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ONE-DIMENSIONAL LUMINESCENCEKINETICS; A SUBMICRONPROBE

Jagdish PRASAD and Raoul KOPELMAN
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Cylindrical naphthalene wires (10-1200 nanometer diameter) exhibit one-dimensional exciton
annihilation kinetics for 10-30 nm wires, three-dimensional behavior for 100-1200 nm wires and
a crossover diameter increasing from 4 to 77 K. Nuclear channel pore membranes
(polycarbonate) serve as one-dimensional templates. Vycor glass pores are found to be
effectively one—dimensional. The triplet exciton migration (multiple hopping) length is 25-50
nm. The recombination involves free and bound excitons.

1. INTRODUCTION be to exhibit the one-dimensional behavior of

Recently, porous materials and “fractal” eq.(2)? Theoretically, the radius of the wire

networks have been of much interest.~
4 The should be smaller than the range of the exciton

difference between a fractal network and a motion (within its lifetime). This range was

quasi-one-dimensional network is not often all recently estimated4 to be about 100 nm. For

that cleart5 Energy transfer2’3 and exciton triplet excitons the rate coefficient K is

kinetics4 have been used for the derived from delayed fluorescence and

characterization of such networks (e.g. pore phosphorescence time decays.4 For A + A’ + A’

networks of porous media). Understanding the the pseudo-unary kinetics gives: K = F/P. We

characteristics of truly one-dimensional test eqs.(2) and (3) by writing

networks and the effects of sample diameter is F/P = K = K
0th (4)

thus of practical interest, where we expect h = 1/2 for 1-dim, and h = 0 for

3-dim, kinetics.

2. THEORY
Diffusion-limited reaction kinetics in one- 3. EXPERIMENTALMETHODS

dimension differs drastically from the classical We have produced thin naphthalene “wires”

behavior.
6’7 The reaction with diameters ranging from 10 to 1000 nm. The

A + A’ + A’ (1) optical set-up and sample preparation have been
has a rate-coefficient of the form described before,4’8 The only significant

K = K
0t

112 (1-dim) (2) change involves the use of channel-pore
instead of the classical result (‘nuclepore”)9 polycarbonate membranes. These 6

K K (3-dim) (3) micron thick membranes come with well isolated,

The reaction (1) applies to exciton cylindrical pores (Fig. 1). The totality of the

annihilation. For materials with defects A’ is h values (negative slopes), for all wires (each

a trapped exciton and A a free exciton, For at 4 K and 77 K), is given in Fig. 2.

perfect materials all excitons are free. In

both cases eqs. (2) and (3) are valid. The 4. RESULTS

practical question is: How thin has a wire to We observe that the thinnest wires yield a

value h 0.5, while the thickest wires give a
Supported by NSF Grant No. DMR-83-03919 value h 0, for both temperatures. Actually,
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FIGURE 2Exponent h vs. wire diameter, D (in Angstroms),
extrapolating to zero diameter, h + 0.49 ± 0.02. at 4 K (0) and 77 K (X). Note break in scale.

On the other hand, for the micron sized wires

h + 0.02 ± 0.02. These two limiting values are

in excellent agreement with the theoretically transport is strictly one-dimensional in the

expected values of h = 1/2 and h = 0, ultra—thin wires. The fractal-like kinetics
respectively. The cross—over (between model works well in a low-dimensional non-

h 1/2 and h 0) occurs at diameters of fractal system. The exciton annihilation method

about 500 to 800 A°at 4 K and 77 K, appears to be a reliable tool for probing

respectively. The higher value at higher spectral dimensions and low-dimensional

temperatures is consistent with a somewhat topologies.
faster hopping rate.
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