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Abstract 

Dilsaver, Steven C. and Norman F. Alessi: Temperature as a Dependent Variable in 
the Study of Cholinergic Mechanisms. Prog. Neuro-Psychonharmacol. & Biol. Psvchiat. 
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3. 

4. 
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Change in core temperature over time can be used as a dependent variable when 
studging the effects of manipulations on neurotransmitter systems. This 
article focuses on the measurement of core temperature as a strategy for 
detecting changes in the status of cholinergic systems. 
Cholinergic neurons participate in the process of thermoregulation and 
interventions affecting them alter the thermal response to cholinomimetics. 
For example, chronic treatment with amitriptyline, chronic swim stress and 
inescapable footshock supersensitize rats to the hypothermic effects of 
oxotremorine. 
This is consistent with the hypothesis that the pathophysiologies of tricyclic 
antidepressant withdrawal phenomena and stress involve supersensitivity of 
muscarinic mechanisms. 
Uses of thermoregulation paradigms for investigating the actions of lithium 
ion, electroconvulsive shock and substances of abuse on muscarinic mechanisms 
are discussed. Applications to problems in the arena of clinical research are 
highlighted. 
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1. Introduction 

This article comments on and reviews the use of temperature as a endpoint in the 

study of cholinergic mechanisms. The cholinergic component of thermoregulation, 

methods of altering it, and the use of core temperature as a dependent measure in 

neuropharmacological studies are discussed. Our objective is to emphasize the power 

of an experimental strategy. The effects of tricyclic antidepressants (TCAS), 

lithium (Li+), antimuscarinic agents, ethanol, opiates, barbiturates, 

cannabinoids, benzodiazepines, electroshock therapy (EST), and chronic stress on 

cholinergic systems are described. 

Dopaminergic (Boschi and Launay, 1985; Colboc and Costentin, 1980; Lin et al, 

1984), noradrenergic (Clark and Clark, 1980a), serotonergic (Ferguson et al, 1985; 

Lin et al, 1981; Simpson and Resch, 1985; Yamauaki, et al, 1983), GABAergic (Serraon 

et al, 1985), peptidergic (Clark and Lipton, 1985), nicotinic (Armitage et al, 1967; 

Dilsaver et al, 1987c; Horstman, 1984; Marks et al, 1983; Marks and Collins, 1984; 

Nordherg and Wahlstrom, 1980) and muscarinic (Clark and Clark, 1980; Lomax et al, 

1969; Lomax, 1970; Lomax and Jenden, 1966; Meyers and Yaksh, 1968) systems partially 

regulate core temperature in mammals. 

Factors complicate the use of thermoregulation paradigms. Organisms vary in their 

thermic responses to drugs. Agents producing a decline in temperature in one 

species cause an increase in another (Lomax et al, 1969). Second, response is 

dependent on the dose and route of administration. Central microinjection of 

acetylcholine (Ach) produces thermogenesis in rats and cats (Beckman and Carlisle, 

1969) but systemic administration of a muscarinic agonist produces hypothermia 

(Dilsaver et al, 1987c; Friedman et al, 1969; Jaffe and Sharpless, 1969). Third, 

experiments are reauired to determine if the response to a centrally active drug is 

due to a central effect. For example, systemically infused cholinergic agonists 

produce hypothermia in rodents. This could be due either to heat loss secondary to 

peripheral vasodilitation or a central action. 
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Experiments described in this article involve the systemic administration of 

agonists. Assuming that a drug penetrates the blood brain barrier, peripheral 

injection leads to delivery to all central sites sensitive to it. A response is the 

summation of all positive and negative effects on a variable. Thus, even if a 

manipulation produces supersensitivity to a muscarinic agonist, one cannot conclude 

all muscarinic sites are supersensitized. Despite this complexity, it is possible 

to devise experiments which allow one to draw inferences about mechanisms underlying 

alterations of the thermoregulatory process. 

2. Principles of Cholinergic Pharmacology 

Certain principles facilitate posing problems amenable to solution using 

thermoregulation paradigms, the use of methods available for manipulating 

cholinergic systems, and the interpretation of data. These are: 

Principle I is "drugs affecting chofinergic systems at least indirectly interact 

with cholinergic receptors." Some agents do so directly, e.g., muscarinic receptors 

(mAchRs) bind muscarinic agonists. However, anticholinesterases indirectly affect 

mAchR mediated changes by inhibiting the hydrolysis of Ach. This principle is not 

absolute. Pharmacological manipulations can change neuronal systems through 

non-specific effects on membrane fluidity. For example, Baron and Kloog (1984) 

reported that the incorporation of certain fatty acids into the cell membrane 

enhanced the sensitivity of mAchRs. However, the assumption that pharmacological 

manipulations alter cholinergic systems through actions on receptors is valid in 

many experimental contexts. One can be reasonably confident of this if the 

properties of the independent variahle used are known. This assumption has 

heuristic value. When dependent and independent variables bear a lawful 

relationship to one another, one might ask, "What could occur at the receptor that 

explains this phenomenon?" This can lead to new experiments to assess whether the 

independent variable is associated with changes in receptor density or affinity, 

alterations in second messenger systems, etc. (Dilsaver, 1986f). 

Principle II: While there are distinct nicotinic receptors (nAchRs) and mAchRs in 

the periphery, it cannot be assumed that the mammalian brain has true nAehRs (Morley 

and Kemp, 1981). However, it does have receptors which bind nicotine (Marks and 

Collins, 1984; Rordberg et al, 1985), a-bungarotoxin (Clarke et al, 1985) and 

neosurugatoxin (Yamada et al, 1985) and which respond to nicotinic agonists. Some 

central cholinoceptors may be sensitive to both musearinic and nicotinic agonists 

(Morley and Kemp, 1981). 
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Some drugs used to study mAchR mediated phenomena have nicotinic effects. 

Pilocarpine is a classic muscarinic agonist, yet it exerts weak nicotinic effects 

(Bowman and Rand, 1980). Physostigmine is used to study contributions of muscarinic 

dysfunction to disturbances of mood (Janowsky et al, 1980), neuroendocrine function 

(Risch et al, 1981. 1983), and polysomnographic parameters (Sitaram and Gillin, 

1980; Sitaram et al, 1979, 1984). However, it diffusely inhibits the hydrolysis of 

Ach. nAchRs, mAchRs and receptors with joint muscarinic-nicotinic sensitivity are 

thus activated. Determining the relative nicotinic and muscarinic effects of this 

drug involves a careful study. Westfall (1973), for instance, reported that Ach 

inhibited the release of norepinephrine in rat brain slices whereas a nicotinic 

agonist promoted its release. The simultaneous administration of a calcium 

chelating agent and Ach resulted in the release of norepinephrine. Ach acts at 

sites sensitive both to muscarinic and nicotinic agonists but the muscarinic 

component of its action is calcium dependent. 

Principle III: Binding data are adynamic measures which convey nothing about the 

function of a system. The literature often equates "supersensitivity" to Ach with 

"up-regulation" or "supersensitive mAchRs." This reflects conceptual error 

(Dilsaver, 1986f). "Up-regulation" is an increase in the maximum density of 

mAchRs. "Supersensitivity" is enhanced behavioral, physiological or biochemical 

responsiveness to agents. It has to do with function. Supersensitivity can be 

receptor independent. Lerer and Belmaker (1982) observed increased sensitivity to 

monoaminergic agonists in the absence of changes in receptor binding parameters. A 

system can be down-regulated and yet be supersensitive if elements comprising it 

become more efficient. For example, intracytosolic mechanisms translating 

agonist-receptor union into functionally relevant events could become more 

responsive to receptor occupation. Consequently, the interrelationship of receptor 

binding data and functional measures provides the most complete account of the 

effects of a manipulation on a neurotransmitter system (Dilsaver, 1986b,f). 

Principle IV: Changes in receptor density or affinity and in the sensitivity of 

an organism to an agonist acting through that receptor can be dissociated in time. 

We measure robust enhancement of the hypothermic response to oxotremorine (0X0) in 

rats after 7-12 days of treatment with amitriptyline (AMI), 10 mg/kg ip twice daily 

(Dilsaver et al, 1987c). Rehavi et al (1980) studied the effects of this regime on 

the binding of tritiated quinuclidinyl bensilate (13~]e~~) in mouse forebrain. 

Seven days of treatment did not produce up-regulation but 21 did. Goldman and 

Erickson (1983) documented a 20% increase in the density of ['H]QNB binding sites 
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in cortex after the treatment of rats with AMI, 10 mg/kg twice daily for 30 days. 

Nomura et al (1982) reported that desipramine (DMI), 10 mg/kg twice daily, increased 

the density of QNB binding sites in rat myocardium and augmented the sensitivity of 

the myocardium to the negative inotropic effects of Ach. Whether central mechanisms 

generally acquire increased sensitivity to muscarinic agonists prior to, 

contemporaneously with or after changes in receptor binding density occurs is not 

kn0Wl. 

Principle V: The value of using a functional parameter as a means of assessing 

the effects of interventions on muscarinic mechanisms is highlighted by considering 

the mAchR subtypes. There are two well-defined mAchR subtypes, designated ml and 

m2' 
These were originally defined by the capacity of the former to specifically 

bind an antagonist, pirenzipine. Pirenzipine binds weakly to mAchR of the heart and 

smooth muscle but potently to receptors in the cerebral cortex, hippocampus, 

sublingual gland and sympathetic ganglia (Birdsall et al, 1984). Ricker and Wescoe 

(1951) first presented evidence that there may be mAchR subtypes when they 

demonstrated that gallamine selectively inhibited effects of methacholine on 

myocardium. The bradycardia produced in anesthetized cats by cholinergic 

stimulation was inhibited by gallamine whereas the hypotension, sweating, salivation 

and enhanced gut motility were not. Rathvun and Hamilton (1970) and Brown and Crout 

(1970) provided similar evidence when they reported that pancuronium exhibited 

cardioselective antimuscarinic effects. They also estimated that the potency of 

gallamine was 100 to 1,000 fold greater in the rat and cat myocardium in vivo than -- 
in guinea pig ileum. An array of specific ml and m2 antagonists and agonists 

are available. However, the pharmacological provocations referred to in this 

article do not implicate a particular receptor subtype. One cannot administer 

specific ml and m2 agonists and antagonists systemically. These drugs lack 

lipid solubility and it is necessary to administer them centrally. Pirenzipine, the 

specific ml antagonist and McN-A-343, a specific m 
1 
agonist are also charged 

molecules. Similarly, Mutschler and Lambrecht (1984) found that the effectiveness 

of specific m2 agonists depends on the quaternization of a ring nitrogen atom--a 

modification limiting the capacity of these analogs to enter the central nervous 

system. 

One can describe a phenomenon hased on the systemic administration of drugs and 

then devise experiments to determine whether it is mediated by an ml or m2 

receptor. Pirenzipine or an ml agonist can be administered centrally should 

peripheral administration suggest that this would be a rewarding experiment. 
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This article focuses on studies involving the systemic administration of 

muscarinic and nicotinic agonists. This approach can be integrated with biochemical 

or molecular strategies. For example, ml agonists activate the 

phosphatidylinositol cycle (Fisher and Dartus, 1985). Supersensitization of a 

muscarinic system associated with interventions discussed below may involve an 

effect on this receptor subtype. The physiological studies can suggest biochemical 

experiments. 

3. Uses of Thermoregulation Strategies in Neurobiological Research 

7.1. Neuropharmacology of Antidepressant Withdrawal Phenomena 

The discontinuation of TCAs produces symptoms suggesting cholinergic overdrive 

(Dilsaver et al, 1987a,h, Dilsaver and &eden, 1984~). First, TCAs produce 

physiological and biochemical evidence of mAchR blockade and bind with specificity 

to central and peripheral mAchRs (Atkinson and Landinsky, 1972; Richelson and 

Dininetz-Romero, 1977; Snyder and Yamamura, 1977). Drugs with these properties 

produce tolerance and hyperexcitability of cholinergic networks (Jaffe and 

Sharpless, 1969). AM1 increased the density of mAchR radioligand sites in mouse and 

rat forebrain (Rehavi et al, 1980; Goldman and Erickson, 1987). Nomura et al, 

(1982) reported that DMI up-regulated mAchR binding sites in rat myocardium. 

Classic antimuscarinic drugs (Ehlert et al, 1983) do this. 

The withdrawal of TCAs can produce three syndromes which are similar to states 

produced by anticholinesterases. These are gastrointestinal distress accompanied by 

anxiety and agitation, movement disorder, and sleep disturbance marked by vivid, 

terrifying dreams and impairment of sleep continuity. These syndromes respond to 

central mAchR blockade (Dilsaver et al, 1983a,b). Withdrawal-precipitated 

cholinergic overdrive has heen posited as their cause (Dilsaver and Greden, 1984c). 

Dilsaver et al (1987c) tested the hypothesis that a TCA can produce cholinergic 

system supersensitivity hy telemetrically measuring temperature in rats (n=15) given 

OX0 before and after treatment with AMI. Telemetric measurements were made using 

the Model VM Mini-Mitter (Mini-Mitter Co, Sun River, OR). This instrument, which is 

surgically implanted into the peritoneal cavity, emits radio waves at a rate 

proportional to temperature. An AM radio serves as a receiver. Time to emit a 

given number of sounds is measured using a digital display stopwatch. This 

measurement is converted to temperature using a linear regression equation derived 
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by measuring the emission rate of the thermosensors at three temperatures in a 

temperature controlled water bath. Tbis instrument can detect a change in 

temperature of O.l"C and remains functional for at least three months. Procedures 

governiag Mini-litter use are available elsewhere (Tocco-Bradley et al, 1985). 

The cbo~inomimet~c induced hypothermia was measured before and after treatment 

with AMI. OX0 Cball8ng8s were preceded by pretreatment with m8thylscopolamine 

nitrate, 1 mg/kg ip, to block peripheral effects of the agonist. Baseline 

temperature was defined as the average of the pre- and post- methylscopolamine 

measurements. These did not differ ia 31 trials (p c 0.1). We measured temperature 

every 15 minutes. Data were analyzed using au ANOYA with repeated measure% and 

paired t-tests. Figure 1 presents the study de%ign. 

Recovdry 
from 
Surgery 

l33;;~ 
1 I : ; I : ,/ 1 t I I I 1 , 1 , 1 I N I , 1 , I , 

012345 6 7 9 9 IO II 27 

AMlTRlPTYLlNE ADMINISTRATION 
IOmg /kg ip twice daily 

OXOTREMORINE CHALLENGES OXOTREMORlNE CHALLENGES 
O.lOmg/kgip on days 5,6or7 O.iOmg/kgip repeated 

after 12-16 days of treatment 
with Amitriptyline 

Fig 1. Fifteen animals baa Model VM Mini-Mitters implanted. Five days later 
they received challenges, in random order, witb OX0 (base), 0.05, 0.1 or 0.25 m&g 
ip. By day 7 all 15 animals had received all doses of 0X0. Treatment with AMI, 10 
mg/kg ip hid snsued. Those rats retaining functional thermoseosors were again 
subject to challenge with OX0 0.05, 0.10 and 0.25 m&kg ip b8tW88n days 25 and 27. 

An experiment illustrating the effects of treatment with AM1 inVOlV8d challenge 

with 0X0, 0.125 m&kg ip in 11 animal8 given AIUII, 10 m&kg tWiC8 daily for 26 days 

plus 20 mg/kg twice daily for another five days. The maximum decrease (1.51 + 0.19 
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[SEM]) in temperature relative to baseline produced by this dose did not differ from 

that elicited by 0X0, 2.5 m&kg ip in these animals prior to their receiving chrooic 

treatment with AMI (1.17 2 0.11 [SEMI). The hypothermic response produced by 0X0, 

0.1 mg/kg ip after 12-14 days of treatment with AM1 approximated that produced by 1 

m&kg at baseline. Sensitivity to 0X0, 0.05 (p ~0.05) and 0.25 (p <O.OOl) m&kg, 

also increased significantly. Figure 2 illustrates the change in responsiveness of 

the sample (p < 0.001, N=lO) to 0X0, 0.10 mg/kg after chronic treatment with this 

AM1 schedule. The capacity of AH1 to produce supersensitivity to OX0 has been 

confirmed (Dilsaver and Snider, 1987d). Further, multiple injections of OX0 does 

not itself enhance the hypothermic response to subsequent injections (Eciajchrzak and 

Dilsaver, 1987; Marks and Collins, 1984). 

--- Control 

- AMI 

‘ 1 I I L 8 1 

15 30 45 60 75 90 105 120 

TIME (min) AFTER THE INJECTION OF 

~XOTREMORINE O.lmg/kg ip 

Fig 2. Administration of AI1 augmented the hypothermic response to 0x0. This 
illustrates the difference in responsiveness to OX0 (base), 0.10 mg/kg ip before and 
after 12-16 days of treatment with AMI, 10 mg/kg ip bid in 10 male rata (p <: 0.02, 
ANOVA with repeated measures). 

In summary, data support the hypothesis that at least certain TCA withdrawal 

symptoms are due to cholinergic overdrive. The pathophysiology of affective 

disorders appears to involve eholinergic system supersensitivity (Dilsaver and 

Greden, 1984d, Dilsaver, 1986b-e,g; Janowsky et al, 1980). These experiments 

ironically suggest that AM1 produces an abnormality that may characterize some forms 
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of affective illness (Janowsky et al, 1980, 1983; Risch et al, 1981). The use of 

TCAs and antimuscarinic agents to model the pathophysiology of affective disorders 

was recently discussed (Dilsaver, lg86b,e,g; Dilsaver and Davidson, 1987). 

3.2. The Use of Temperature as a Dependent Variable in Studying Cbolinergic 

Mechanisms in the Neurobiology of Stress 

The interrelationship of stress , cholinergic and aminergic physiology and 

affective disturbance is a developing tbeme (Dilsaver and Alessi, 1986a, 1987a: 

Dilsaver, 1986d-f; Janowsky et al, 1983). Dilsaver et al (1986b) hypothesized that 

chronic stress would produce supersensitivity to 0X0. 0X0-induced hypothermia was 

measured in rats (a=5). Temperature was measured every 15 min for 120 min, before, 

during and after chronic swim stress. 

Rebury 

Thermosensor 
Implanted 

DAYS 

STRESS ~~ 

0 5 IO 12 I5 18 

XxXxX Recovery 

XxXxX Phase 

OXOTREMORINE t tt t 
CHALLENGE A BC 0 

Fig 3. Design of a study probing tbe effects of chronic swim stress on a 
cbolinergic mechanism involved in the regulation of core temperature. The Model VI 
Mini-Mitter was implanted into the peritoneal cavity of 5 rats on Day 0. On Day 5, 
the animals received OX0 challenge (A). Over the next 5 days the animals were 
subjected to swim stress sessions morning and evening. OX0 challenge B followed the 
last stress session on the morning of Day 10 by 4 hours. OX0 challenges C and D 
followed the final stress sessions by 54 and 196 hours respectively. Please sea 
text for further explanation. 

The study was divided into three phases as depicted in Figure 5. Phase 1: 

Mini-Mitters were implanted into five adult, male rats. The first (I) of five OX0 

challenges marked the end of Phase 1. This challenge provided a baseline against 
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which data from subsequent challenges was evaluated. Phase 2 (stress): This phase 

started with the first of 10 swim stress sessions the evening following the first 

OX0 challenge and ended with the last stress session. The animals were stressed 

morning and evening. OX0 challenges II and III also occurred during Phase 1. 

Challenge II followed the fourth stress session by 2 hours. Challenge III followed 

the tenth and final stress session (which occurred in the morning) by 4 hours. 

Phase 3 (recovery): During this E-day period the animals were not stressed. 

Challenge IV occurred 48 hours after the last stress session. The fifth challenge 

followed 192 hours after the last stress period. 

OX0 Challenge. OX0 challenges were conducted between 1100 and 1400 and were 

preceded by the administration of methylscopolamine nitrate, 1 mg/kg ip. Baseline 

temperature was measured 30 min later. 0X0, 1 mg/kg ip, was then given and 

temperature recorded every 15 min for 120 min. 

Swim Stress. Stress sessions started 5 days after thermosensor implantation. 

Swim stress (Weiss et al, 1981) was employed. Sessions were held morning and 

evening. Duration of the sessions and water temperature were adjusted to produce 

exhaustion since the animals became stronger over the course of the experiment. 

Four hours after the last session, the animals exhibited an enhanced hypothermic 

response relative to baseline (p = 0.0049; ANOVA with repeated measures). The 

supersensitive response was also present 48 hours later (p = O.Ol), and there was a 

highly significant phase effect between challenges I, II and III (p = 0.0003). 

However, 8 days after the last session, responsiveness to OX0 did not differ from 

baseline. Figure 4 illustrates the change in body temperature as a function of time 

during OX0 challenges I-IV. 

Dilsaver and Alessi (1986a, 1987a) gave chronic inescapable footshock to 13 rats. 

Core temperature was measured every 10 minutes for 120 minutes after the injection 

of 0x0. About 24 hours after the fifth stress session, the sample demonstrated 

enhancement of the hypothermic response to OX0 at all 12 time points (p = 0.0002 

sign test). The sample also exhibited an increase in the mean hypothermic response 

to OX0 (p < 0.01, paired t-test). Seven animals received 9 consecutive days of 

inescapable footshock. Twenty-four hours later, 6 exhibited significant enhancement 

of the hypothermic response to oxotremorine at the level of a < 0.05 and the 

sample demonstrated a significant increase in the mean hypothermic response (p< 

0.01, paired t-test). 
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Fig 4. Hypothermic response to OX0 (base) 1 mg/kg ip in a sample (N=5) of rata 
(A) before, and (B) 4, (C) 52, and (D) 192 hours after the last of 10 swim stress 
sessions. A vs B, p = 0.0049, A vs C, p = 0.019: A vs D, n.s. 

In conclusion, chronic forced swim stress and inescapable footshock produced 

cholinergic system supersensitivity. The findings suggest that chronic stress has 

the potential to interact with a central muscarinic mechanisms. The utility the 

thermoregulation paradigms in stress research requires further evaluation. Weiss et 

al (1981) described effects of uncontrollable stressors on biogenic amine 

metabolism, Serotonergic, dopaminergic, and noradrenergic agents can also be used 

to study the effects of stress on aminergic systems (Haggstrom et al, 1984) using 

core temperature as a dependent measure. 

3.3. Use of Temperature as a Dependent Variable to Study the Cholinergic 

Pharmacology of Lithium 

Levy et al (1982) reported that the Li+ prevents the induction of mAchR 

up-regulation by atropine in vivo. Pestronk and Drachman (1980) found that the -- 
Li+ reduced the proliferation of extrajunctional nhchRs in denervated skeletal 
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muscle. These findings raise the possibility that Ii+ down-regulates or 

subsensitizes nicotinic mechanisms. However, Tollefson and Senogles (1982) reported 

that Ii+, 1 mEq/l in vitro, produced a 50% (p -- < 0.05) reduction in the affinity of 

the mAchR and 23% decrease (p < 0.10) in B,,, for [3~]~N~ binding in homogenates 

of human caudate nucleus. They concluded that decreased affinity of ['H]QNB for 

the mAchR in the presence of the Ii+ indicates that the latter is a 

cholinomimetic-like agent. This is based on the assumption that antagonists and 

agonists bind to different sites of the mAchR receptor. Presumably, binding to the 

antagonist site interferes with binding to agonist sites. However, agonists and 

antagonists competitively displace one another. This suggests that they biud to the 

same site (Ehlert et al, 1983). Thus, a 23% reduction in B 
max can also be 

interpreted to suggest that Li+ produces a down-regulation of mAchRs (Dilsaver, 

1984a). 

Lerer and Stanley (1985) presented the strongest data against the hypothesis that 

lithium renders muscarinic networks subaensitive. These investigators reported that 

Li+ enhanced the hypothermic response to pilocarpine in rats and that it 

potentiated the capacity of scopolamine to supersensitize and up-regulate muscarinic 

networks. Hruska et al, (1984) observed that 21 days of treatment with Li 
+ 

reduced the density of [ 3 H]QNB binding sites in homogenates of rat cortex, 

hippocampus and striatum. The mean concentration of Li+ was 0.68 mEq/l in the 

unwashed homogenates. Interestingly, rinsing the homogenates eliminated the 

difference in B,,, between treated and untreated samples. The authors concluded 

that Li+ produces an illusion of mAchR down-regulation. An alternative 

interpretation is that Li+ modifies the physical properties of neurons thereby 

reducing the density of functional available mAchRs (Dilsaver, 1986b). 

Down-regulation is a literal decrease in the density of receptors whereas "decreased 

density of receptors available for binding" implies that receptor density may be 

unchanged but that binding is reduced due to transient modifications such as 

receptor phosphorylation (Burgoyne, 1983) or the alterations of membranes by 

nucleotides or other biochemical factors (Blosser and Appel, 1980; Sokolovsky et al, 

1980). 

Li+ causes an immediate reduction in the density of mAchR binding sites when 

added to an assay medium but its therapeutic effects lag 7 to 10 days. Shou (1980) 

observed that it may not be possible to judge the efficacy of Li+ until a patient 

is treated for up to two years. This suggests that there are effects of chronic 

Li+ that cannot be tapped by a Wcros8 sectional" or in vitro analysis. In vivo -- -- 
studies in animals may better approximate realities of the clinical context. Levy 
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et al (1982) illustrated this. Lithium aborted up-regulation of the mAchR produced 

by atropine but without antecedent pharmacologic perturbation no effect of the ion 

was measurable. 

Will Li.+ preveot AM1 induced supersensitization of the muscarinic mechanism 

involved in producing hypothermia upon cholinomimetic challenge? Tbe data of Levy 

et al (1982) predict that it will, but those of Lerer end Stanley (1985) do not. 

Li+'s eholinergic effects may be important to its therapeutic actions, The 

growing body of information implicating disturbances of muscarinic systems in the 

pathophysiolo~y of affective disorders would be consistent with this. Future 

research in this area could focus on the effects of IX+ on multiple physiological 

functions. 

3.4. Temperature es an Endpoint in Studying the Biology of the Electronconvulsive 

Shock (ECS) 

ECS produces reliable changes in cholinergic physiology. It immediately increases 

the release of Ach and reduces the concentration of this neurotrensmitter in the 

cerebral cortex of animals (Longoni et al, 1976). Chronic ECS continues to produce 

tbese effects (Essman, 1973; Longoni et al, 1976). Man responds similarly to a 

convulsion. Fink (1966) showed that tetrazol-induced seizures produce elevations in 

the cerebral spinal fluid (CSF) concentrations of Ach and choline and tbat ECS 

produces an antimuscarinic reversible increase in slow wave activity. 

Massive release of endogenous agonists (e.g., Ach) or treatment with exogenous 

agonists produces down-regulation of target receptors (Eblert et al, 1980; Dilsever, 

19868; Shifrin end Klein, 1980)). Experts agree that seizures produce mAcbR 

down-regulation. Dashieff et al (1982) observed a 19 to 25% reduction in the 

density of QRB binding sites in rat hippocampus following ECS, one treatment/day for 

four days. Lerer (1984) observed that a single ECS treatment did not affect the 

density of mAchR binding sites in the rat hippocampus or cerebral cortex but that 

one treatment daily for seven days produced decreases of 13 and 15% in the density 

of mAchR radiofigand binding sites in these regions, respectively. 

Reductions in mAcbR density do not necessarily imply a change in function. Eeans 

of relating structural and functional statements amplify the meaning of data in each 

category. Lerer (1984) did this. He measured the effects of ECS on 

thermoregulation end mAchR binding density in rats given ECS once daily for 7 days. 

ECS produced a reduction in the density of mAchR binding sites in the cerebral 

cortex but not the hippocampus. The maximum cataleptic response to pilocarpine wae 
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reduced in animals given ECS (n=lO), once daily for 7 days, relative to sham treated 

animals (p < 0.05). Measurement of the effects of ECS on other cholinergically 

mediated functions, including studies using temperature as a dependent variable are 

now desirable. The strategy of studying the effects of ECS in animals subject to an 

agent producing cholinergic system supersensitivity might be useful. One strategy 

is to determine whether ECS prevents the intensification of the hypothermic response 

to cholinomimetic challenge which follows chronic treatment with mAchR antagonists 

(Dilsaver, 1986b). 

4. Areas for Future Investigation Using Temperature as a Dependent Variable 

Previous sections focused on areas in which study has been conducted. We will now 

deal with areas of theoretical importance. 

4.1. The Pharmacology of Substances of Abuse 

Nonpsychedelic abusable substances frequently activate monoaminergic systems or 

inhibit cholinergic networks by blocking the mAchR or inhibiting the release of Ach 

(Dilsaver, 1987h,i). This section focuses on six categories of abusable agents, 

antimuscarinic agents, barbiturates, benzodiazepines, cannabinoids, ethanol, and 

opiates. These drugs have similar effects on cholinergic mechanisms. 

Antimuscarinic agents block the postsynaptic mAchR and the others inhibit the 

release of Ach from presynaptic nerve terminals. 

Drugs blocking the postsynaptic mAchR may have antidepressant properties (Dilsave, 

1986b,e) and can produce euphoria (Dilsaver, 1987h,i). These agents produce 

up-regulation (Ehlert et al, 1983) and supersensitivity of cholinergic mechanisms 

(Dilsaver et al, 1983b) and their abrupt discontinuation causes symptoms of 

cholinergic rebound (Dilsaver and Greden, 1984c; Dilsaver et al, 1983a,b, 1984b), 

escape of plasma cortisol from suppression by dexamethasone (Dilsaver and Greden, 

19R5) and increased REM density and decreased REM latency (Sitaram et al, 1979). 

The behavioral, neuroendocrine and sleep EEG findings associated with the withdrawal 

of antimuscarinic agents suggest cholinergic overdrive (Dilsaver, 1986e; Dilsaver 

and Davidson, 1987e; Dilsaver and Greden, 1984c; Dilsaver et al, 1983a,b). Agents 

blocking the release of Ach can also produce euphoria. Cannabinoids, opiates, 

barbiturates and ethanol all reduce Ach release from nerve terminals in rodents. 

Depressed mood and affect and somatic symptoms of melancholia often follow the 

discontinuation of these drugs--an observation consistent with some form of the 

cholinergic hypothesis of depression (Dilsaver, 1986b-d,g). 
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Table 1 aummsrisse effecta of antimuscarinic agents, cannabinoids, barbiturates, 

ethanol, and opiates on muscarinic systems. In general, their acute effect is 

antagoui~m of muacarinic cbolinergic systems and potentiatico of the monoamiuergic 

networks whose function is inhibited by eholinergic mechanisms. Cbolinergic- 

monoaminergic interaction is not necessarily antagonistic but tbere is evidence 

that, in addition to the striatum, these syetems exert opposite and counterbalancing 

effects within the mesolimbic system (Friedhoff and Alpert, 1973; Jaeckle and 

Dilsaver, 1986). 

Figure 5 higbligbte the interrelatiooehips of cholinergic and monoaminergic 

systems aa they pertain to the effects of abusable drugs. 

A Cholinergic Monoammergic Interaction Model 
of Affective Regulation 

RAS actwates 

Chohnergtc outflow from 
these structures is Invoked 
I” producmg b~~ioral 
arOUWl 

Electroconical desynchrontration dunng 
behavioral arot& 
R~latioo of transttmns between nonREM 
and REM sleep 
11) and (21 are dependent upon the r&ease of 
acetylchohne at the level of the cerebral cortex 

Fig 5. Cbolinerg~c-Mono~inergic Interaction-Theory of affective regulation. The 
model focuses on mechanisms involved in the regulation of mood and affect, hedonic 
capacity, psychomotor function, arousal and sleep. The reticular activating system 
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(RAS) interacts with limhic aminergic nuclei which influence the level of behavioral 
arousal. Cholinergic neurons of the gigantocellular-tegmental field (FTG) interact 
with adrenergic neurons of the locus cereolus to regulate the timing of REM-nonREM 
transitions. The RAS and FTG contain cholinergic neurons with terminals at the 
level of the cerebral cortex. These neurons can affect electrocortical desynchrony 
by releasing Ach. This occurs during behavioral arousal and transitions to REM 
sleep. Cholinergic limbic neurons interact with monoaminergic cells to modulate 
mood, affect, some neuroendocrine functions, psychomotor status and other variables 
relevant to affective and substance abuse disorders. These systems are auto- and 
inter-regulated. Thus, the status of monaminergic variables is related to the- 
status of variables describing the cholinergic limhic nuclei and vice-versa. 

Cholinergic effects of antimuscarinic agents and drugs blocking the release of Ach 

may be related to the pathophysiology of drug dependence and tolerance (Dilsaver, 

1987h). Tolerance to antimuscarinic agents is associated with mAchR up-regulation 

and supersensitivity of cholinergic systems (Dilsaver, 1986b). Other drugs can 

supersensitize cholinergic systems. Marijuana is an example. Cannabinoids produce 

tachycardia, dry mouth, diminished REM sleep, slowing of the electroencorticogram, 

short-term memory deficits and other characteristics of mAchR blockade (Dukes, 1980; 

Jaffe, 1980). They also increase the striatal and amygdalar concentrations of 

Ach--indication of a decrease in the release of Ach (Yoshimura et al, 1974). At 

high concentrations, cannabinoids completely block the release of Ach from 

presynaptic cholinergic neurons at neuromuscular junctions (Kumbarachi and Nastuk, 

1980). Cannabinoids also decrease the release of Ach at muscarinic synapses (Layman 

and Milton, 1971; Revuelta et al, 1979). Assuming sufficient potency, agents with 

this property will induce up-regulation and supersensitivity of cholinergic 

systems. Animal studies and clinical reports are consistent with this. El-Yousef 

et al (1975) observed that chronic marijuana abusers developed severe depression 

upon infusion of physostigmine. Further, delta-'tetrahydrocannabinol potentiates 

the toxicity of this anticholinesterase in rats (Rosenblatt et al, 1972). Dilsaver 

et al (1984b) observed profound depression in an 18-year-old woman who chronically 

abused marijuana and who abruptly discontinued thiothixene and benztropine. 

Withdrawal symptoms included tearfulness, agitation, tenseness of muscles, 

behavioral withdrawal, apathy, quietness or fearfulness, psychomotor slowing, 

sleeplessness for three days, poor self-care, fear of losing her mind, nausea, 

vomiting, anorexia and diarrhea. This syndrome responded to atropine sulfate, 1.2 

mg every 4 hours, without the occurrence of a noteworthy side-effect. We concluded 

that cannabis induced cholinergic system supersensitivity and that psychotropic 

withdrawal triggered a cholinergic overdrive state. 

Ethanol is also a potent inhibitor of the release of Ach (Carmichael and Israel, 

1975). Treatment with ethanol via addition to water produced a 115 to 124% increase 

in the density of QNB binding sites in hippocampal and cortical homogenates 
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(Tabakoff et al, 1979). This change was associated with withdrawal seizures during 

the first 24 hours of abstinence. Smith (1983) administered ethanol, 7% by volume 

in drinking water, to mice for 8 days. The synaptosomal fraction from the brains of 

these animals showed a 128% increase in specific mAchR radioligand binding. Rabin 

et al (1980) also showed that ethanol produces an increased density of QNB binding 

sites in the cerebrum. Soliman and Gabriel (1985) reported that a single injection 

of ethanol resulted in a decrease (p < 0.05) in choline acetyltransferase activity 

in multiple regions of mouse brain but that repeated injection (3 g/kg once daily) 

did not generally result in a further increase in the activity of this enzyme after 

the second or third day. Tolerance also developed to the hypothermic effects of 

ethanol after the third injection. These investigators proposed that tolerance to 

ethanol involves activation of a cholinergic mechanism. Majchazak and Dilsaver 

(1987) recently used the Model VM Mini-Mitter to document that chronic treatment 

with ethanol (14% v:v) produces supersensitivity to the hypothermic effects of 0X0, 

0.25 mg/kg ip, in rats (n=8, p c 0.0001, ANOVA with repeated measures). The results 

of their study is illustrated in Figure 6. The administration of 0X0, 0.25 mg/kg ip 

every other day for 10 days failed to alter the thermic response to this muscarinic 

agonist. This strongly suggests that ethanol supersensitizes a muscarinic 

cholinergic mechanism which is involved in the regulation of core temperature. 
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Fig 6. Eight adult male Sprague-Dawley rats were challenged with 0X0, 0.25 mg/kg 
before and after treatment with 14% ethanol (v:v) in drinking water. The change in 
hypothermic response was significant at the 0.0001 level (ANOVA with repeated 
measures). Ninety-six (96) hours after the discontinuation the animals remained 
supersensitive (p c 0.02). 
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Pentobarbitol inhibits the release of Ach (Domino and Wilson, 1972, 1973; 

Schuberth et al, 1969) and the withdrawal of a barbiturate increases the utilization 

and turnover of Ach (WahlstrBm and Norberg, 1979). The latter finding indicates 

enhanced release of Ach during the withdrawal phase. Wahlstrijm (1978) reported that 

chronic treatment with barbital produced supersensitivity to choline as inferred 

from the threshold to induction of seizures. Wahlstrsm and Ekwall (1976) showed 

that animals chronically treated with barbital demonstrate supersensitivity to the 

hypothermic effects of pilocarpine. Finally, the chronic administration of 

barbiturates produced up-regulation of mAchRs in the brains of rats (Nordberg and 

Wahlstrb;m, 1979, 1980). Thus, acute treatment with a barbiturate decreases the 

release of Ach and chronic administration produces up-regulation and 

supersensitivity of muscarinic mechanisms. 

Opiate agonists also inhibit the release of Ach and could supersensitize 

muscarinic systems (Jhamandas et al, 1970; Paton, 1957). The withdrawal of opiates 

produces signs and symptoms of cholinergic overdrive states (Dilsaver, 1987h). 

Tbese include nausea, vomiting, anorexia, diarrhea, myalgeas, insomnia, anxiety, 

coryza, irritability, cephalgia, dizzyness, tachycardia and hypertension. The 

withdrawal of TCAs or the intravenous injection of physostigmine or arecoline also 

produce these (Dilsaver, 1983b; Dilsaver and Greden, 1984c). While opiate 

withdrawal states are too complex to be explained by a cholinergic mechanism alone, 

it is conceivable that they involve a cholinergic component. 

The effects of benzodiazepines on the mAchR mediated fall in core temperature is 

of theoretical interest. Benzodiazepines facilitate the binding of yaminobutyric 

acid (GABA) to its receptor. There are reports that GABA inhibits the release of 

Ach (Agardh et al, 1985; Giotti et al, 1985; Schultz and Lund, 1983; Wood and 

Richard, 1982). Injection of the GABA agonist, muscimol, into the septum decreases 

the turnover of Ach in the hippocampus (Wood et al, 1979). This implies a decreased 

release of Ach. The regulation of Ach release by GABA in this region is consistent 

with tne neuroanatomical finding that there is a large population of GABAergic 

interneurons in the septum (Fonnum and Walaas, 1978). Chronic treatment with 

benzodiazepines might inhibit the release of Ach from presynaptic terminals and 

thereby denervate cholinergic neurons. The result should be enhancement of the 

hypothermic response to muscarinic agonists. 

Table 1 lists the sites at which the six groups of abusable agents discussed above 

act upon muscarinic systems, the effects of their actions at these loci, and the 

known or predicted impact of chronic treatment with these drugs upon the 

cholinomimetic induced fall in core temperature. Note that all six classes can 
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produce euphoria or have anxiolytic properties. Cholinergic mechanisms were long 

ago accorded a role in the pathophysiology of mood disorders (Dilsaver, 1986b-e) and 

more recently were proposed to be involved in the neurobiology of stress (Dilsaver 

and Alessi, 1987a; Janowsky et al, 1983) and anxiety (Dilsaver, 1986f). Direct 

blockade of postsynaptic mAchRs or inhibition of the release of Ach might be linked 

to the euphoriagenic and anxiolytic properties of these agents. However, their 

effect is to up-regulate and supersensitize muscarinic systems. This raises 

important questions. First, "Do these compensatory changes in cholinergic networks 

limit the long-term clinical utility of certain anxiolytics?: Secondly, "Does 

tolerance and addiction to the therapeutic effects of benzodiazepines involve 

up-regulation and supersensitivity of cholinergic systems?" One might speculate 

that anxiolytics and antidepressants devoid of a capacity to up-regulate and 

supersensitize cholinergic systems would, ceteris paribus, be less apt to produce 

tolerance and physiological addiction. 

In conclusion, several substances of abuse inhibit cholinergic systems by blocking 

the postsynaptic mAchR or decreasing the release of Ach. These result in the 

supersensitization of cholinergic systems. The significance of these factors to the 

biology of dependence, tolerance and withdrawal phenomena is unknown. Physiological 

endpoints sensitive to cholinergic agonists, such as temperature, may be useful in 

studying the actions of some of these agents on cholinergic systems. 

4.2. Applications to Clinical Research 

Body temperature can be measured telemetrically in man. Dabbs and Neuman (1978) 

used a pulse-modulated radio frequency transmitter mounted to the ear to measure 

temperature against the ear drum. The device has the appearance of a hearing aid. 

The system was comprised of a temperature sensor and transmitter, a device for 

mounting these, a receiver and an instrument for decoding the signal recorded. The 

transmitter consisted of a temperature sensor, multivibrator and radio frequency 

oscillator. The resistance of the sensor is regulated by temperature and determines 

the oscillatory frequency of a multivibrator. Pulse frequency is proportional to 

temperature. A thermistor can also be used to manually measure rectal temperature 

at specified intervals (Avery et al, 1982) or a rectal probe attached to a computer 

system can automatically record temperature (Henane et al, 1973). 

REM latency, duration of the first REM period, elevated REM density, and core 

temperature retain their typical relationship during depressive episodes (Avery et 

al, 1982; Czeisler et al, 1980; Schultz and Lund, 1983). Treatment with scopolamine 
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followed by an abrupt withdrawal produced changes in REM sleep simulating those 

marking primary depression (Sitaram et al, 1979). These findings suggest an 

interesting question. "Does treatment with an antimuscarinic agent produce 

simultaneous phase advance of the REM and sleep-temperature cycles in normal man?" 

If so, a particular neurotranamitter mechanism ia implicated in the pathophysiology 

of both REM sleep and the altered temperature activity cycle in the affective 

disorders. 

Thermoregulation strategies can also be used to study the effects of agents on 

cholinoceptive neurons. For example, evidence that chronic treatment with TCAs 

supersensitizes muscarinic mechanisms could be strengthened by demonstrating that 

the withdrawal of these agents produces a atropine sensitive decrease in a body 

temperature over time. This might occur if withdrawal of a TCA produces cbolinergic 

overdrive at the critical thermoregulatory sites. Challenge with a cholinergic 

agonist before and after chronic treatment with a TCA would be a more powerful means 

of demonstrating supersensitization of the pertinent neurons. Establishing that 

TCAs supersensitize cbolinoreceptive neurons using this strategy would be consistent 

with reports that the withdrawal of TCAs produces an increased frequency in positive 

dexamethasone suppression teat (DST) results (p = 0.03) and an increase in the 

absolute concentration of plasma cortiaol (p < 0.0033) post-dexamethasone challenge 

(Dilsaver and Greden, 1984e, 1985) and REM rebound (Dunleavy et al, 1972). 

Effects of Li+ on cholinergic physiology can also be studied using a 

thermoregulation paradigm. One strategy would be to measure the thermal response to 

a cholinergic agent before withdrawal of Li+ in euthymic patients and again a few 

weeks after the last dose, provided patients remain in remission. Both consistently 

increased or decreased sensitivity to the muscarinic agonist during lithium 

prophylaxis would be of interest. 

Responsiveness of core temperature to cholinergic drugs might provide a simple 

means of testing the hypothesis that subjects with certain types of depressive 

disorders have supersensitive cholinergic systems. Rapidly-cycling patients are 

ideal for this study. According to existing theory, drug-free patients who 

rapidly-cycle should exhibit greater changes in body temperature in response to 

cbolinergic challenge during the depressed phase than euthymic or manic phases 

(Dilsaver and Greden, 1984d). 

The questions proposed here for clinical study using a thermoregulation paradigm 

all allow patients to be their own controls. Using subjects as their own controls 
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tends to minimize variance at a fixed sample size and the number of subjects 

required to obtain meaningful results. 

Use of cholinergic agents in human subjects is warranted and feasible. Human Use 

Committees have approved the use of arecoline (Sitaram et al, 1979) and 

physoatigmine (Janowsky et al, 1980, 1983; Risch et al, 1981, 1983). Thus, the 

thermoregulation studies proposed are possible. 

5. Conclusions 

Measurement of core temperature provides a means of quantifying effects of 

pharmacological manipulations on cbolinergic systems. The process of 

tbermoregulation involves central and peripheral mechanisms but studies can be 

designed which justify the conclusion that central mechanisms generate a given 

result. Many behavioral, physiological and biochemical measures are useful as 

dependent variables when studying central functions in health or disease. 

Abnormalities of these variables can result from changes in the density of a 

particular type of receptor or alteration of the sensitivity of neurons to a 

transmitter (Dilsaver, 1986b). Pathology can be modeled by pharmacologically 

inducing changes in the physiology of neurotransmitter networks (Dilsaver, 

1986b,e,f). Mood and affect (Dilsaver, 1986b), psychomotor function (Creden and 

Carroll, 1981), hedonic capacity (Dilsaver, 1986b), pupillary physiology (Soli et 

al, 1980), sleep architecture (Sitaram and Gillin, 1980), neuroendocrine variables 

(c arroll, 1982; Dilsaver, 1986b,e,f), power spectral analysis (Duffy et al, 1979), 

rates of cyclic GMP generation (Kanba and Ricbelson, 1984), or pbospbolipid turnover 

(Berridge and Irvine, 1984; Fisher and Agranoff, 1985; Fisher and Bartus, 1985), and 

core temperature are all useful dependent variables in psychopharmacological study 

(Dilaver, 1986b). However, none is measured with greater ease and economy of 

expense than core temperature. Perhaps it is underutilized: 
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