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SIMULATIONS OF ONE—DIMENSIONALAND FRACTAL LUMINESCENCEKINETICS

Li LI and Raoul KOPELMAN

Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA

Exciton and electron—hole recombination reactions were simulated on one-dimensional and
fractal networks. Particle distributions depend on dimensional ity and electric fields.
Geminate vs. non-geminate and pulsed vs. steady-state generation give very different reaction
orders and population distributions.

According to classical considerations both

electron-hole and exciton-exciton recombination _________________________________________________

reactions, in perfect lattices, are second order

in overall particle density (p):

R=K~2 (1) 7
where R is the recombination rate, and K is a

time independent and density independent FIGURE 1
1 . . Examples of quasi-one-dimensional “wires”

constant. The rate constant K is linearly (cyclic boundary conditions used only at left

related to the diffusion constant. It has and right).

recently been argued
2 that for the A + A case

(exciton recombination), eq.(1) should be quasi—one—dimensional systems such as the two—

replaced by and three-dimensional “wires” of Fig. 1. For

instance, for the reaction A + A -~0 we find an

R = KPX (steady state or t + =) (2) initial classical behavior, followed quickly by

a one-dimensional behavior (for pulsed

where X = 3 for linear lattices and 2 < x < 3 reactions). For long times we find X 3.0,

for connected fractal lattices (e.g. for for both geminate and non—geminate generation of

percolating clusters X = 2.5). For the A + B A. These are the same results as for a strictly

case (e.g. electron-hole recombination) evidence one-dimensional chain.3 However, at steady-

for anomalies due to reactant segregation was state, X — 3.0 for non-geminate creation but X

given for the Sierpinski gasket.3 The question ranges between 1 and 3 for geminate generation,

arises: Do these anomalies apply to real depending on the steady-state density.

systems which are not exactly one-dimensional or For A + B -~ 0 reactions, where ~A — ~B’ we

fractal lattices? find even more striking results. For pulsed

reactions (after long time) we find X 3.0

We have simulated diffusion-limited reactions for geminate generation but X 5.0 for non-

on true one—dimensional systems and also on geminate generation. In the latter case there

is a very significant segregation of A and B.
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FIGURE 2
Sierpinski Carpet (5-th order). Fractal
dimension 1.89 (spectral dimension 1.68).

FIGURE 3
Steady-source simulation: A + B reaction on
Sierpinski Carpet (p = p = p). R is relative

geminate generation (and no segregation) while rate of particle add~tionB(RA= RB = R).

X 4.0 for non-geminate generation (with very

significant segregation).

For a typical fractal (Sierpinski carpet4 - presented.6 Our A + A results agree well withexciton annihilation in ultra-thin naphthalene
Fig. 2), for A + B + 0, we find X — 2.24 at wires.6’7

steady-state for non-geminate generation (with

little, but definite, segregation). This REFERENCES
differs from pulsed generation, where X — 3.2
(with more segregation). An example of a 1. C. Kittel, Introduction to Solid State
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steady-state simulation is given in Figure 3.
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The simulations were performed on an IBM 3090-
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