’s theorem (selective ultrafilters are Ramsey) as a
consequence of Theorem 4(d), we should avoid using the former in the proof of
the latter. What follows is therefore not the quickest proof of (d); that would
involve applying Kunen’s theorem to the partition of pairs {x <y} according to
whether g(x) <y.

Since selective ultrafilters are P-points, find H'e ¥ and g:0— o thh the
properties specified in (c). Increasing g if necessary, we may assume that g is
strictly increasing and that g(x) >x for all x. Consider the sequence 0<g(0)<
£%0) <- - - obtained by starting with 0 and repeatedly applying g. Let h:0— o
be the function which, on cach interval [g*(0), g**(0)), is constant with value k.
(Here g°(0) means 0.) Since & is not constant on any infinite set, selectivity of %
requires i to be one-to-one on some A € U%. Since ¥ is an ultrafilter, it contains
one of the sets {x e w | h(x) is even} and {x € ® | A(x) is odd}; let B be the
intersection of this set with A. If x <y are two elements of B, and k = h(x), then
k <h(y) as h is one-to-one on B, and k +2<h(y) as the parity of £(y) matches
that of k(x) =k. By definition of & and mo~ sicnicity of g, we have x <g***(0)
and g(x) <g**%(0) <y. Thus, the condition in (c) is satisfied whenever x and y are
in B, so H=H'NB is as required in (d). O

We turn now to applications of Corollary 3.2 in which the ultrafilters 4 are not
all the same. Since our main results about this situation, Theorems 6 and 7 below,
are notationally complicated, we give first a special case whose proof is more
transparent. (This special case was used in [6].) If A and B are two infinite subsets
of o (disjoint in all the interesting cases), we say that an infinite X c w is chosen
alternately from A and B if, when the elements of X are listed in increasing order
as xo<x,<---,x,isin A for all even n and in B for all odd n.

Theorem S. 7ot % and V" be non-isomorphic selective ultrafilters on w, and let
be ... analytic subset of [w]”. There exist sets A€ U and Be YV sich that ¥
conicins all or none of the infinite sets chosen alternately from A and B.

Proof. Define U by letting % be % or ¥" according to whether the cardinality |s|
of s is even or odd. As before, Corollary 3.2 reduces the proof of Theorem 5 to
the following special case.

Theorem 5°. Let U be as above and let T be a U-tree. There exist sets A € U and

BeV such that all infinite sets X chosen alternately from A and B are paths
through T.

Proof. As T is a U-tree, the sets T(s) are in U or ¥ according to whether |s| is
even or odd. Thus, for every m € w,

Apn= () T(s)e¥U, and B,= [ T(s)e¥.
seT,|sleven seT,islodd
max(s)=m max(s)<m
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There is an A’ € U such that
Vx,yeA'[x<y = yeA,];

this can be seen either by following the proof of Theorem 4’ or by applying the
Ramsey property of % to the partition of the pairs {x <y} according to whether
or not y € A,. (Any homogeneous set A’ for this partition either is as required or
satisfies Vx, y€ A’ [x <y — y ¢ A,], but the latter is absurd since it makes A’
disjoint from A, — {a} € U, where a is the smallest member of A’.) Similarly,
there is a B’ € ¥ such that

Vx,yeB'[x<y —> yeB,].

Since % and ¥ are non-isomorphic and are minimal in the Rudin-Keisler
ordering, no function f : w— @ can map one of them to the other. We apply this
first with '

f(x) = the first elemert of B’ larger than x.

Since f(4) # 7, there is a set V € ¥ with f (V) ¢ U and therefore f (w —V) e
Q. Similarly, taking

g(x) = the first element of A’ larger than x,
we obtain a set U € ¥ such that g~ (w — U) € V. Set
A=A'NfY o-V)NUNT@ and B=B'NVNg(w-U).

So Ae ¥ and B € V. We intend to show that, if X is chosen alternately from A
and B, then X is a path through 7. Let the members of X be xo<x;<---, so
x, € A for even n and x, € B for odd n. We show by induction that every initial
segment of X is in 7. Assume {xo,...,X.—1} € T; we must show that x, €
T({xo, - - - » X,—1})- Suppose n is even. (The other case is analogous.) If n =9,
then xoe T(P) because Ac T(#). So assume n>0. Since x,€A’'NU and
X,_1 €8 (@ — U), we see that g(x,_,) #x, and therefore g(x,-,) is an element
z e A’ strictly between x,_, and x,,. By our choice of A’, we have x, € A, which
means that x,eT(s) for all seT with |s] even and max(s)<z. But
{x0, ..., X,—1} is such an s, being in T by induction hypothesis. So x,€
T({xo, - .., Xn-1}) as desired. O

Remcrhk, in Thecrems 5 and S', the assumption that % and 7 are not isomorphic
is essential. Consider, for example, what happens when % and V" are distinct but
isomorphic selective ultrafilters on w. Let f be an isomorphism from % to ¥. We
may assume (by interchanging ¥ with ¥ and f with f !, and by altering f on a set
not in 4, if necessary) that f(x) > x for all x. Then the clopen set Z consisting of
those X = {xo<x,<---} € [w]® such that f(x,) =x, does not have the partition
property asserted in Theorem 5. (Thus, even the partition relation for pairs fails.)
There is also a Borel function F:[w]®— P(w) such that, if Ae ¥ and Be ¥,
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then every Z c o occurs as F(X) for some X chosen alternately from A and B,
namely

F({xo<x1<:--})={n € 0| f(xX24) = X2n+1}-

This F is in some sense the ‘most general’ counterexample to Theorem 5 when
Q, ¥, and f are as above. In particular, if & is an analytic subset of [@]®, then
there are A € ¥ and B € ¥ such that & contains all or none of the sets X chosen
alternately from A and B aad satisfying F(X) =4. This can be proved similarly to
Theorem 5, and it can also be deduced without much difficulty from Mathias’s
Theorem 4(d).

Theorem 6. Let U, be a P-point ultrafilter on o for each s € [w]~®, and let X be
an analytic subset of [®]®. There exists a function g:m— o and there exists a
function -Z, assigning to each ultrafilter U that ,ccurs as a Y, some element
Z(%) € Y, such that X contains all or none of the infinite subsets {xo<x,<---} of
o that satisfy, for all n € w,

X €2Z(Uiyy. s, y) and g(x,) <Xpi1.
As in the previous situations, this follows from a special case via Corollary 3.2.

Theorem 6'. Let U, be a P-point ultrafilter on o for each s € [w]”, and let T be a
QU-tree. There exist g and Z as in Theorem 6 such that every infinite subset
{xo<x,<---} satisfying for all n € »

Xa € Z(‘u{xo....x..q}) and g(xn) <xu+l
is a path through T.

Remark. If all of the 9 were distinct, we could just set Z(%)=T(s) and
dispense with g. The point of the theorem is that, if the same % occurs as U, for
many different s (e.g., if 9 depends only on [s| as in Theorem 5), then the same
Z(%) works for all these s simultaneously. Here g and the assumption that % is a
P-point will be essential.

The special case of Theorem 6 where 9 depends only on the parity of |s| (so
there are only two ¥’s) is the partition theorem quoted in ihe introduction.

Proof of Theorem 6’. For each 4 that occurs as 4, for some s, let I(%) be the set
of such indices s. Define, for each such ¥ and each m € w,
B.(W)= [ TG,
max(s)<m
s0 B (%)eU. As U is a P-point, it contains a set that is almost included in
B,,(%) for every m. Let Z(%) be such a set, chosen to be cT(@) if U = U,, and
let b,,(%) € w be larger than all the (finitely many) members of Z(%) — B,,(%).
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Define g(m) to be the maximum value of b,,(%), where ¥ ranges over the
(finitely many) ultrafilters that occur as U, with max(s) <m. We shall show that
the functions Z and g so defined satisfy the conclusion of Theorem §'. Let
{xo<xy<---} satisfy the requirements in that conclusion. In particular, x,€
Z(U)=T(@), so {xo}eT. Assume as an induction hypothesis that s=
{X0)...,Xs—1} €T for a certain n=1. Then x,eZ(%) and x,>g(x,-,)=
b,._(3%,). By definition of b, (%) and B,,(%), it follows that x, € B,,(%) c T(s),
which means that {x, ..., x,—;, x,} € T. So {x,, x;, . . .} is a path through T, as
desired. O

Our next theorem will allow us, when the 4, are selective and distinct %, are
non-isomorphic, to remove all references to g from Theorem 6. The proof uses
the following lemma, which may be of some independent interest.

Lemma 7.1. Let %, (n € @) be RK-incomparable P-points, and let A, € U,. Then
there exist sets B, € U, such that B, c A,, and

VYu,v,m,n{ueB,,veB,,u<v,m#n— (AweAd,)u<w<vl

Proof. Temporarily fix m and n with m # n. The function f, defined on all but a
finite subset of w by

f(v) = the largest element of A, that is <v,

does not map ¥, to %,, as these are RK-incomparable ultrafilters. So there exist
Cr € U, atid D;} € U, such that f is defined at all points of D' and maps them to
points outside C;,. (The notation for the C’s and D’s was chosen so that the
subscript of a set indicates the ultrafilter in which that set lies.) Thus,

ueC,,veDl u<v —» (AweA,)u<w<uv. (13)

Now un-fix m and 4. Each %, is a P-point, so let E,, € %, be almost included
in C}, and in D}, ior every an. If E,, were actually included, rather than almost
included, in every C;, and Dy}, then we would have

uek,,,veE,,u<v,m#*n - ueC,,veD],u<v

and so
u€eE,,veE,u<v,m#n —» (AweA,)u<w<uv, (14)

and the lemma would be proved. But, because of the almost-inclusion, there may
be counterexamples to (14).

Temporarily fix m and n again, with m # n. The counterexamples to (14) are of
two (possibly overlapping) sorts; either

uekE,—-C:, veE, and u<v<min{weA,|w>u} (15)
or
uekE,, veE,—-D7, u<v. (16)
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By choice of E,,, there are only finitely many « as in {_.-, and “~+ ~ach such u
there are only finitely many v as in _:5) because v<min{we ,|w>u}.
Similarly, by choice of E,, there are only finitely many v as in (16) and for each
such v only finitely many u, as u <v. Tht5, for our fixed m and n, there are only
finitely many counterexamples (u, v) to (14).

Again un-fix m and n, and refer to the counterexamples discussed in the
preceding paragraph as (m, n)-counterexamples. For each n, obtain B, by
removing from A,NE, any element that is a component of an (m, n)-
counterexample or an (n, m)-counterexample for any m <n. As A, and E, are in
%, and only finitely many elements have been removed from A, N E,, we have
B, € ¥%,. But every counterexample (for any (m, n)) has had at least one of its
components removed (the component corresponding to the larger of m and n), so
(14) becomes true if the E’s are replaced by B’s. O )

Corollary 7.2. Let U, (n € ®) be pairwise non-isomorphic selective ultrafilters on
o and let g : ®— o. There are sets B, € U, such that

(Vx,y eUB,) [x<y — g(x) <y}

Proef. By selectivity, find sets A, € ¥, satisfying
Vx,y €A, [x<y — g(x) <y]

(as in the proof of Theorem 4'(d)). Then let B, € ¥, be as in Lemma 7.1, and -
suppose x <y are in |, B,. If x and y are in the same B,, then as B, c A, we
have g(x) <y by choice of A,. If they are in different B’s, say x € B,, and y € B,,
then the choice ‘of the B’s ensures that x<w<y for some weA,. So
glx)<w<y. 0O

The following is an immediate consequence of Theorems 6 and 6' and
Corollary 7.2.

Theorem 7 (and 7). Assume that U, is a selective ultrafilter o @ for every
s € (0] and that, for any s, t € [@]=® the ultrafilters U, and W, are either equal or
non-isomorphic. Then the function g in Theorem 6 (and 6') can be taken to the
identity function.

Of course, taking g to be the identity function amounts to deleting the
requirement that g(x,) <x,., and therefore amounts to removing g altogether
from the statement of Theorem 6 (and 6').

5. Some notions of forcing

Mathias [19] associated to every selective u'trafilter % on @ a notion of forcing,
Py, which adjoins to the universe an infinite subset R of w such that each set in %
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contains all but finitely many elements of R. We shall discuss in this section a
similar notion of forcing Q(¥) associated to a family ¥ = (%% :s € [@]<) of
ultrafilters on @; we obtain analogs in this context of many of Mathias’s results
for the selective case, and we use this forcing construction to make some progress
on a question of Prikry and Laver. At the end of the section, we also review some
well-known facts about adjoining an ultrafilter on @ by forcmg and about
Solovay’s Lebesgue measure model [29]

The terminology ‘Mathias forcing’ is used with somewhat different meanings by
different authors. Mathias ii9] defined a notion of forcing P,, where o is the
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than min(A); (s, A) is an extension of (¢, B) if sot, AcB, and s —tc B. The
forcing is viewed as adjoining an infinite subset R of w, about which (s, A) gives
the information that s ¢ R c s U A. Two special cases received much attention in
[19], the case that s consists of all infinite subsets of @ and the case that fis a
selective ultrafilter on w. By ‘Mathias forcing’, some people mean one of these
special cases, some mean the other, some mean either one, some mean the case
where & is an arbitrary ultrafiter on @, and some mean the most general case
considered by Mathias, where of is merely the complement of a free ideal. It will
be convenient in this paper to use the name ‘Mathias forcing’ in a sense broad
enough to include P, for all ultrafilters & on w; we shall not have occasion to
consider more general &. The reader should be warned, however, that Mathias
forcing for non-selective ultrafilters does not share “all the familiar properties of
Mathias forcing for selective ulirafilters; for example, it need not adjoin any
functions @ — @ that eventually dominate all ground model functions [7]. It
seems that, in some respects, the appropriate analog for non-selective ultrafilters
of Mathias forcing for selective ultrafilters is not Mathias forcing but rather the
forcing O(U) (or its special case with all %, equal) that we are about to define.

Let % = (9 :s € [w]~”) be a family of ultrafilters on @ indexed by the finite
subsets s of w. As in. Section 3, if Z c[w]” and s € [w]=*, we write s— & to
mean that player 3 has a winning strategy in the Z-game (the canonical game for
(Ux) {x} € Z) starting at position s. Such a strategy is represented, as in Section
2, by a tree T (there called T,,), a subtree of [@]=“ ordered by ‘initial segment
of’, in which every node is comparable with s and every node ¢ o s has branching
set

T(t)={n>max(t) |tU{n} e T} e,

Thus, T consists of a trunk, ending at s, beyond which every nocde has many
immediate successors, ‘many’ being in the sense of the appropriate ultrafilter. We
call such a tree a ¥U-tree with stem s.

As in Section 3, let I (resp. C) be the collection of all ¥ c [w]” such that, for
every s€[w]*®, s—>[w]°—-Z (tesp. s—=Z or s—[w]”—%). By Theorem
3(a,b), C is a Boolean o-algebra and I is a o-ideal, so the quotient algebra
B =C/I is also a Boolean o-algebra. By Theorem 3(c), B satisfies the countable
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chain condition, i.e., every collection of pairwise disjoint non-zero elements of B
is countable; it is well known [27 (20.5)] that, in the presence of the countable
chain condition, countable completeness implies completeness, so B is in fact a
myleteBooleanalgebra B is the complete Boolean algebra associated to the
forcing Q(¥) (or just Q, as A is fixed) that we shall study. We coulG simply
define Q to be B — {0}, but it will often be more convenient to use a certain
dense subset instead. Before defining this @, we record for future reference that
we use [#] for the equivalence class in B of a set Z € C and that Theorem 3(d)
implies that every element of B is [¥] for some Borel set &, for if ¥ € C then
Z, &, and &~ (as in Theorem 3(d)) all differ by sets in Z. Thus, B can also be
viewed as the quotient of the algebra of Borel sets by its intersection with I.

Consider any non-zero [¥] € B. So & € C — I, which implies that s— & for at
least one s. Fix such an s, and let T be a QU-tree with stem s representing a
winning strategy for 3 in the &-game starting at position s. As the strategy is a
winning one, all paths through T are in &. Writing Paths(T) for the set of all
paths through T, we have

Paths(T) c %,
Paths(T)eC  (as Paths(T) is closed), and
Paths(T) ¢ 1 (as s— Paths(T), thanks to the strategy represented by T).

Thus, the elements of B of the form [Paths(T)), where T ranges over ¥U-trees
with arbitrary stems, constitute a dense subset of B — {0}. We observe that the
trivial implications (where T, T’ are ¥U-trees with arbitrary stems)

TcT' > Paths(T)cPaths(T') > [Paths(7)] <[Paths(T")]

are reversible, for if T has a node ¢ not in T”, then the subtree T of T consisting
of the nodes of T comparable with ¢ has Paths(7™) included in Paths(7) but
disjoint from Paths(T"), so [Paths(T)] % [Paths(T")].

Thus the partial ordering O =Q(¥) of all %U-trees with arbitrary stems,
ordered by inclusion, is embedded as a dense subset of B by T+ [ aths(T)]. The
Boolean-valued universe V2 may therefore be viewed as arising from V by
adjoining either a V-generic ultrafiter G in B or the V-genmeric subset
G[Q ={T € Q| [Paths(T)] € G} of Q.

Each of the primed theorems of Section 4 (Theorems 4’ to 7') describes, under
certain hypotheses on %, a dense subset of Q(%¥), which may provide a more
convenient, though of course equivzalent, way to view Q-forcing. (Actually, they
describe U-trees without stems, but it is trivial to take stems into account.) In

particular, Theorem 4'(d) says that, when all of the %, are the same selective
ultrafilter %, then the trees of the form

{t e [@]="|s is an initial segment of ¢ and ¢ —s c H},

where s € [@]~” and H € U, are dense in Q. Since the inclusion relation on such
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trees coiresponds exactly to the ordering of Mathias conditions (s, H), we see
that Q-forcing is in this case equivalent to Mathias forcing.

Similazly, Theorem 4'(c) says that, when all %, are the same P-point % (not
necessarily selective), then Q has adense subset consisting of trees of the form

{¢ e[@]=®|s is an initial segment of ¢ and ¢ —s ¢ H, and
Vx,yet-sx<y — g(x)<yl},

where s € [@]<®, H € U, and g: o — w. Thus, Q-forcing is equivalent in this case
to forcing with triples (s, H, g) of this sort, the ordering of these triples being
that (s’, H',g') extends (s, H,g) if s'2s, H' cH, g'=g on H', s'—scH,
and Vx,y es’' —s[x<y—g(x) <y}

The remaining primed theorems of Section 4 clearly have similar, though more
comp'cated, conseque.ices in terms of dense subsets of Q.

Any V-generic ultrafilter G in B determines an infinite subset R == R of ¢ by

neR; & [{Xe[w]”|neX}]eG. (i7)

It follows, by an easy induction over Borel sets, that if 93 is any Borel subset of
[@]® in V and 9B is its canonical extension in some extension of V containing Rs
(i.e., B is coded by the same real as $B; see [29] for details), then

Rze® & [B]eG. (18)

In particular, since every element of B is represented by a Borel set, Rg
completely determines G; V[G]= V[R;]. We may therefore view forcing with B
(or Q) as simply adjoining a subset R of @, and we call the Rg’s that arise in
this way Q-generic (over V). Notice that the generic subset G[Q of Q is
definable from R by

TeG|Q & RgePaths(T)
& Rg is a path through T. (19)

It follows from (18) that, if X is Q-generic then- X ¢ % for any Borel set (of V)
M € I. The converse holds also, for if X is not in the extersion of any % € I, then,
for arbitrary Borel sets 3 of V, whether X belongs to 3 depends only on [#], so
we can define G c 8 by

[BleG © XeA

Then clearly X = Rg, and it is not hard to verify that G is a V-generic ultrafilter
in B. (The proof uses the fact that every maximal antichain of B in V is countable
and can be represented by Borel sets 3, whose union is all of [@]” in V. Then the
%, cover [w]® in the extended universe, so, for some n, X € 8, and therefore
[8,] € G.) All this is entirely analogous to the discussion of random reals in [29];
under this analogy, C and I correspond to the algebra of Lebesgue measurable
sets and the ideal of sets of measure zero.
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The following definitions lead to a somewhat more concrete characterization of
Q-generic subsets of @, Theorem 8(a, ¢) below, analogous to Mathias’s charac-
terization [19] of the Py-generic sets for selective ¥ as those infinite subsets of @
ﬂxatareahnostmcludedmeverysetof%(mthegmundmodel) By a
Q¢-regulation (or just a regulation, as long as A is fixed), we mean a function Z
assigning to each se[w]=” a set Z(s)e . We say that an infinite subset
{xo<x;<---} of @ obeys the regulation Z if, for every new, x,€
Z({xo, - - - » Xa—1})- If this holds for all sufficiently large n (rather than for all n),
then we say that X eventually obeys Z.

Theorem 8. Let X be an infinite subset of w in some extension of V. Then the
Jollowing are equivalent.
(a) X is Q()-generic over V.
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(c) X eventually obeys each ¥U-regulation Z€ V.
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Proof. The equivalence of (a) and (b) was proved above. To show that (a)
implies (c), it suffices to show, for each given regulation A, that the trees T, all of
whose paths eventually obey Z, are dense in Q. But this is easy, since any tree
Toe Q can be extended to such =z T by replacing the branching sets Ty(t) by
To(t) N Z(t). More precisely, if T is a U-tree with stem s, then

T={eh|(Mxet—s)xeZ(tNx)}

(where ¢t Nx consists of the predecessors of x in ¢) is an extension of T, whose
paths eventually obey Z (the ob. dience beginning as soon as the path gets beyond
s).

It remains to show that (c) implies (b), so assume (c) and let 3 be a Borel set
(of V) in 1. That B € I means that, for every s € [0]<®, there is a U-tree T, with
stem s, none of whose paths are in 3. Define

z0=_ N _ T

As each T, is a U-tree beyond s and as the mtersectlon here is a finite one, we
have Z(t) € U, so Z is a U-regulation. Consider an arbitrary set Y ={y,<y; <

- -} in V that eventually obeys Z; let k be such that y, € Z({ys, - - - , Ya-1}) for
all n=k, and let s={yp,...,Yx—1}- Then, for all n=k, we have y, €
L({¥o, - - - » Ya—1}) by definition of Z, so Y is a path through T, and therefore
Y ¢ 3. We have shown that no Y € 3 eventually obeys Z (in V). Thls fact is IT},
hence absolute. So the assumption (c) implies X ¢ 8. O

Corollary 8.1. If all the ultrafilters U, are the same U and if X is Q-generic over
V, then every infinite subset of X is also Q-generic over V.
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Proof. Let Z be any %-regulation. Since an 9 are equal to %,
Z'(t)=)Z(s)
sGt

defines a U-regulation Z'. Clearly, if X eventually obeys Z’, then every infinite
subset eventually obeys Z. O

If enough (but not necessarily all) of the 4. are equal, one obtains results
analogous to Corollary 8.1 but more complicated. We confine our attention to the
simplest such case, namely that 9, depends only on the parity of |s|. Let us write
Y (resp. U;) for the common value of ¥, for all s of even (resp. odd) size.
Suppose Ay and A, are disjoint sets, with A; € ¥;. If X is O-generic, then, with
finitely many exeeptions, the elements of X in increasing order are chosen
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subsets Y of X, so the conclusion of Corollary 8.1 fails in this situation. Indeed, it
is clear that Y will have the necessary alternation property if and only if the
elements removed from X in forming Y are, with an even finite number of
exceptions, taken in consecutive (in X) pairs. The following corollary says that
this restriction, obviously necessary if Y is to be Q-generic, is sufficient.

Corollary 8.2. If % depends only on the parity of |s|, if X is Q-generic over V,
and if Y is an infinite subset of X such that every sufficiently large y € Y has an
even number of predecessors in X — Y, then Y is also Q-generic over V.

Proof. Proceed as in the proof of Corollary 8.1, except that
Z®O= ( Z(s)» 0O

sct, (t—s|even

Another easy consequence of Theorem 8 is that the enumeration of a
Q-generic set dominates all ground model reals.

Corollary 8.3. Let {xo<x;<---} be Q-generic over V, and letf:w—>w bein V.
Then, for all sufficiently large n, f(n) <x,.

Proof. Apply Theorem 8(c) to the regulation Z(f) ={xew |x>f(|t])}. O

By putting max(t) in place of |¢| in the proof, we could put f(x,-,) in place of
f(n) in the corollary.

The next theorem extends to Q-forcing another result proved by Mathias
[19, (2.9)] for the selective case. It will be corvenient to say that a finite subset s
of w favors a sentence @ in the Q-forcing language if there is a @-tree with stem
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s that forces @. Observe that two @U-trees with the same stem are always
compatible in Q, for their intersection is another ®-tree with the same stem.
Therefore, no s can favor both @ and .

Theorem 9. Letse[m]“andktwbeasentawe of the Q-forcing language.
(2) s favors @ if and only if (%n)s U {n} favors ¢.
(b) Either s favors @ or s favors —p.

Proof. (a) If a QU-tree T with stem s forces @, then, for all n € T(s), the subtree
{te T |t comparable with sU {n}} is a U-tree with stem sU {n} and forces ¢
because it is an extension of T. Conversely, given Q-trees 7, with stems s U {n}
forcing @ for all n € A where A € 4, then the union T of the T,’s is a WU-tree with
stem s, and it forces @ because each of its extensions in Q is compatible with
some T, and therefore cannct force —.

(b) Suppose s favors neither. @ nor ¢. Define a tree T to consist of s, all
initial segments of s, and those ¢ € [@]=” such that s is an initial segment of ¢ and
all initial segments of ¢ longer than s (including ¢ itself) favor neither @ nor —g.
Thus, for e T and ¢ longer than s, T(f) = {n >max(f) | tU {n} favors neither ¢
nor "\@}. By part (a) of the theorem (and the fact that each %, is an ulirafilter), T
is a WU-tree witk stem s. Let T’ be an extension of T deciding @, and let ¢’ be the
stem of T'. So ¢’ favors one of @ and —¢, yet is a node of T beyond s. This
contradicts the definition of 7. O

To conclude our discussion of Q-forcing, we give an application to the
following question raised by Laver and Prikry. Is it consistent with ZFC that

if P is any non-trivial notion of forcihg satisfying the countable chain
condition, then P forces that there exists a real that is either Cohen
gene.ic or random over the ground model? (20)

Of course, (20) implies Souslin’s hypothesis, for a Souslin tree is a c..c.c. notion
of forcing that adjoins no reals at all. It is also known, and more relevant to the
present discussion, that Mathias forcing Py, adds no Cohen or random reals if ¥ is
a selective ultrafilter but it adds Cohen reals if % is a non-selective ultrafilter.
Thus, (20) implies that there are no selective ultrafilters. We shall extend this
result by showing that, if all 4 are the same P-point %, then Q-forcing adds no
Cohen or random reals. Since Q satisfies the c.c.c. this means that (20) implies
that there are no P-points. In fact, we shall prove a bit more, namely that, if all
%, are the same P-point and if A is any real in the Q(¥)-forcing extension of V
but not in V, then the submodel V[A] contains a function w— w that eventually
dominates all functions w— @ in V. It is well-known that Cohen and random
forcing do not produce any such dominating functions, so it follows that A cannot
be Cohen-generic or random over V.

The proof of the existence of a dominating function in V[A] begins with some
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general facts about reals in Q-forcing extensions. These facts, which generalize
results of Mathias [19, Section 6] for the selective case, do not depend on special
assumptions about the 4%, so for the time being ¥ can be any [w]=“-indexed
family of ultrafilterson .

Let A be a name in the Q-forcing language such that “A c »” is forced (by
every condition). For each s € [0]<®, we define

A(s) = {k e | s favors “k € A"},

which may be thought of as s’s opinion of what A is. Notice that each A(s) and
indeed the whole function s— A(s) are defined in the ground model V. By
definition of ‘favors’ and by the observation that the intersection of finitely many
QU-trees with stem s is again such a tree, we can find, for each s, a U-tree T, with
stem s that forces “k € A” (resp. “k ¢ A™) for all k <max(s) such that k € A(s)
(resp. “k ¢ A(s)”). Thus,

T, forces “A agrees with A(s) ilp to and including max(s)”.
Define a ¥-regulation Z by

Z0=_N T
st with teT;

Now consider a set R = {r,<r, <- - -} Q-generic over V; we work in V[R] for
the time being. We write 7(n) for the initial segment {r,, . . . , 7,1} of R, and we
write G and G ['Q for the V-generic subsets of B and Q associated with R via (18)
and (19). By Theorem 8, R eventually obeys the regulation Z, so fix an n, such
that, for all n>n,, r, € Z(7(n)). It follows that, if n =k >n,, then 7(n) € Tr,
(by induction on n using the definition of Z), so R is a path through T;y,. By
(19), this means that T;;y€ G [Q for all k=n,, and therefore, by definition of
I,

Ag agrees with A(F(k)) up to and including 7;_;, (21)

where Ay is the denotation of the name A with respect to the generic set G[Q
corresponding to R. Thus, A, is obtained from R in a very simple fashion,

A= U AG(+1)N (0 +1),-
=np
via the function s — A(s) which is in V.

Theorem 10. Let U be a P-point on o and let U, = U for all s € [w]~. LetR bea
Q-generic subset of ®, and let A be any subset of w in V[R] but not in V. Ther
V[A] contains a function @ — @ eventually dominating all functions w—> @ from
V.

Proof. Fix a name A such that Az =A and such that every condition forces
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“A c ”. We continue to use the notation introduced in the discussion preceding
the theorem. -

For each se[w]<®, A(s)eV but A¢V, so we can define &(s) to be the
smallest member of the symmetric difference AAA(s). We also define

D(s) = {n>max(s) | either n < &(s) or 8(s) e A(s U {n}) AA(5)}-

For each fixed s, D(s) is a set in V, and D(s) ¢ % by Theorem 9(a) and the
definitiou of A(s). The functions & and D are in the model V[A]. ‘

Consider any k> n,. By definition of J, 6(7(k)) e AAA(F(k)). On the other
hand, if . = 8(7(k)), then, by (21), 8(7(k)) ¢ AAA(F(k +1)). Therefore, either
n<8(F(k)) or 8(F(k)) e A(F(k +1))AA(F(k)). As F(k+1)=F(k)U {n}, we
have shown that

re € D(FOY). ' @)

The sets D(s), for s € [@]<* constitute a countable family in V[R] (in fact in
V[A]) of sets in V. As V[R] is a c.c.c. forcing extension of V, there is a countable
family @ in V that contains every D(s). (9 consists of all the sets in V that are
forced by some condition in Q to be a D(s).) As ¥ is a P-point, it contains a set
E that is almost disjoirt f~om (i.e., has finite intersection with) every set in 9 that.
is not in ¥. In particular, E N D(s) is finite for every s. Define g:w— @ in V[A] -
by taking g(n) large enough to be an upper bound for E N D(s) for all s with
max(s) <n. We can arrange that g is a strictly increasing function.

As R eventually obeys the regulation that maps every s € [w]=® to E, there is
n, such that r,€E for all k>n,. Combining this with (22), and setting
n=max{ng, n,}, we have, for all k>n, r, € END(7(k)) and therefore r, <
g(re—1). It follows, by induction on k, that r, <g*~"(r,) for all k=n.

The function &+~ g*"(r,) (for k =n, and extended arbitrarily for k <n) is in
V[A] because g is. It eventually dominates k+>r, (from n on), which in turn
eventually dominates every function w— w in V by Corollary 8.3. O

It is tempting to try to prove Theorem 20 without the hypothesis that 4 is a
P-point and thereby refute (20). Unfortunately, there exist ultrafilters % such
that Q(%¥)-forcing with all 9, = U adds Cohen reals. Specifically, let P be the set
of finite sequences of zeros and ones, ordered by inclusion, so P is a notion of
forcing adjoining a Cohen real, and let & be the filter on P generated by the
family 9 of dense op~n subsets of P. (Note that & is closed under finite
intersections.) Let % be an ultrafilter on @ isomorphic to some ultrafilter on P
that includes &; or, more generally, let % be an ultrafilter on w and let f: 0 — P
be a function such that f(¥%) 2 F. f R= {r,<r, <- - -} is a Q-generic subset of @
(where %, = % for all s), then the infinite string of zeros and ones obtained by
concatenating f(ro) "f(r;) " - -, which is clearly in V[R], is Cohen-generic over V.
To see this, let D eV be a dense open subset of P. For each s = {xo<:--<
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X,-1} € [@]=?, the set

D,={p €P|f(x0) F(x))™ - F(¥a-1)"p € D}

is also dense and open, so f~(D,) € U. Being Q-generic over V, R eventually
obeys the regulation Z defined (in V) by Z(s) =f"Y(D,). So there is an n with
f(r) € Dy,,......_- This means that f(ro) f(r;)™ - - has an initial segment in D,
namely f(ro) F(r) ™ - - f (ra)-

It follows from the result just proved and Theorem 10, that no ultrafilter that
includes & is a P-point.

We conclude this section by summarizing some facts that we shall need later
about two familiar forcing constructions, collapsing below an inaccessible cardinal
and adjoining a generic ultrafilter on w.

Let x be an inaccessible cardinal in V. The notion of forcing for Lévy
collapsing below k, Lévy(x), is the set of finite partial functions p from
(k- {0}) Xw to k satisfying p(a, k) <a whenever p(a, k) is defined. A
Lévy(x)-generic set G codes functions g, from @ onto « for all & € x — {0};
8.(k) =B if and only if some p € G has p(e, k) =p. In V[G], xis §,. If A<k,
then {p € G | domain(p) c (A — {0}) X o} = G, codes all the g, for « <A and can
itself be coded by a single real in V[G] as A is countable in V[G]. Every real in
V[G] is in V[G;,] for all sufficiently large A < x. We write HDVR for the class of
elements of V[G] hereditarily (ordinal) definable in V[G] from parameters in the
ground model V and parameters that are reals (in V[G]). (The word ‘ordinal’ in
the preceding sentence is redundant, as arbitrary parameters from V are allowed,
but its inclusion makes it evident that general facts about ordinal definability with
parameters are applicable. In particular, HDVR is definable, in V[G], in the
language of set theory augmented by a predicate symbol designating the ground
model V. If one assumes V = L, then parameters from V can be eliminated in
favor of ordinals, so HDVR is the class of sets hereditarily ordinal definable from
reals in V[G].) If £ e HDVR is a set of reals, then there is a formula y(x, y, z),
there is a real a in V[G], and there is a parameter p € V such that, for all
sufficiently large A < kx and for all reals x € V[G],

xe¥ & V[G,,x]Ey(x,a,p). (23)

(Actually, A need only be large enough to ensure a € V[G,].) All the preceding
facts about Lévy (k) forcing can be found in [19] or [29]. The following is in [19,
Theorem 5.8]. If x is a Mahlo cardinal in V and if Z € V[G] is a set of reals, then
there exist arbitrarily large inaccessible (in V) cardinals A<x such that
ZNV[G,]eV[G,] and (RVD, ZNV[G,]) is an elementary submodel of
(RVICD, %), as models of second-order arithmetic with an additional unary
predicate for Z. For example, if % is an ultrafilter on @ in V[G], then N V[G,]
is an ultrafilter on o in V[G;,] for many A <«k.

The simplest notion of forcing to adjoin a new ultrafilter on w is the set [@]® of
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infinite subscts of @, ordered so that ‘extension’ means subset. A forcing
co::dition X € {@]” is thought of as saying about the ultrafilter being adjoined that
it contains X. As defined here, the ordering is not separative; the separative
quotient, which produces the same forcing extension, is obtained by identifying
two conditions X and Y if the symmetric difference X AY is finite, and the ordering
corresponds to inclusion modulo finite sets. The separative quotient is countably
closed because, given a sequence X, X,, ... of infinite sets that is decreasing
modulo finite sets, we can form an ihfinite ¥ aimost inciuded in every X,, simply
by choosing the ath element of ¥ from X,N --- NX,. Thus, this notion of
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that a sanaric enhcat 7 nf [nﬂ“' is an ultrafilter on @, The least trivial nart of the
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venﬁcatlonlsthathonmnonro) — X for each X c w; but, by the preceding
observation, it suffices to consider XeV, and then {Ye[w]”|Y<cX or
Y c o — X} meets G because it is dense in [@]®. Similarly, if f: 0 — @ is V[G],
then f € V and {Y € [®w]” | f is one-to-one or constant on Y} is in V and dense in
[@]® and therefore meets G. Thus, G is a selective ultrafilter on w in V[G). We
shall refer to such ultrafilters as [@w]”-generic over V.

The notion of forcing [@]®, or rather its separative quotient, can be identified
with a dense subset of the collection of filters on @ that have countable bases,
ordered so that larger filters count as extensions of smaller ones. A set X € [@]” is
identified with the filter {Y c @ | X — Y is finite}; that filters of this special form
are dense among all countably generated filters is shown by the same argument as
the countable closure of the separative quotient in the preceding paragraph.
Thus, we may view [@]® forcing as constructing an ultrafilter by approximating it
with countably generated filters. Other sorts of ‘small’ filters, particularly the F,
filters and the analytic filters (with respect to the usual product topology on the
power set of ), can also be used to adjoin ultrafilters. Work of Teissier (née
Daguenet) [9] shows, in topological rather than forcing terminology, that forcing
with F, filters adjoins a P-point with no selective ultrafilter RK-below it and that
forcing with analytic filters adjoins an ultrafilter with no F-point RK-below it.

The Lévy-Mahlo model

Throughout this section, we assume that x is a Mahlo cardinal in V and that G
is Lévy(x)-generic over V. We study partition relations and ultrafilters in V[G].
The first result, a straightforward extension of a theorem of Mathias [19] (which is
in turn based on work of Solovay [29]), establishes for HDVR sets in V[G] some
of the properties previously established for analytic sets in arbitrary models.

Theorem 11. In V[G], if U = (% :s € [@]=®) is a family of ultrafilters on w, then
every HDVR subset of [w]® belongs to the Boolean algebra C defined in Section 3.
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Proof. Let ¥ be any HDVR subset of [w]® in V[G]. By properties of Lévy(x)
forcing proved in [19,29] and recalled in Section 5 above, there exist a reai
a € V[G], a parameter p € V, an ordinal x’' <k, and a formula vy in the language
of set theory (with three free variables) such that:

(i) k' is inaccessible in V.

(ii) @ € V[G’), where G' is G truncated at k', called G,. in Section 5.

(iii) The family ¥’ = (%;:s € [@]**) is in V[G'], where ¥, = U N V[G’].

(iv) Forevery Ye[w]® Ye & © V[G', Y]k y(Y, a, p).

We shall show that & is in C by finding a Borel set 8 (which is in C by Theorem
3) such that the symmetric difference ZA® is in I.

Let C' and I' be the Boolean o-algebra and o-ideal in V[G'] determined by
@’. Thus, a subset Z of [w]” in V[G'] belongs to I' if and only if there exists, for
each s € [w]=®, a U'-tree T; (in V[G']) with stem s, such that no paths (in V[G'])
through T; are in Z. Clearly, T, is also a ¥U-tree (in V[G]) with stem s. If Z is a
Borel set and Z is its canonical extension to a Borel set in V[G], then the fact
that & contains no paths through T; is a IT; statement, hence absolute, so Z
contains no paths through 7; (see [29] for details of such absoluteness considera-
tions). Thus, Z € I. The number of Borel sets (of V[G']) Z eI is the power of
the continuum in V[G'], which is smaller than x, hence is countable in V[G].
Therefore, the union of all the corresponding %’s is in I. Notice that this union is,
by Theorem 8, precisely the set of Y € [w]” (in V[G]) that are not Q(%')-generic
over V[G']. Thus, to complete the proof, it suffices to find a Borel set 9 such that
Z A B consists entirely of such Y’s, i.e., such that, whenever Y is Q(4')-generic
over V[G'], then Ye Z if and only if Y € 8.

Consider an arbitrary Q(¥')-generic subset of w, say Ry where H is a

V[G']-generic ultrafilter in C'/I'. Then by (iv),

RH €e¥X & V[G’, RH] E W(RH, a, p).

The model V[G’, Ry] is the Q(A')-generic extension V[G'][H] of V[G']. The
parameters Ry, a, p occurring in y are the denotations, with respect to H, of
pames R,d, and j in the Q(4U')-forcing language over V[G’). (This uses (ii) to
ensure that & makes sense. R names the real associated to the canonical name for
a generic set.) Thus, by elementary properties of generic extensions (*“‘forcing
equals truth”),

RyeZ & |ly(R, 4 p)leH.

The Boolean truth value ||y(R, 4, 5)|| (calculated in V[G"]) is independent of H
and is the equivalence class modulo I’ of some Borel set &' (by Theorem 3(iv)).
The definition relating Ry; to H shows that

¥R, 4, p)l| =[B)eH ¢ RyeB

where 3 is the canoniéal extension B’ of B’ to a Borel set in V[G]. Summarizing,
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we have
RHEZ & RHEQ,

asrequired. O

Corollary 11.1. In V[G], Theorems 4, 5, 6, and 7 continue to hold if the
assumption “% is analytic” is weakeneed to “% € HDVR”.

Proof. In the proofs of these theorems, analyticity was used only to ensure that
% e C. In V[G], this follows from £ e HDVR. 0O

The part of Corollary 11.1 that pertains to Theorem 4(d) was proved by
Mathias [19, Sectica 5]. The following corollary is an immediate consequence of
this result of Matkias. Recall from Section 5 that [@]®, ordered by mclusxon, isa
(non-separative) notion of forcing that adjoins a selective ultrafilter.

Corollary 11.2. In V[G], every selecave ultrafilter is [m] -generic over HDVR.

Proof. We work in V[G]. Let ¥ be a selective ultrafilter and let & e HDVR be a
dense subset of [@]*; we must show that % meets 9. By Theorem 4(d), extended
by Corollary 11.1, there is a set H € ¥ such that 9 contains all or none of the
infinite subsets of H. As 9 is dense, ‘none’ is impossible, so we have ‘all’. In

partticular, He®. O

Corollary 11.2 implies that, in a certain sense, all selective ultrafilters in V[G]
look alike. More precisely, consider a statement o about a selective ultrafilter in
V[G] such that

(i) if U satisfies o, then so does every ultrafilter isomorphic to %, and

(ii) o can be expressed in the form HDVR[¥] E @, where the sentence ¢ can

involve names for % and for members of HDVR.
Tanen o holds either for all selective ultrafilters or for none. Indeed, if there is a
selective U satisfying o, then @ holds in the [w]“-generic extension HDVR[%¥] of
HDVR, hence must be forced over HDVR by some X € %. Then ¢ holds in
HDVR([%'], and : :erefore o holds of ', for every selective ¥’ containing X.
But then (i) implies that o holds for every selective ¥'. (It ic obvious that
hypothesis (i) cannot be omitted, for then o could say that % contains the set of
even numbers. I conjecture that (ii) cannot be omitted either.)

Louveau [17] has shown that, in models of Martin’s axiom and not CH,
selective ultrafilters do not all look alike, for they can be distinguished by their
degrees of stability, i.e., the smallest x such that some K sets in the ultrafilter do
not all almost include a single set in the ultrafilter. This degree of stability is (for
P-points) between R, and 2™, so in models of CH (like our V[G]) it cannot be
used to distinguish between selective ultrafilters. Selective ultrafilters adjoined to
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a model of ZFC by forcing with [@]® always have degree of stability 2™ (of the
extension; this may be smaller than 2™ of the ground model).

The next theorem strengthens Corollary 11.2 by showing that the selective
ultrafilters in V[G] are not only generic individually but mutually generic, except
for isomorphic ones. "

Theorem 12. In V[G], every sequence (%,:n € w) of pairwise non-isomorphic
selective ultrafilters is generic over HO VR wuh respect to the product of countably
many copies of [@]®.

Remark. Since forcing with { 2] does not adjoin new reals, the product forcing
mentioned in the theorem can also be viewed as the w-length iteration of
[@]*-forcing with countable support (i.e., inverse limit).

The theorem cannot be extended to unoountably many ultrafilters, since an
N;-sequence of ¥,’s could encode, via the choice whether ¥, contains the set of
even numbers, an arbitrary subset R,;; in particular (since CH holds in V[G)), it
could encode another selective ultrafilter ¥. Then ¥ and the %,’s cannot be
mutually generic, since ¥ is in the model generated over HDVR by the %, ’s.

Proof of Theorem 12. Let the sequence (%,:n € w) and a dense open subset
% e HDVR of the product notion of forcing be given. Fix an w-sequence in V of
natural numbers in which every natural number occurs infinitely often and the
first occurrence of any n precedes the first occurrence of 7 + 1. We write i for the
ith term of this sequence. (For example, we could define i to be the largest n such
that 2" divides i + 1.) We use the sequence to break every X € [@]® into infinitely
many disjoint infinite pieces X(n) by putting the ith element of X into X(i), for
each i. Let

Z={Xe[w]”|(X(n):n e w)eD};

clearly, & is in HDVR.
We apply Theorem 7, as extended by Corollary 11.1, to & and the system
= (U, :s € [w]®) of selective ultrafilters defined by

Y, =, wheren =TS—|-

We obtain, for each n, a set Z, (called Z(%,) in Theorem 7) such that Z contains
all or none of the infinite subsets X = {x,<x,;<:--} of w that satisfy x; € Z; for
all i, i.e., that satisfy X(n) c Z, for all n. We check next that ‘all’ holds, rather
than ‘none’.

As 9 is dense in the product notion of forcing, it contains an extension
(Y.:n € w) of the condition (Z,:n € w); so Y,cZ, for all n. Define a set
X = {xo<x,<-- -} by inductively choosing x; to be a member of ¥; larger than all
previously chosen x; (j <i). Then X(n) c Y, c Z, for all n and, as (X(n):n € @)
is an extension of (Y, :n € ) and 9 is open, X € Z. This shows that the ‘none’
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alternative in the homogeneity given by Theorem 7 cannot hold, so ‘all’ holds.
That is, if X € [@]” and X(n) c Z, for every n, then X ¢ ¥. We intend to find
such an X with X(n) € %, for every n. Then, by definition of &, we shall have
(X(n):n € ®) € D N 1,0 U,, Which will conclude the proof of genericity.

For each fixed k € @, let A =A(k) € » be so large that every n <k occurs as i
for some i with k<i<A. Then choose a sequence of natural numbers:
Re<ny,<---<m such that k <n, and each n; € Z;. (It is trivial to find such n;’s
inductively, as each Z, is infinite.) Now allow k to vary; n,, which of course
depends on k, will be called g(k).

By Corollary 7.2, there are sets B, € %, such that

Vx,y eUB, k<y— gx)<yl

We may assume B, c Z,; just replace B, with B, N Z, if necessary. We may also
ascume that the sets B, are pairwise disjoint; the argument for this is well known,
but we include it for the sake of completeness. For each pair of distinct natural
numbers m <n, since %, and ¥, are distinct, we can find C{m, n) € %,, with
® — C(m, n) € U,. For each m, consider the countably many sets C(m, ) for
a>m and o — C(n, m) for n <m; they are in %,,, and %,, is a P-point, so find
C,, € U, almost included in each of these sets. Now, if m <n, then C,, and C, are
almost included in C(m, n) and @ — C(m, n); so their intersection is finite. Thus,
for each n,

C.=C,— U C,e%,.
m<n

The sets C,, are pairwise disjoint, and we replace B, by B, N C, to achieve the
desired disjointness of the B’s.

We are now ready to construct the desired X = {xo<x;<---}. It will consist
of two sorts of elements, special elements chosen from appropriate B,’s, and filler
elements chosen from appropriate Z,’s. The special elements will be chosen in
increasing order; immediately after one has been chosen, some filler elements
may be inserted between it and the next smaller special element. The first special
element is the first element of B,. No fillter elements are inserted below it, so it
will be x,. Notice that, by our choice of the sequence of i’s, =0, so we have
Xo€ Bﬁ.

Consider now a later stage of the induction, where the last special element
chosen was k, and any filler elements to be inserted before it have also been
chosen. Thus, this special element k is x, where p is already known because all
the predecessors of k in X have already been chosen. The next special element
after k is defined to be the smallest m > k such that m € U,<, B,. Let n be the
index such that 2 € B,. By the definition of A=A(k), we can fix an i with
k<i=<A and i=n. By our choice of the B’s, m >g(k), so we have k <ny<
n, <---<m, <m with each n; € Z;. The filler elements to be inserted between k
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and m are n,,, <---<n;_,. (Since p <k <i, this makes sense; if p=i—1, no
filler elements are inserted.) Since k was x,, we now have x; =n; for p + 1 <j <i,
so x; € Z; for such j. Also, x;=m € B, c Z,=Z; This completes the inductive
definition of X and the verification that X(n) c Z, for all n. It remains to check
that X(n) € %, for all n.

Fix an arbitrary n € w. Once a special element k =n has been chosen, every
element >k in B, will be put into X as a special element and will be in X(n).
Thus, X(n) contains all but finitely many elements of B, and is therefore in
%,. O ~

Corollary 12.1. In V[G], if ¥ is a selective ultrafilter, then the only selective
ultrafilters in HDVR[¥] are those isomorphic to %U.

Proof. If ¥ is a selective ultrafilter not isomorphic to %, then % and ¥ are
mutually [w]”-generic over HDVR, by the theorem. So ¥ is [w]”-generic over
HDVR[%], hence is certainly not in HDVR[%]. O

In connection with Corollary 12.1, it should be mentioned that Shelah
[26, (V1.5)] has shown that the existence of a unique isomorphism class of
selective ultrafilters is consistent with ZFC (not merely ZF as here, and Shelah
needs no large cardinals for his result).

Question. Can all ultrafilters in HDVR[%] be obtained from 4 by transfinite
iteration of the two processes of (a) taking images under maps from w to @ and
(b) taking limits of previously obtained ultrafilters along previously obtained
ultrafilters? An affirmative answer would imply by virtue of [6] that, in
HDVR[%], the Rudin—Keisler ordering of ultrafilters is linear; this cannot
happen in models of ZFC, by [14].

The same proof as for Corollary 12.1 also shows that, if any finitely or
countably many of the selective ultrafilters in V[G] are adjoined to HDVR, then
these ultrafilters and their isomorphic images are the only selective ultrafilters in
the resulting model.

By Corollary 11.1, indeed by the special case given in [19, Section 5], HDVR
satisfies the partition relation w— (w)“. (In fact, as is shewr in [19, (5.1)] this
does not require that x be Mahlo in V, only that it be inaccessible in V.) Thus, if
% is any selective ultrafilter in V[G], then the work of Henle, Mathias, and
Woodin [13] on [@]“-generic extensions of modeis of w— (w)“ is applicable to
HDVR[%). For example, every set of ordinals in this model is already in HDVR;
in particular, adjoining % does not adjoin a well-ordering of the continuum. (An
alternate proof of this fact can be obtained by observing that, if R could be
well-ordered in HDVR[%], then its cardinality would have to be R, (=k)
because it cannot be mapped onto the next cardinal (of V or V[G] or any
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intermediate model) x* even in V[G]. So HDVR[¥] would satisfy CH and
would therefore have many non-isomorphic selective ultrafilters, contrary to
Corollary 12.1.) It also follows from [13] that, if {%, | @ <4} is, in HDVR, a
well-ordered family of subsets of [@]®, each closed under finite alteration (i.e., if
AeZ, and AAB is finite, then Be ,), and if % is a selective ultrafilter in
V[G], then ¥ contains a set H homogeneous for all &, simultaneously (i.e., for
evetya,a!.containsandrnoneoftheinﬁnitesubsétsofm.lhismalsobe
proved by finding a x’'<x such that the real parameter used to define
{%: | <A} is in V[G'] (where G’ means G;- as before), then using selectivity of
% tc find an H € U that is Q(%')-generic over V[G'] where ¥’ =%NV[G'],
then using the Q(4U')-genericity cf all infinite subsets of H to show that %,
contains all or none of those subsets that have a certain initial segment in
common with H, and finally removing the requirement of a common initial
segment because of the assumed invariance of &, under finite alterations.

7. Topological inhomogeneity

Assuming CH, W. Rudin [25] showed that any of the 2° P-points can be
mapped to any other by a self-homeomorphism of fo — . Thus, the topological
structure of fw — @ is inadequate, not merely for distinguishing between selective
ultrafilters but even for distinguishing these from non-selective P-points. The
Iatter defect can be remedied by the following considerations.

The two projection maps p; and p, from @ X @ to o induce two maps
Pi: (@ X @)— pw, which we combine into a single map

7:p(0 X )= o X fo : U— (), p(U)).

Let Y be the subspace z~((Bo - @) X (Bw — ®)) of f(@ X w); Y consists of the
ultrafilters on @ X w neither of whose projections are principal. It is shown in 5]
that, for each % e fw — o, the cardinality of &~'(%, %) is at least 3, with
equality if and only if 4 is selective. Thus, the topological structure consisting of
Bo-wo, Y, and the map #:Y— (Bw — w)’ distinguishes selective from non-
selective ultrafilters.

J. Baumgartner suggested to me in a conversation that the intuition “all
selective ultrafilters look alike™ could lead to the conjecture that this topological
structure does not distinguish selective ultrafilters from each other. More
precisely, tiie conjecture would assert that any selective ultrafilter can be mapped
to any other by a self-homeomorphism & of fw — w such that the diagram

1

(Bo — w)? o (Bo—w)
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commutes for some self-homeomorphism 7 of Y. (In view of the definition of x,
commutativity of this diagram means that §op; = p; o7 for both values of i.) The
results cited above show that every such & preserves selectivity. At the time
Baumgartner formulated this conjecture, I felt that it was plausible and should
perhaps be extended by requiring & to lift not only to Y but to similar subspaces
of B(w*) for all finite k.

We shall see, however, that, even without this embellishment, the conjecture is
false. The topological structure described above is sufficient to distinguish any two
non-isomorphic ultrafilters (selective or not).

Theorem 13. Assume CH. Let & and 1 be self -homeomorphisms of fw — & and
Y, respectively, such that the diagram above commutes. Then, for cvery ultrafilter
%, §(U)=. |

Remark. The proof of this theorem uses far less than the full strength of CH. My
first proof used the existence of infinitely many non-isomorphic selective
ultrafilters. Immediately after seeing that proof, S. Glazer reduced the hypothesis
to the existence of either two non-isomorphic selective ultrafilters or infinitely
many P-points with no common RK-predecessor. These improvements led me to
reduce the hypothesis further to the existence of two P-points with no common
RK-predecessor; it is this hypothesis that is used in the following proof.

Proof of Theorem 13. We use without further comment the notation introduced
in Section 1. Our first objective is to show that, for any ultrafilter % €Y, the
following two assertions are equivalent: (a) p; is one-to-one on some set A€ %,
(b) p, is one-to-one on some (basic) neighborhood ANY of % in Y. The
implication from (a) to (b) is easy, for if A is as in (a), then there exists f:0— A
such that f op, is the identity on A, from which it follows that f ¢ p, is the identity
on the closure A, so (b) hoids. For the converse, suppose (b) holds, so we have
an A € W with p, one-to-one on ANY. We consider two cases. Suppose first
that, for each n € w, there are two points in A such that their first coordinates are
equal, their second coordinates are distinct, and ail these coordinates are larger
than n. Then we can inductively define two sequences of points a, and b, in A
such that p,(a,) = p.(b,) but no other equalities hold between any coordinates of
any of the chosen points. Let % be any ultrafilter on @, and observe that its
images under the two maps w-— A given by n+—a, and n— b, are two distinct
elements of ANY with the same image under p,. This contradicts (b), so this
case is impossible. There remains the case that, by removing from A finitely many
rows and columns, we obtain a set

A'={(x,y)eA|x,y>n}, forsomen,
that is the graph of a partial function. Since A € %" and neither projection of % is
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principal, we have A’ € ¥, so A’ is as required in (a). Tlnscomplet&stheproof
that (a) and (b) are equivalent.

The hypotheses on § and 7, particularly the requirement that Eop;, =p, o9,
easily imply that property (b) is preserved by 7. Therefore, so is (a).

Our next step is to show that & preserves the RK ordering. Suppose, therefore,
that <Y, and let f:0— @ be such that f(¥)=U. Let W be the ultrafilter
obtained by Iﬁung‘l’tothegraphoff’ i.e., W is the image of ¥ under the
function g : @ — @?:n— (n, f(n)). Thus, x(W)= (¥, %), and p, is one-to-one on
the set g(w) € W. By the preceding paragraph, it follows that p, is one-to-one on
some set in 9(W), so

(W) =pn(W) = 5p«(W) = &(¥).

Similarly, p,n(W) = £(%). Therefore, &%) <n(W) = &(¥), so the RK ordering
is preserved by &.

Now let ¥ be any ultrafilter on @, and let ¥ and ¥ be two P-points with no
common RK-predecessor. By definition of the Rudin-Froiik ordering, we have
U<prUB V. As £ is a homeomorphism, it follows that U <peE~ (U ¥).
(To see this, use the description of <gg in terms of limits of discrete sequences.)
A fortiori, ¥ <E~'(% ® ¥) in the RK order, and, since & preserves this order,
E(U) < ® V. (The inequality is actually strict, but we won’t need this.) By the
result cited at the end of Section 1, 5(%) is one of three sorts of ultrafilters: (a) an
RK-predecessor of ¥, (b) an RK-predecessor of ¥, (c) an isomorph of ¥%,-Y.,7,
with YU<%¥U and each ¥, < Y.

Similarly, using ¥ in place-of ¥, we find that £(%) is one of the following: {a)
an RK-predecessor of % (as before), (b’) an RK-predecessor of ¥, (c’) an
isomorph of ¥Ug-Y., ¥, with U< ¥ and each ¥, < ¥".

We consider various combinations of these alternatives and eliminate most of
them, until we arrive at the conclusion that (a) holds. We cannot have both (b)
and (b") because ¥ and ¥ have no common RK-predecessors. Nor can we have
both (b) and (¢’), for (b) implies that §(%) is, like ¥, a P-point, hence RF
minimal. Symmetrically, we cannot have (c) and (b’). Finally, suppose we had (c)
and (¢’). By the result from [23] cited in the last paragraph of Section 1, the
isomorphisms

U La¥e =E(U) = UsX, Y,

imply that either some of the ¥, are not RF-minimai, or some of the ¥, are not
RF-minimal, or some of the ¥, are isomorphic to some of the ¥°.. Since the ¥,
and ¥, are RK-predecessors of ¥ and ¥, the first two of these alternatives
contradict the assumption that " and ¥ are P-points, and the third alternative
contradicts the assumption that ¥ and ¥" have no common RK-predecessors.
Thus, we cannot have both (c) and (c'). The only possibility that remains is (a).

We have shown that (%)< % for all %. The same argument with & and 7
replaced by their inverses and % replaced by £(%) shows that U = §-Y(&(%)) <
E(%). So u=&(w). O



Selective ultrafilters and homogeneity 255
References

[1) P. Aczel, Quantifiers, games, and inductive definitions, in: S. Kanger, ed., Proc. Third
Scandinavian Logic Symposium (North-Holland, Amsterdam, 1975) 1-14.

[2] J. Baumgartner and A. Taylor, Partition theorems and ultrafilters, Trans. Amer. Math. Soc. 241
(1978) 283-309.

{3] A. Blass, Orderings of ultrafilters, Thesis, Harvard University (1570).

[4] A. Blass, The Rudin-Keisler ordering of P-points, Trans. Amer. Math. Soc. 179 (1973)
145-166. ‘

[5] A. Blass, Amalgamation of non-standard models of arithmetic, J. Symbolic Logic 42 (1977)
372-386.

[6) A. Blass, Kieene degrees of ultrafilters, in: H.-D. Ebbinghaus, G.H. Miiller, and G.E. Sacks,
eds., Recursion Theory Week, Oberwolfach 1984, Lecture Notes in Math. 1141 (Springer,
' Berlin, 1985) 29-48.
[7] A. Blass and S. Shelah, Ultrafilters with small generating sets, to appear.
[8] D. Booth, Ultrafilters on a countable set, Ann. Math. Logic 2 (1970) 1-24.
[9] M. Daguenet (=Teissier), Propriété de Baire de SN muni d'une nouvelle topologie et
application 2 la construction des ultrafiltres, Sém. Choquet. 14e année (1974/5) Exp. 14.
[10] E. Ellentuck, A new proof that analytic sets are Ramsey, J. Symbolic Logic 39 (1974) 163-165.
[11] F. Galvin and K. Prikry, Borel sets and Ramsey’s theorem, J. Symbolic Logic 38 (1973) 193-198.
[12] S. Grigorieff, Combinatorics on ideals and forcing, Ann. Math. Logic 3 (1971) 363-394.
ti3] J. Henle, A.R.D. Mathias, and W.H. Woodin, A barren extension, in: C. DiPrisco, ed.,
Methods of Mathematical Logic (Proceedings, Caracas 1983), Lecture Notes in Math. 1130
(Springer, Berlin, .985) 195-207.
[14] K. Kunen, Ultrafilters and independent sets, Trans. Amer. Math. Soc. 172 (1972) 299-306.
[15] K. Kunen, Some points in SN, Math. Proc. Cambridge Phil. Soc. 80 (1976) 385-398.
[16] C. Kuratowski, Topologie, Vol. I (Pafistwowe Wydawnictwo Naukowe, Warsaw, 1933).
[17] A. Louveau, Une méthode topologique pour P'étude de Ia propriété de Ramsey, Israel J. Math.
23 (1976) 97-116.
[18] D.A. Martin, Borel determinacy, Ann. Math. 102 (1975) 363-371.
[19] A.R.D. Mathias, Happy families, Ann. Math. Logic 12 (1977) 59-111.
[20] Y. Moschovakis, Descriptive Set Theory (North-Holland, Amsterdam, 1980).
[21] C. Puritz, Skies, constellations, and monads, in: W. A. J. Luxemburg and A. Robinson, eds.,
Contributions to Non-Standard Analysis (North-Holland, Amsterdam, 1972) 215-243.
[22] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. (2) 30 (1930) 264-286.
[23] M. E. Rudin, Types of ultrafilters, in: R. H. Bing and R. J. Bean, eds., Topology Seminar
(Wisconsin 1965), Ann. Math. Studies 60 (Princeton Univ. Press, 1966) 147-151.
[24] M. E. Rudin, Partial orders on the types in SN, Trans. Amer. Math. Soc. 155 (1971) 353-362.
[25] W. Rudin, Homogeneity problems in the theory of Cech compactifications, Duke Math. J. 23
(1956) 409-419.
[26] S. Shelah, Proper Forcing, Lecture Notes in Math. 940 (Springer, Berlin, 1982).
[27] R. Sikorski, Boolean Algebras, Ergebnisse der Mathematik 25 (Springer, Berlin, 3rd edition,
1969).
[28] J. Silver, Every analytic set is Ramsey, J. Symbolic Logic 35 (1970) 60-64.
{29] R. M. Solovay, A model of set theory in which every set of reals is Lebesgue measurable, Ann.
Math. 92 (1970) 1-56.
[30] E. Szpilrajn (=Marczewski), Sur certains invariants de I'operation (4), Fund. Math. 21 (1933)
229-235.

[31] A. Taylor, P-points and Ramsey subsets of @, mimeographed.
[32] E. Wimmers, The Shelah P-point independence theorem, Israel J. Math. 43 (1982) 28-48.
[33] P. Wolfe, The strict determinateness of certain infinite games, Pacific J. Math. 5 (1955) 841-847.



