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1. INTRODUCTION 

Let 2 be a separable, infinite dimensional, complex, Hilbert space, and 
let 5?(X) denote the algebra of all bounded linear operators on ~8’. In the 
last eight years considerable progress has been made in the structure theory 
of operators in P’(S’). The starting point for this development was the 
pioneering paper [7] which solved the invariant subspace problem for sub- 
normal operators and, more importantly, introduced into operator theory 
the fruitful concept of a dual algebra of operators. 

The study of dual algebras was then taken up by many authors, and the 
subsequent results have contributed substantially to our knowledge of 
invariant subspaces, dilation theory, and reflexivity of operators. (For an 
in-depth development of the theory of dual algebras and a comprehensive 
bibiliography as of 1984, see [5].) In particular, attention has been focused 
in the last three years on sufficient conditions that a contraction T in 
JZ(&‘) belong to the class A, appearing in the theory of dual algebras 
(definition reviewed below), and substantial contributions to this circle of 
ideas were made in C2-6, 11-13, 17, 18, 201. In this paper we continue the 
study of sufficient conditions for membership in the class A, (or, more 
precisely, one of the classes A,(r)), using improvements of techniques 
introduced in [2, 16, 173. We first establish (Theorem 4.4) an abstract 
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geometric sufficient condition for membership in some A,(r) that is an 
analog of the sufficient condition [S, Proposition 6.11 for membership in 
A,, (definition reviewed below). This gives us a powerful tool which we 
employ in Section 5 to considerably improve the known spectral sufficient 
conditions (from [13, 181) for membership in some A i(r). Moreover, 
Theorem 4.4 is sufficiently strong that we are able to utilize it, in con- 
junction with the new techniques of [8], to deduce, in the sequel [lo] to 
this paper, the fact that every contraction Tin U(s) whose spectrum a(T) 
contains the unit circle has nontrivial invariant subspaces. The main results 
of this paper were presented at the conference “Functional Analysis and its 
Applications,” Nice, France, August 25-29, 1986. 

2. PRELIMINARIES ON DUAL ALGEBRAS 

The notation and terminology herein agree with that in [S]. 
Nevertheless, for the reader’s convenience, we begin by reviewing a few per- 
tinent definitions. It is well known that 9(X’) is the dual space of the 
Banach space (and ideal) gl(X) of trace-class operators on .X equipped 
with the trace norm 1) )( i. This duality is implemented by the bilinear 
functional 

(T,L)=tr(TL), TEY(S), LE%$(.%). 

A subalgebra d of Z(X) that contains 1, and is closed in the weak* 
topology on L?(X) is called a dual algebra. It follows from general prin- 
ciples (cf. [9]) that if d is a dual algebra, or, more generally, any weak* 
closed subspace of Y(X), then d can be identified with the dual space of 
Q, = g,(X)/ I&, where ld is the preannihilator of d in %i(&‘), under 
the pairing 

CT, CLl>=tr(TL), TE -01, CL1 E Q,. 

(Here and throughout the paper we write CL], or [L]& when there is a 
possibility of confusion, for the coset in Q, containing the operator L in 
WI(X).) If x and y are vectors in X, then the associated rank-one operator 
x@y belongs to WI(Z) and satisfies tr(x@i) = (x, y). Thus if d is any 
weak* closed subspace of Y(X), then [x@y] E Q&. As is well known, 
every operator L in %i(X) can be written as L = CZE I xi@ yi for certain 
square-summable sequences {xi} and {vi} (with convergence in the norm 
(1 [II), and it follows trivially that every element of Q, has the form 
[L] =x2 1 [x,@yi]. A weak* closed subspace d of g(&‘) is said to 
have property (Al) if every element CL] of Q, is the coset 

CL1 = C~OVI (1) 
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of some rank-one operator, and to have property (A ,( r )) (for some r >, 1) if 
d has property (A i) and if, in addition, for every [L] E Q, and E > 0, 
vectors x and y satisfying (1) can be found which also satisfy 
llxll llyll < (r+c) \I[L]II. Although it is the properties A.,(r) that play the 
central role in this paper, the corresponding properties An,(r) for n a 
cardinal number satisfying 2 <n < No are worth mentioning. If n is such a 
cardinal number, and if for every doubly indexed family { [Lii] },, s i,i< n of 
elements of Q, there exist sequences {xi},,< i<n and { Y~}~~,<, of vectors 
from YE’ such that 

CLijl = CxiOYjl, O<i,j<tZ, (2) 

then d is said to have property (A,,). The properties (A,,(r)) can be 
defined in a way analogous to the properties (A,(r)), and express the 
existence of some control on the norms of the vectors xi and yj appearing 
in (2) (cf. [5, p. 81). 

Let f%J be the set of positive integers, and let ID be the open unit disc in @. 
A set /i c D is said to be dominating for T = XI if almost every point of T 
is a nontangential limit of a sequence of points from (1. The spaces 
Lp = LP(T) and HP = HP(T), 1 <p < co, are the usual Lebesgue and Hardy 
function spaces relative to normalized Lebesgue measure m on 8. Further- 
more, Hh = HA(U) denotes the subspace of H’ consisting of those functions 
f whose analytic extension f to D satisfies fi0) = 0. Moreover, if C is an 
arbitrary Bore1 subset of 8, we will need the (closed) subspace Lp(C) of 
LP(U), 1 <p < co, defined to be the set of (equivalence classes of) functions 
fin LP(U) such that f= 0 almost everywhere on U\Z. 

If T is a contraction in Y(X), we denote by &r the dual algebra 
generated by T, by “w; the closure of J& in the weak operator topology 
(WOT), and by QT the predual Q,,. If T is also absolutely continuous 
(i.e., if the maximal unitary direct summand of T is either absolutely con- 
tinuous or acts on the space (0)) then one knows (cf. [S, Theorem 4.11) 
that the Sz.-Nagy-Foias functional calculus @, is a weak* continuous, 
norm-decreasing, algebra homomorphism of H” onto a weak* dense 
subalgebra of dT, and in [4] we defined the class A = A(&) to be the set 
of all absolutely continuous contractions T in Y(X) for which cD~ is an 
isometry of H” onto &r.. (In this case 0,. is a weak* homeomorphism; see 
[9].) Furthermore, for each cardinal number n satisfying 1 <n < X0, we 
defined the class A, = A,(X) to be the set of all T in A for which &. has 
property (A,), and the class A,,(r) to be the set of all T in A for which G!~ 
has property (A,,(r)). 

If TE A, then it follows easily from general principles that there exists an 
isometry (Pi from Q, onto L’/HA (the predual of H”) such that cp; = GT. 
If 1 E I3 and we let P, denote the Poisson kernel function 

PJe”) = (1 - In(‘) (1 - Xe”l p2, eit E U, 
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in L”, then we write [C,] = cp,‘( [PJ), and observe that 

<f(T), cc,1 > = (@a-), cc,1 > = CL cpT(CC,l)> 
= (f, PA> =fU), f~ H”. (3) 

If TE Y(X), we write, as usual, a,(T) for the essential spectrum of T. 
Furthermore, we write (9) and (99) for the classes of Fredholm and 
semi-Fredholm operators in L?(X), and also i(T) for the Fredholm index 
of an operator T in (YB). Recall that CO. = C,.(X) is the class of all 
contractions T in L?(X) such that the sequence { )I Pxll} converges to zero 
for every x in X, and that C+, and C, are defined by C.,, = (CO.)*, 
c, = co. n c.0. 

3. THE MINIMAL COISOMETRIC EXTENSION 

To establish our results, it will be convenient to use the well-known fact 
that every contraction T in Z(X) has a minimal coisometric extension 
B= B, that is unique up to unitary equivalence. This theorem is due to 
Sz.-Nagy and Foias (cf. [ 193); a useful alternate geometric construction 
was given by Douglas [ 151 using ideas of de Branges and Rovnyak. In this 
section we set up some notation connecting T to B,, and establish some 
lemmas that will be needed in the remainder of the paper. 

Thus, let T be an arbitrary contraction in Y(X). Without loss of 
generality (cf. [19, 15]), we may suppose that there exists a Hilbert space 
X and a coisometry B = B, in L?(X) satisfying 

and 

BIX=T. (6) 

Furthermore, we may suppose B to be minimal, which means that for 
subspaces J# of X, 

{(XtAcX) A (Bd2ce.M) A (B*.dc.M)}+M=X-. (7) 

In other words, the smallest reducing subspace A for B containing 3’ is 
X itself. It is easy to see that (7) implies the following additional relation 
on subspaces A!: 

{(%c.McX) A (Bdc&) A (BI Aisacoisometry)}*M=X. (8) 
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This is because the left-hand side of (8) implies that (B 1 A)* is an 
isometry, and since B* is also an isometry, it follows immediately that A is 
invariant for B* and hence reducing for B, so (7) applies. Therefore, in the 
remainder of the paper, we employ 

Convention 3.1. When a contraction T in Y(X) and its minimal 
coisometric extension B = B, in Y(X) are being discussed, we always 
assume that (4) (5) (6) (7), and (8) are valid. 

Given such T and B, one knows that there exists a canonical decom- 
position of the isometry B* as 

B*=S@R*, (9) 

corresponding to a decomposition of the space 

X=Y@O, (10) 

where, if Y # (0) S is a unilateral shift operator (of some multiplicity) in 
Y(Y), and, if B # (0), R is a unitary operator in Y(B). (Of course, either 
Y or .%? may be (0)). This is the von Neumann decomposition of an 
isometry into its unitary and pure isometric parts. Concerning the relation 
between T and R, we will need the following easy lemma, which can be 
deduced from [19, p. 841 or as in [18]. 

LEMMA 3.2, If T is an absolutely continuous contraction in L?(X) with 
minimal coisometric extension B in Y(X), and the subspace .%Y of X in (10) 
is nonzero (i.e., B* is not a pure isometry), then the unitary operator R in (9) 
is absolutely continuous. 

Notational Convention 3.3. In the remainder of the paper, given a con- 
traction Tin Y(s) and its minimal coisometric extension B in 2’(X), the 
projection of X onto Y will be denoted by Q and the projection of X 
onto 9 will be denoted by A, so Q = 1, -A and every vector x in X may 
be written uniquely as 

x=Qx+Ax=Qx@Ax. (11) 

(Projections are not usually denoted by A, but there is a good reason for 
this choice of notation; see [15].) Moreover the projection of X onto the 
subspace X will be denoted by P. 

The following lemma is a trivial consequence of (5), (6), (9), (1 l), and 
the fact that the polynomials are sequentially weak* dense in H”(T). 

LEMMA 3.4. If T is an absolutely continuous contraction in Z’(2) and B 
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is its minimal coisometric extension in 2’(X), then for every vector x in 2, 
and every function h in H”(T), 

h(T)x=h(B)x=h(S*)(Qx)oh(R)(Ax)=Q(h(T)x)8A(h(T)x), (12) 

SO 

h(S*)(Qx) = Q(h(T) x), h(R)(Ax) = A(h( T) x). (13) 

The next lemma is a tool for passing back and forth between the 
preduals Q, and QB when TE A. 

LEMMA 3.5. Suppose TE A(&) and has minimal coisometric extension B 
in 9(X). Then BE A(X), @J~o@B~ is an isometry and weak* 
homeomorphism from zztB onto J&, and j= cp;’ Q ‘pr is a linear isometry of 
Q, onto QB. Moreover, 

ACCJ A = CCAIBT a.ED, (14) 

and 

ACx@&)= CX@YL x, YE&%?. (15) 

Proof: That BE A(X) follows immediately from the fact that T is a 
part of B, and that @To CD; ’ and j have the stated properties follows from 
results mentioned in Section 2. To establish (14), we compute, for any 
1~ D and hEHm, 

(h(Bhj(CCJd) = (j*(h(B)), CCJT> = <(@P@B~) @Ah), [CAT> 
= (h(T), CC,l,> = WI = <h(B), CCJB). 

The verification of (15) is just as easy and is omitted. 

We shall also need the following rules for operating in the preduals QT 
and QB. 

LEMMA 3.6. If T belongs to A(S) and has minimal coisometric exten- 
sion B in Y(X), x, y E S, and w, z E X, then 

IIcx~YlTll = IIcxoYlBll, (16) 

[xOzl,= [x0 Pzle, (17) 

and 

CwCWl,= CQw@Qzle+ CAw@Azl,. (18) 
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Proof: Relation (16) follows immediately from Lemma 3.5. Relation 
(17) follows from the computation 

(h(B), CxOzle> = (W 4 z) = (h(B) x, Pz) 
= <h(B), cxo~zl.), 

valid for every h in H”. One can establish (18) by a similar computation 
using (9). 

The following easy “vanishing lemma” will be central to what follows. 

LEMMA 3.7. Zf T belongs to A(%‘), with minimal coisometric extension B 
in Wx)), and {xn}n”Sl is a sequence from 2 such that 

IIC-%OYlTIl --+R VYEZ", (19) 

then 

and 

II [Ix, 63 zl Bll --+ 0, VZEX, (20) 

IIcex,ozlBlI -+o, VZEX, (21) 

II[~x,OzlBlI --+(A VZEX. (22) 

Proof. Relation (20) follows trivially from (19) (16), and (17). To 
establish (21) we compute 

llCQx,@~l.Il= sup l((h(B), CQxn@~l.)l 
heH” 
Ilhll = 1 

= SUP IMB)x,, QZ)I = II cx, 0 Q~lBll> 
haHe 
llhll = 1 

which tends to zero by (20); (22) follows in the same way. 

The following “vanishing lemma” is not so trivial. 

LEMMA 3.8. Suppose TEA(Z) and has B in 2’(X) for its minimal 
coisometric extension. Zf {zn} is any sequence in X that converges weakly to 
zero, then 

IIcwozJ.ll -+o, VWEY. (23) 
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Proof If Y = (0), then w = 0 and the result is trivial. If Y # (0), then, 
for every w in Y, 

II cw04,11 = sup I(h(B) WY Z”)l 
hsHm 
llhll = 1 

= sup I@(B) w, QzJI = sup I(NS*) w, QzJI 
hsHm 
llhll = 1 

= II CwO Q&4 

heHm 
llhll = 1 

and this last quantity tends to zero as n gets large by [ 12, Proposition 2.71, 
since S* E A(Y) n Co.. 

In the proof of Theorem 4.4 we will need a mechanism for solving certain 
equations in L’(Z), where Z is a Bore1 subset of 8. The procedure we use 
is a simplified version of similar procedures in Cl73 and [ 181. In 
preparation for the use of this mechanism, we make some remarks about 
absolutely continuous unitary operators. 

Suppose U is an absolutely continuous unitary operator in Z(M) with 
spectral measure E,, and let p be a scalar spectral measure for U. (One 
may suppose that E, and p are defined on all Bore1 subsets of 8.) Then 
one knows, via the absolute continuity, that there exists a Bore1 set Z:c T 
such that p is equivalent to Lebesgue measure m JZ (where this measure is 
defined to be zero on Bore1 subsets of T\Z). For any vectors x and y in 
A’“, let us denote by pLx,Y the complex measure on % defined by 

~x,y(~) = (E&W xv Y) (24) 

for every Bore1 subset 39 of T. Obviously all of these complex measures p’x,Y 
are absolutely continuous with respect to the measure m ( C. Therefore, for 
each pair X, y E JV, there is a function in L’(Z), which we denote by x .y or 
x v,, that is the Radon-Nikodym derivative of pLx,Y with respect to m 1 Z. 
We thus have, of course, 

It is obvious that the function (x, y) + x .y is sesquilinear; moreover the 
inequality J(x.yll, < llxll llyll follows from (25) by taking I=m/lx.yl. 
Furthermore, if U can be written as a direct sum U = U, @ U2 relative to a 
spatial decomposition .M = Jv; @X2, and x, y are any vectors in < with 
corresponding decompositions x = x, @x2, y = y, 0 yZ, then xi . yi = 
xi uyi, x, .y,=x2.yl =O, and x uy=xi y’y, +x, ‘iz y, ; these relations 
are all established by computations similar to this: 
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5 l(x !’ y) dm = (I(U) x, y) 
x 

Since, by definition, L’(Z) is a subspace of L’(U), we may write [1] for 
the equivalence class of 1 in the quotient space (L’/Hh)(T). A connection 
between this present discussion and the earlier part of this section is given 
by 

LEMMA 3.9. Suppose TE A(%‘) and has B= S* @ R as its minimal 
coisometric extension, with S? # (0). Then, for every pair of vectors w, z E J9, 
we have 

[Iw “zl=(pB(cwoz1B). (26) 

Proof For an arbitrary h in H”(T), we have 

(h, cpidCwOz1~)) = (@Ah), CwOzlB> = (h(B) w,z) 

h(wfz)dm=(h,[wfz]), (27) 

and the result follows from the fact that H” is the dual space of L’/Hh. 

The following proposition is another step in the production of our 
equation solving technique in L’(C). If C is a Bore1 subset of T, we denote 
by H*(C) the closure in L2(C) of the linear manifold of those functions that 
agree with some polynomial on Z. Of course, if m(U \C) # 0, we have 
H’(C) = L’(C). 

PROPOSITION 3.10. Suppose T is an absolutely continuous contraction in 
2’(Z), and B = S* 0 R is its minimal coisometric extension in Y(X), with 
W # (0). Then there exists a Bore1 set CC T such that m 1 C is a scalar spec- 
tral measure for R, and W contains a reducing subspace S&, for R such that 

(a) R, = R ) S&, is unitarily equivalent to the operator M,, of multi- 
plication by the position function on L’(Z), and 

(b) tf we denote by a,+ the subspace of @, corresponding to H’(Z) 
under the unitary equivalence in (a), then SS?c c (AS)-. 

Proof. Since B is minimal and W # (0), we know that (AX)) # (0). 
Suppose first that (AX)- = 9. Then, since R is absolutely continuous 
(Lemma 3.2), it follows easily from the theory of spectral multiplicity that 
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there exists a reducing subspace 91’0 for R such that (a) is satisfied, and (b) 
is automatic. Suppose now that (AX)- #W. It follows from (13) that 
(AS)- is an invariant subspace for R, and, of course, R 1 (AZ)- is an 
isometry. But if R ( (AZ)) were unitary, then 9’pO (AZ)- would be 
reducing for B, which is impossible by (8), since B is minimal and 
(AX)- # 9. Thus R 1 (AX)- has an invariant subspace W,+ c (AX)- on 
which R ( (AC%‘- acts as a unilateral shift of multiplicity one. Hence 
a,+ E Lat(R), a(R) = T, and R 1 !%‘,+ is a unilateral shift of multiplicity one. 
Thus there must be a reducing subspace 9,, =) a,+ for R such that R ( 4?,, is 
a bilateral shift of multiplicity one, and (a) and (b) follow at once. 

The following result is our “equation solving procedure” in L’(Z), which 
is patterned after [17, Lemma 61 and [18, Lemma 3.83. 

THEOREM 3.11. Suppose T belongs to A(%‘) and has minimal coisometric 
extension B = S* OR in Y(X) with $2 # (0). Let Z c B and Se, c 92 be as in 
Proposition 3.10, and denote the projection of X onto Ye, by A,. Let also E 

and p be arbitrary real numbers such that E > 0 and 0 < p < 1. If a, E 2, 
b E W, and h E L’(C) are given, and we write h, = (Aa, F b) + h, then there 
exist UEJI? and CE%? such that 

Ml - A(a, + u) R 41 I < 6 (28) 

IIQ4l < ~3 (29) 

II (A - A,) 41 < E, (30) 

II4 G 2 llhll Y2, (31) 

llcll G$ {VII + Ilhll Y2>, (32) 

and 
c-bE&!!,,, 

where the notation II II 1 indicates the norm on L’(Z). 

(33) 

Proof: For brevity we set A, = A -A,,, the projection of .X onto 
92 0 si?,. If h = 0 in L’(C), we take u = 0, c = b, and the theorem is proved. 
Hence we may suppose h # 0. Let z -+ {z} denote the Hilbert space 
isomorphism from go onto L2(Z), given by Proposition 3.10, that 
implements a unitary equivalence between R, = R,I B0 and M,,, on L2(Z). 
Thus objects of the form (z} will be square integrable functions on T that 
vanish off E. Moreover, a quantifying expression such as “eif E Z” fre- 
quently means “almost everywhere on 6.” The proof of the theorem really 
involves two cases: C = U and m(T\Z) #O. But when m(U\Z) #O, the 
Hz-functions to be constructed can be constructed trivially, since 
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H’(C) = L2(L’), so we concentrate on the case 2: = T. Choose 6 > 0 so small 
that 

26<&, 4w4,~ll + llw’*w~~ (34) 

and 

(1 +P)(llMi’2(1 + 4 + 26) < 2(ll~llf’2). (35) 

Since IfT ln( Ihl + q) dml < + co for arbitrarily small q > 0, one knows (cf. 
[16, p. 531) that there are functions {y,} in H*(U) and {z,} in L’(T) such 
that 

iYl>{Zl> =k IlYlII G ll~ll;“(1 +6), lIZIll G IVII t’*> (36) 

and since y, ~922 c (AZ’-, there exists x, E 2 such that 

IlAx, -Y,II <6. 

Moreover, as is easily seen from (36) and the identity 

x RY= WY>, vx, y E *9&J, 

we have 

(R”y,) R (R”z,) = h, VneN, 

(37) 

and also, from (13) 

lIR”Y, -A(T”x,)ll = IIR”(Y, -Ax,)11 = IIY, -Ax,II <6. 

Since IIQ(~“xlNl = ll~*‘YQx,~ll +O as n tends to infinity, we may choose 
n, sufficiently large that 

IIQ(T”‘x,)ll ~6, 

and define 

Then 

x2 = T”‘x,, Y~=R”‘Y,, z2 = R”‘z,. 

~2~37, ~2~90, IlQx,ll<h 

y, R z2 = h, II Y2 - Ax211 < 4 
(38) 

IIY2II = IlYlll G llhll;‘2(1 +a llz2ll = IIZLII G llhll t’2> (39) 
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and 

IM1x2ll = II~,(Y2-~X*)ll <4 

since A, is the projection onto %’ 0 B,,. 
Let us write h, and h, for the L’-functions 

(40) 

h,=A,U* Y40b+AOXZ fZ*, 
h2=Aa, %+A,x, Rz*=ho+A,u, %,b. (41) 

Using (38), (39), (40), and (34), we see that 

Ilh,-~*ll1= IIb4I%-Y,) RZZII d IIL%x,-Ydl MI 

G {IIMI-4x*ll + IlAx*-JAI) ll~llf’2 
$26 Ilh 11 y2 < E/2. 

(42) 

Recall that we are looking for UE 2 and CEB such that 
(I/z, -A(a, + u) f cl1 1 is small; (42) shows that it s&ices to make 
Ilh, - A(a, + u) R cl1 small. We now decompose 8; define 

E= {e”EU: I{A,x,}(e”)l B ~{A,ul}(e”)~}. (43) 

Of course E is only determined up to a set of measure zero, but this will 
cause no problems. One knows (cf., e.g., [16, p. 533) that there is a 
function 11/, in H”(U) such that 

Choose a sufficiently large positive integer n2 that 

IlQT’V,(U ~211 = IIS*‘V,(S*) Qx,ll < 6, 

and define $*(e’l) = ein2’$,(ei’), ei’E T, and 

u=ICI*(T)x2. 

Then IIQull < 6 <E, so (29) is satisfied, and Iti21 also satisfies (44). Thus, 

II41 G ll~2llco II-41 G (1 + P) IIXZII, (45) 

and, using Proposition 3.10, we get 

(-4,u) = {I(/,(&) &x,) = IC/2{-4+~~- (46) 
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Similarly, 

from (44) and (40), so (30) is satisfied. 

Now let us obtain some inequalities on the size of the function 
{&(a, + u)>. For almost all ei* in U\E we have, from (46) (44) and (43) 

I {&(a, + u)>(ei’)l B I~&h)(~“)l - I {&uHe”)l 

3 I{&~II(e”)l - (1 -PII {&x2He’Ol (47) 

2 P I {&a, Heir)1 2 P I {~ox2J(ei’)l~ 

while a similar computation shows that for almost all eit in E, 

I {&(a, + u)>(@)l > p I {&x2)(e”N 2 p I {&a, I(e (48) 

We next define the complex-valued function f by 

f (e”) = ho(ei’)/{Ao(a, + u)}(e”) (49) 

whenever {A,(u, +u)}(e”)#O and f(e”)=O whenever {&(a, +u)}(e”)=O. 
It follows easily from (41), (46), (47) (48), and (49) that 

If( <i I {&b}(e”)l +f I {z2}(eN)I, err E u. (50) 

Thus f E L*(C), so we may write f = { c1 } for some c, E L@,,, and it is easy to 
see that c, satisfies 

IlClll $ (II&4 + llz*ll). (51) 

Moreover, it is clear from (49) and (37) that 

&(a, + u) f c, = h,. 

We are finally in a position to define 

c=c,+A,b=A,c,+A,b, 

and, employing (41), we see that 

llh*-A(u, +u) fClll’ (I&-A,(u,+u) fc,-‘4&z, +u) ?4lbll, 

= IlA,u fA1611, <26 lIA,bll. (52) 
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Combining (52) with (42), and using (34), we obtain 

Ilk - 44 + u) f 411 G Ilh - Ul, + llh - 4% + u) f Cl 

- A,h+u) ~‘wll1 

626 ll#‘*+2J llA,bll <E. 

Thus (28) is established. To verify (33), we simply note that 
c-b=c,+A,b-Ab=cl-A,b~9&,, and to check that (31) is valid, we 
compute, using (45), (38), (39), and (35), 

ll4l~(1+~)ll~2ll=(1+~)II~2-(~2-~~2-Qx2)ll 

G(1 +P)(IIY~II + IIY,-Ax~II + II -Qxzll) 

c(l+p)(llhll~‘2(1+6)+6+6)<2 I#‘? 

Finally, we estimate llcll*, using (51) and the fact that c, and A i b are 
orthogonal: 

llcl12= llc,l12+ l14bl12 

&l&bll*+2 llAd4l 11~211 + 11221l*)+-+ I14bl12 
P2 

~‘(llbll*+2 llbll llW*+ Il~ll 1 
P2 

I G-j (llbll + ll~ll:‘*,‘, 

so (32) is valid, and the theorem is proved. 

4. A GEOMETRIC CRITERION FOR MEMBERSHIP IN A l(r) 

In this section we establish an abstract geometric sufficient condition for 
membership in various clases A,(r). For this purpose we need some 
definitions. 

DEFINITION 4.1. Suppose JY is a weak* closed subspace of Y(S) and 
0 < 8 < 1. The set of all those [L] in QJ such that there exist sequences 
{xn} and { y,} in the closed unit ball of X satisfying 

(a) lim IICLI- CxnO~Jll Go8, 
and 

@‘) IICz@~,lll -0, ZEN, 
(c’) {x,} converges weakly to zero, 
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will be denoted by &l,(A). The corresponding subset of Q,, obtained by 
replacing conditions (b’) and (c’) by the conditions 

(b’) II[.x,Ozlll +O, ZEN, 
(cr) {y,} converges weakly to zero, 

will be denoted by b’,(A). 

The reader will observe that the sets &$(A’) and 8;(M) are unilateral 
analogs of the set !&,(A) appearing in [S, Definition 2.71. Likewise the 
properties Ei,y and E;,y to be defined next are the unilateral analogs of the 
property X0,? of [S, Definition 2.81. 

DEFINITION 4.2. If 0 < f3 < y 6 1, a weak* closed subspace .A’ of d%(,F ) 
will be said to have property EL,, [resp. E&,] if the closed absolutely 
convex hull (notation: E) of the set &;(.A!) [resp. &(,M)] contains the 
closed ball in Q,# centered at 0 with radius 7. 

The following proposition gives an easy sufticient condition for a dual 
algebra &T to have property E:,,, (resp. E;,,). 

PROPOSITION 4.3. Suppose T E A(X), 0 G 6’ < 1, and A c D is 
dominating ,for 1T. If ,for each 1. E A there exists a sequence fx,, = x,(3.)} in 
the closed unit hall of H such that 

(1) i%i II[Cj.]-[-~,~@X,~]ll <OH, and 

(2’) IIC~Ox,,lll -0 Crew (2’) IIC-~,,@=lll -01, :erFY, 
then &T has property EL,, [resp. E$., 1. 

Proof: If /) [z@x,,ll -+ 0 for each z in X, then ix,,} converges weakly to 
zero, and that A& has property Ei,, follows from the definitions and the fact 
(cf. [S, Proposition 1.211) that ZEG {CC,]: i E A} is the closed unit ball in 
QT. The other case is just as easy. 

The following theorem, which is a unilateral analog of [S, 
Proposition 6.11, may fairly be called the principal result of this paper. 

THEOREM 4.4. Suppose TE A(X) and for some 0 < 8 < y < 1, LZ?‘~ has 
either property EL,, or property E’,,, . Then T E G,(r) where r = 
(6/y)( I/{ 1 - (t?/y)‘i2})2. In particular, if JZI’~ has property EL,, or EL., , then 
TG A,(6). 

The proof of Theorem 4.4 will use Section 3, especially Theorem 3.11, 
and some additional tools. The following proposition gives a good idea of 
the game plan. 

580/76W2 
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PROPOSITION 4.5. Suppose TE A(#) and has minimal coisometric exten- 
sion B in 5?(.Y@9) as in Section 3, and suppose that for every CL] in QT 
there exists a Cauchy sequence ix,,} in 2 and sequences {w,} in Y and 
{b,} in W such that { 11 w, + b,ll } is bounded and 

Then TEA,. 

Proof We employ the notation connecting T and B from Section 3. 
With [L] in Qr and {wn} and (6,) as above, set v, = P(wn + b,), n E N. 
Since {v”} is bounded, we may suppose, without loss of generality, that 
{v,} is weakly convergent to v. Moreover, since the sequence ix,,} is 
Cauchy, it converges strongly-say to x. Since {v,} is bounded, we have 

IIcxo~“l- [x,o~,lII d lb--Al II4 -,a 

Also, from (15) and (17), withj=~;*o~~., we have 

IICLIT- CX,O%lTlI = IIACLlr)- c-%04Ji311 
= Ili(cLlT)- Cx,O(W,+kJlBll +o, 

so 

II [LIT- cxo 4?1Tll + 0. 

We now compute to show that CL] r= [x0 u] T, and thus complete the 
proof; for h in P(T), we have 

(h(T), [LIT> =lif (h(T), CxO~,lr> 

= lim (h(T) x, v,) = (h(T) x, u) 
” 

= (h(T), CxOul,>, 

so the proposition is established. 

The following proposition contains the heart of the approximation 
process needed to prove Theorem 4.4. 

PROPOSITION 4.6. Suppose TE A(Z) with minimal coisometric extension 
BE~P(~‘@O) as in Section3, andfor some O<ky<l, &- hasproperty 
E$.y. Suppose also that 0 <p < 1, CL] E Q,, a E Af, w E 9, b E 9, and 6 > 0 
are given such that 

IICLL- CaO(w+b)lell -=a. (53) 
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Then there exist a’E J!?, w’EY?, b’ Ea such that 

(54) 

and 

lb -4 < 3(Wy)“*, IIW’ - WI1 < (6/y)‘.*, 

llb’ll < f (llbll + WY)~‘*). 
(55) 

Proof. Of course, either of the spaces Y or .9 may be zero, but the 
proof is unchanged in these special cases. Let 

(56) 

and set d= II[L,]\I, so O<d<6. If d=O just set a’=a, W’=IV, and b’=b. 
Thus we may suppose that d> 0. Choose E > 0 such that 

(;)d+=(;)6. (57) 

With j as in Lemma 3.5, note that II(y/d)jp’([L,].)I( =y, and thus, by 
hypothesis, there exist NE N, elements [K,], . . . . [Khi] from &F’;,(&‘~), and 
scalars cr’, , . . . . ah such that 

(58) 

and 

Upon setting ai = (d/y) a:, i = 1, . . . . N, we obtain, by multiplying (58) 
by d/y, 

(1 
~T’(CLIIB)- 2 @iCKil7- 

!i 
< E/2 (59) 

1=1 

and 

(60) 
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For each i= 1, . . . . N, by definition of d;(T), there exist sequences {xk};= , 
and {yi,}z= , in the unit ball of 2 such that 

IlCKlr- c.$,oY&ll <e+fS, rziE N, (61) 

h II [xi,@ 21 AI = 0, ZEX, (62) 
n,- m 

{YX= I converges weakly to zero. (63) 

Upon adding (59) and (61) we get, for any choice of the N-tuple 
v = (n,, *.., n,), 

(64) 

and, passing to the predual Q, by applying j to (64), we obtain, using (15), 

II CL,ls- : 4$,@y~,1. 
i= I II 

<&+- y (65) 

for every choice of v. Let us denote the difference 

(66) 

for some rr> 0. Using (18) and (56) we may combine (65) and (66) to yield 

for every choice of v, and using (18) once more, we rewrite (67) as 

I 
CLls- CQaOwle- 2 ~,CQx;,SQu~,l.- CMv)L <:-5r, 

I! 
(68) 

i= 1 
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where [M(v)] B is defined as 

[M(V)]s= [AQOb],+ f ai[~xf,,OA.Y~,l~. 
i= I 

(69) 

We shall “work on” the term 

from (68). Let us define, for arbitrary v = (PI,, . . . . n,), 

(70) u,, = f B,xl,, u,, = $ BiY:j,? 
,=I ,=I 

where /?f = a, for i= 1, . . . . N. Then, for every choice of v, 

and 

+ f B,B,CQx:,,@ Qvl,,le. 
(72) 

I>, = I r+; 

We assert that the indices n’f, . . . . n”, can be chosen (one at a time, in the 
indicated order) sufficiently large that for vO = (n’f, . . . . n”,) we have 
(simultaneously) 

II EQa@ Q4ell < t/3, 

II CQuv,O wlsll < s/3, 

II 
;! l PiPjCQXip 0 QYkls 11 < T/J, 
i#i 

(73) 

(74) 

(75) 

and 

1/~,,112~ 2 Iail IlXt$l12<+t 
i= I 

11~,,112~ fj I4 l14.Lpl12<~. 
i= I 

(77) 
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This is by now a standard argument; we are content to cite the needed facts 
and leave the epsilontics to the reader. To establish (73) (which must be 
done simultaneously with (74) - (77)) one uses the expansion 

II [Quo QGJ G i IBil [Qa@ Qv~,l.lL 
i= 1 

(63), and Lemma 3.8. To establish (74), one uses (62) and (21) from 
Lemma 3.7. To establish (75), recall that ny is chosen first, then ni, etc., and 
use (63), Lemma 3.8, (62), and Lemma 3.7. To establish (76), use (62) and 
(22) from Lemma 3.7. Finally, to establish (77), it suffices to make all cross 
terms such as ($,a, x{o), i #j, small, and this can be done using (63) and the 
elementary conclusion from (62) that each sequence {x:,};=~, i= 1, . . . . N, 
converges weakly to zero. 

Thus we now suppose that v,, = (ny, . . . . n”,) has been chosen so that 
(73)-(77) are satisfied. Therefore, by combining (71)-(75), we obtain 

We next define 
(78) 

a, =a+u,,,, w’ = w + Qv,, (79) 

and conclude from (79), (78), and (68) that 

II[L-Js- [Qa,@w’lia- CW~o)lsll xT-47. (80) 

Moreover, if in [M(v,,)]~ we replace a by a,, and so define 

then by virtue of (69), (76), (79), and (80), we have 

IICLIB- CQa,@w’ls- C~~(v,dlsll <y-37. (82) 

Now suppose that S? = (0). Then b = 0, [M1(vO)IB = 0, Qu, = a,, and 

96 
IICLlLf- Ca,Ow’l,ll K--37. 

Y 

Thus, by virtue of (79) and (77), we have /a-ua,I( <(J/Y)“’ and 
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llw - 41 < (Qv2, so (with b’= 0) the proof in this case is complete. 
Hence we may suppose that %! # (0), we let Z-C U be as in 
Proposition 3.10, and we prepare to apply Theorem 3.11 to deal with the 
term [Ml(vO)]s in (82). By (81) and Lemma 3.9 we have 

Thus we define the function h in L’(C) to be 

we note from (25) and (60) that Ilhll, <I;“, , Iu,~ <S~J, and we set 
c’ = r/( 11 w’)I + 1). With a, and b as in (83) an application of Theorem 3.11 
yields the existence of ii E A? and c E S$ such that 

Au, f b + f a&4X:,,” f Al’;,,,) - A(a, + ii) f c < cl < 5, (84) 
,=I 

II@ll < d(Il~C’ll + 1 L (85) 

lJii(l < 2 lIh(l;” f 2 (86) 

and 

II4 <f 1 llbll + l141;‘2} <$ { llbll + (WY)’ ‘). (87) 

Since L’(Z)cL’(U) and the norm in L’(T) dominates the norm in 
(L’/HA)(T), we obtain using (81) (26) and (84) 

zz I) [Aa,Obl,+ i a,[Ax~,OAy:,,,,l.- CAta, +PbBclB(I cr. (88) 
,=I 

Thus from (82) and (88) we get 

IICLI.- CQa,ow’le- CAta, +4Oc].ll +r, (89) 
i 
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and since, via (85), we have 

IICQ~@w’lell G IIQdl II4 <r, 

the inequality (89) yields 

(90) 

IICLIB- [Q(a, +C)Ow’lB- [Ala, +l?)Oc]~ll <Y-T. (91) 

Since HI’ E Y and c E W, by using ( 18) one can rewrite (91) as 

so if we define 

a’ = a, + 22 = a + us0 + ii, 6’ = c, (92) 

then (54) is satisfied. Moreover, 

lb --all 6 II~“,II + IPII < (wY)“2 f 2(J/YP2 

from (77) and (86), so the first inequality in (55) is satisfied. Furthermore, 
from (79) and (77) we have 

Ilw’- wll = IlQ~,ll G lbv,,ll < WY)“*, 

which takes care of the second inequality in (55). Finally, 

Ilb’ll = Ilcll <$ Wll + WY)“‘) 

from (87), so the proposition is proved. 

We are now prepared to prove Theorem 4.4, and in fact, we shall prove 
the following stronger version of Theorem 4.4 that will be useful for later 
applications. 

THEOREM 4.7. Suppose TE A(Z) with minimal coisometric extension B 
in Z(Y @ a), and for some 0 < 8 < y < 1, &,- has property E;.?. Suppose, 
moreover, that 6 > 0, [L] E Q,, a E Y?, w E Y, and b E W are given such that 

IICLlr- CaOP(w+b)l.II ~6. 

Then there exist BE Z, G E Y, and 6 E W such that 

[LIT= [soP(~++)l~, 

(93) 

(94) 



CONTRACTION OPERATORS 23 

llii-all<3 ; 1’2(1/{l-(6/y)li2)), 
0 
6 112 

lIti,-WI1 < - 
0 Y 

(l/I1 - WYP21h 

and 
4 6 u2 

11~11 G; IVII +j(;) (l/(1 -wYP’~). 

(95) 

In particular, iffor some 0 < 0 < y < 1, ~2~ has either property Ei,? or EL,Y, 
then TE A,(r(e, y)), where 

44 ~)=(6/~)(1/{1 -(W)“2))2. (98) 

Proof. Since TE A, it is easy to see that the mapping j, : Q T -+ QT. 
defined by 

j,(CLIT) = cp+YrpZ?iY7G))~ (99) 

where f( e”) =f(e - “), is a conjugate linear isometry of QT onto QT. which 
possesses the further property that 

MZxO.h)= bOxIT*. (100) 

From these facts it follows easily that LX+ has property Ek,? if and only if 
JZ& has property E&,, and since each set A 1 (r) is self-adjoint, it suffices to 
treat the case in which &‘, has property I&. Moreover, since if G!,. has 
property EC,,, , it also has property ,!& for all 0 < 0 < y, and the right-hand 
sides of (95), (96), and (97) are continuous functions of 8 and 6, it suffkes 
to treat the case 0~ tI<y. 

Suppose now that (93) holds, let {sn} be a sequence of positive numbers 
strictly decreasing to $ such that s1 = 1, and define pn = s, + , /s,, n E N. 
Upon setting [LIB = cps lo cpr( [L] T), we have, by virtue of (93), (16) and 
(17)Y 

IICa?- CaO(w+~)lell<~. (101) 
We now set u=ur, w=wr, b = b,, and apply Proposition 4.6 to obtain 
a2 E J’?, w2 E 9, and 6, E W such that 

e 
IIC~l~-C~zO~~~+~z~lell c-4 

Y (102) 

llaz-411 <3(WYP2, llw-WIII a/Y)“*~ 

llbzll +{ llb,II +(s)‘“i. 
(103) 
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Suppose now that vectors (uk};=r in 2, {wk}[t,, in 9, and (bk);=r in W 
have been chosen so that for k = 2, . . . . n, 

6 
0 

112 ,g 
0 

W-2)/2 

)I,+-wk-,/I <(t)“‘(f)‘k-2”2, 

and 

ilbklt <-‘j+ 
k 

{[lb& ,,I + (;)‘” ($)‘“‘)‘2} 

(lo4)k 

( l”5)k 

f107)k 

Then, applying Proposition 4.6 once again, we deduce the existence of vec- 
tors a,,, in X, w,+, in 9, and b,,, in 9 such that the inequalities 
(104), + r, ( 105), + , , (106), + , , and (107), + r are valid. Therefore, by induc- 
tion, there exist sequences { u,,}F= r in A?‘, { w,,>F= 1 in 9, and {b,};= 1 in W 
satisfying the appropriate inequalities for all n in N, and it is clear from 
(105), and (106)k that {a,} and {w,,} are Cauchy. Define 

ci=lima,, ti=lim w,, 

and observe that since 

IId-all = 11 kT2 (ak-uk-ll) )I +, Ii(ak-ak-l)It 

and, similarly, 

IlW-WI1 <(p)‘” (l/v - wY)~w 

inequalities (95) and (96) are satisfied. Furthermore, by iterating (107)k, 
one sees easily that 

; llbnll <s, Ilb,,I G llbll +(f)“’ ;;; Sk ($)‘k-“‘2, 
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and therefore that 

25 

llb”ll G; llbll+j(;) 4 6 1’2 (l/{ 1 - (B/y)“2}), net+/. 

Thus the sequence {b,} is bounded, and without loss of generality we may 
suppose that {b,} converges weakly to 6. Hence 

4 6 II2 
ll~ll<~ llbll +z (;) (l/(1 - WYP2}), 

which establishes (97). That (94) is valid now follows from (104), as in the 
proof of Proposition 4.5, so T certainly belongs to some A,(r). To see that 
r may be taken to be as in (98), let E > 0, and set a = 0, w = 0, b = 0, and 
6 = II [LIT11 + E in (93). Then from (95) (96), and (97) we see that 

Il~ll lIfYG+ 6)ll G 1141(11412+ 11~112)1’2 

< WY)W{~ - Wv)“‘))‘(llC~~111 +E), 

so TE A ,(r(& y )), where r(e, y ) is in (98) by definition, and Theorems 4.4 
and 4.7 are proved. 

The following corollary is immediate from Proposition 4.3 and 
Theorem 4.4. 

COROLLARY 4.8. Suppose TE A(&‘), 0 G 8 < 1, and /1 c D is dominating 
for U. Zf for each A E A there exists a sequence {xi> in the unit bail of X 
such that 

lim IICCJ.- Cx~C3x~lTll <Q (108)o n 

and 

lim II CxL 0 VI Al = 0 [resp.lim II[yOx~].ll =O], YE%?, (109) 
n n 

then TE A,(6/( 1 - 01’2}2). 

5. SPECTRAL CRITERIA FOR MEMBERSHIP IN Al(r) 

In this section we use Theorem 4.4 to improve the previously known 
spectral sufficient conditions for membership in some A l(r) from [ 5, 12, 
13, 183. 

Recall that if TE Z(X) and H is a hole in a,(T) (i.e., H is a bounded 
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component of C\a,( T)), then H is associated with a unique finite 
Fredholm index i(H), defined by choosing any 1 in H and setting 
i(H) = i( T- A). If H is a hole in a,(T) such that i(H) # 0, then, of course, 
H c o( T). On the other hand, if H is a hole in a,(T) with i(H) = 0, then 
either H c a(T) or H n a(T) consists of a countable (possibly empty) set of 
isolated points. We recall the following notation from [12]. 

Notation 5.1. For each T in Y(X) we write A% (T) [resp. 9+ (T)] for 
the (possibly empty) union of all holes H in a,(T) such that i(H) < 0 [resp. 
i(H) > 0] and H c c(T). Moreover, we write 9: (T) [resp. 9: (T)] for the 
union of all holes H in o,(T) such that i(H) ~0 [resp. i(H) >O], and 
~(T)=~~(T)uF+(T). 

The following lemma will be needed. 

LEMMA 5.2. Suppose TE A(%), N E Lat( r*), and we write TM for the 
compression of T to the semi-invariant subspace N. Zf 1 E (r( TM) n D, and 

x,Eker(T,-A)“+’ 0 ker(T,-A)“, nEN, 

with [Ix,)1 = 1 for all n, then {x,} is an orthonormal sequence satisfying 

CC,lr= C~,O%lT7 nEN, (110) 
and 

IIcYod.lI +o, YES?. (111) 

Proof: It is obvious from the definition that {x,,} is orthonormal, and 
that (110) is valid follows from [12, Lemma 2.31 applied to T*. To 
establish (1 1 1 ), fix y in Z’. Then, since TE A, for each n E N there exists h, 
in H”(U) with llh,,II = 1 such that 

Since each x, E .N and Jf E Lat( T*), we have, upon denoting the projec- 
tion onto N by P,, 

llC~O~,l.ll=(y~~,(~*~x,)=(P~~Y,~n(T*)~n) 
= V’,Y, &AT* I J-1 4 

= (MT,) P.N Y, xn). 

(112) 

Employing momentarily the (slightly abusive) notation of B = S* 0 R on 
X = 9 @R for the minimal coisometric extension of TM (not T!), we see 
that since 

O=(T,-I)“+‘x,=(S*-I)“+‘Qx”@(R-I)”+’Ax,, 
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we have (R - 1)” + ’ Ax,, = 0, and since R is unitary and J. E ID, this forces 
Ax, = 0, n E N, and hence x, = Qx,. Thus from (112) we get 

II CY 0 X”lTII = @“(TM) p.*- Y, XJ 

= (MS*) QP.*-Y, QxJ 

= (MS*), CQP v-.~@QxnIs-> 

G IICQP..~~YOQ~~~.~~~, 

and this last quantity tends to 0 as n gets large by [ 12, Lemma 2.71, since 
{ Qxn} tends weakly to zero. 

We now present a spectral sufficient condition for membership in A,(6). 

THEOREM 5.3. Suppose T is an absolutely continuous contraction in 
Y(X) andA=(o,(T)nD)uS”_(T) d is ominating for U. Then TEA,(~). 

Proof: That TE A is clear from [S, Proposition 4.61, and we will prove 
the theorem by showing that Corollary 4.8 can be applied with 0=0. If 
AE a,(T) n D, then there is a standard argument (cf., e.g., [ 12, 
Theorem 3.11) showing that there exists an orthonormal sequence {xi} in 
2 satisfying ( 108)0 and 

IIc-e3YlTII +o, YES?. (113) 

On the other hand, if 1 E E( T), then by [ 12, Lemma 2.21 (in the non- 
trivial case i(T-I) =O), there exists an orthonormal sequence {xi} in .# 
satisfying 

X~E ker(T-A)*“+’ 0 ker(T-A)*“, nEN. 

It follows from [ 12, Lemma 2.31 that 

cx;c3xl;1.= [C,lr, nEN, 

and from Lemma 5.2 (applied to T* with JV” = 2) that 

IIcYox~l.*II -+(A YE%. (115) 

Since II [y Oxi]..II = II [xi@y]J as in (99) and (100) the proof is 
complete. 

An immediate corollary of Theorem 5.3 is an improvement of [18, 
Theorem 4.11. 

COROLLARY 5.4. Suppose T is an absolutely continuous contraction in 
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P’(H) and there exists a dominating set A c D such that for all 1, E A, T- 1 
is a Fredholm operator such that i( T- A) < 0. Then T E A ,(6). 

We also recapture, as a corollary of Theorem 5.3 and elementary 
Fredholm theory, the following modest improvement of the main result of 
[13] (namely, Theorem 3.3). 

COROLLARY 5.5. Suppose T is an absolutely continuous contraction in 
9(X’) such that o(T) = III- and for every 1~ D, T- Iz is a semi-Fredholm 
operator. Then TEA,(~). 

As mentioned in the Introduction, we show, in the sequel [lo] to this 
paper, that Theorem 4.4, together with the recent new techniques of [S], 
enables us to prove that every contraction T in L?(Z) such that a(T) 3 T 
has nontrivial invariant subspaces. 
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