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1. INTRODUCTION 

This paper is a continuation of [ 111 and uses the techniques of [8] in 
an essential way. We shall therefore assume that the reader is familiar with 
the notation and terminology of [ 111, which we continue to use below 
without extensive review. For the reader’s convenience, however, we recall 
that % is a separable, infinite dimensional, complex Hilbert space, and 
P’(X) is the algebra of all bounded linear operators on Z. Moreover, 
y(Z) c Z(Z) is the Banach space of trace-class operators under the 
trace norm, D is the open unit disc in Cc, U = ~33, and N is the set of 
positive integers. The spaces HP(T) and LP(T), 1 <p < co, are the usual 
Hardy and Lebesgue spaces with respect to normalized Lebesgue measure 
on 8. If TE 9’(Z) we write A$ for the dual algebra generated by T and QT 
for its predual %‘i(X)/1~T, so x&= QF. Elements of Qr are written as 
cosets [LIT or [L], where LE%‘,(&?). The class A(Z) is defined to be the 
set of all absolutely continuous contractions T in 5?(s) for which the 
Sz.-Nagy-Foias functional calculus @ T: H"(U) -+ &= is an isometry. If 
TEA(X), then Qp, is a weak* homeomorphism of H"(U) onto ~2~ and 
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there exists a linear isometry qr of & onto L’(T)/Hh (U), the predual of 
H”(T), such that qF=GT. The class A i(X) is defined to be the set of 
all T in A(&?) such that every element [LIT in Qr has the form 
[L] T = [x @ y] T for some rank-one operator x @y in C&(X). With r 2 1, 
the class A i(r) consists of those T in A r(S) such that for every [L] T in 
QT and every r’ > r, [L] T can be written as [L] T= [x By] T where 
the vectors x, y in X satisfy (Jxjl Ilyll <r’ll[L]rII. One knows (cf. 
[5, Proposition 4.81) that every T in A 1(X) has nontrivial invariant 
subspaces. 

It is the purpose of this paper to combine the new techniques of [8] and 
the results of [ 111 to prove the following theorem. 

THEOREM 1.1. There exists r 2 6 such that every contraction T in 2’(Z) 
with a(T) 3 IT either has a nontrivial hyperinvariant subspace or belongs to 
the class A ,(r). 

COROLLARY 1.2. Every contraction operator on Hilbert space whose 
spectrum contains the unit circle has a nontrivial invariant subspace. 

The results in this paper were announced in [lo] and presented at the 
conference “Functional Analysis and Its Applications” in Nice, France, 
August 25-29, 1986. 

2. SOME REDUCTIONS 

In this section we will consider a sequence of results which reduces the 
proof of Theorem 1.1 to more manageable proportions. For any T in 
J?(Z) we write c,(T) for the left spectrum of T, r~( T) for the spectrum of 
T, and 

<(T)=(a,(T)nD)u 
21 

AED\~(T): II(T-A)-‘II>------ 
l- I4 

. (1) 

A subset /i of D is said to be dominating (for 8) if almost every point of 
U is a nontangential limit of a sequence of points from /1. We consider first 
the following result. 

THEOREM 2.1. There exists 0 satisfying 0 < 8 < 1 such that every 
absolutely continuous contraction T in P’(X) for which i(T) is dominating 
belongs to A ,(6/( 1 - 28’j2 + 0)). 

We note that Theorem 1.1 is a consequence of Theorem 2.1. Indeed, if T 
is a contraction in S’(X) with c(T) 3 U, and T can be written as a direct 

580/76.'1-3 
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sum T= To @ U where U is a unitary operator acting on some nonzero 
subspace, then either U is some scalar operator 1 with 111 = 1, in which 
case the eigenspace {XE S: TX = Ax} is a nontrivial hyperinvariant sub- 
space for T, or else U has a nontrivial hyperinvariant subspace, in which 
case T also has a nontrivial hyperinvariant subspace (cf. [ 16, 
Theorem 1.43). Thus we may suppose that T is a completely nonunitary 
contraction. Moreover, if ;i E O(T) \a[( T), then it is easy to see that 2 is an 
eigenvalue for T*, and {x E Z: T*x = Xx}’ is a nontrivial hyperinvariant 
subspace for T, so we may further suppose that c,(T) = a(T). Finally, if 
i(T) is not dominating for T, then one can apply a well-known construc- 
tion (cf. Cl, 73) to obtain a function of T of the form 

(2) 

where r is a simple rectifiable closed path intersecting the unit circle at A, 
and AZ, with the property that the kernel off(T) is a proper nonzero sub- 
space of A?, and one trivially verities that this kernel is hyperinvariant for 
T. Since, as we have noted already, all operators in A, have nontrivial 
invariant subspaces, and since completely nonunitary contractions are 
trivially absolutely continuous, this completes the proof that Theorem 2.1 
implies Theorem 1.1. 

Now let us see what goes into the proof of Theorem 2.1. Recall that if 
TEA(X) and 1~ D, then there is an element [C,], in Qr with the 
property that 

(h(T), CC,lr> = h(A), h E H”(U). (3) 

The first ingredient that we need is a result from [ 111. 

THEOREM 2.2 ( [ 11, Corollary 4.81). Suppose T E A(X), 0 < 8 < 1, and 
A c D is dominating for T. Zf for each A E A there exists a sequence {x,, } in 
the unit ball of 2 such that 

(4) 

and 

IIc~ox,lrll -+o, WEY?, (5) 
then TeA,(6/(1-28”2+8)). 

We also recall from [ 123 that if T is an absolutely continuous contrac- 
tion in Y(Z) for which c(T) is dominating, then TE A(2). 
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Given these two results, it is obvious that Theorem 2.1 is an immediate 
consequence of the following: 

THEOREM 2.3. There exists 6 satisfying 0 < 8 < 1 such that if T is an) 
absolutely continuous contraction in L?(X) with i(T) dominating, then ,for 
every p in D there exists a sequence (x,,},F= , in the unit ball of X such that 

and 

IICC,l.- [x,0x,171l GO, nEN, (6) 

IIC~@-%1Tll ‘07 VW E 2”. (7) 
Thus, in order to prove Theorem 1.1 it suffkes to prove Theorem 2.3. Our 
next reduction consists of establishing that it suffices to do business with 
the element [C,] T of QT. 

THEOREM 2.4. There exists 8 satisfying 0 < 8 < 1 such that if T is an?’ 
element of A(X) and A c D is any dominating set with T and A related b? 

VAEA, 3X,EXO: 1Ix;Jj = 1 and lI(~-Qxj.ll <h(l - l4), (8) 

then there exists a sequence ix,,},:= , in the unit ball qf X satisfying 

lICGl.- C-%OX,,lTII GO, Vn6N, (9) 

and 

IIcwox,,l.ll -+(A VM’EX. (10) 

Proof that Theorem 2.4 implies Theorem 2.3. Let 0 be as in the 
statement of Theorem 2.4 and suppose T satisfies the hypotheses of 
Theorem 2.3. Then, as noted earlier, TE A(%‘). Let p be arbitrary in D. It 
suffices to show that there exists a sequence {xn};= 1 in the unit ball of .# 
satisfying (6) and (7). For this purpose, consider the MGbius transfor- 
mation f, in H”(U) defined by 

fp(ei’) = (e” - p)/( 1 - Fe”), e” E u, (11) 

and set T, =f,(T). Since fp,(fp(e”))-e”, we have T=f .-,(T,), so 
d7- = dTfl and QT= Q,, from which it follows trivially that 
[x 0 y] T = [x 0 y] r,, for all vectors x and y. We will continue to write ,fll 
for the analytic extension of f, to D -, and since this function is a 
homeomorphism of D -, we have 

Ilh(T,Nl = IWfJV)Il = Ilh~f,ll, = Ilhll, 3 he H”(T). 
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Since T, is also an absolutely continuous contraction, we have T, E A(X) 
along with T. Moreover, it follows easily from (3) that 

CcJ.lT= CCfp(2)lj,(T)9 V1E D, 

and hence, in particular, that 

Thus, (6) and (7) are equivalent to 

and 

IIcw0-%1T,,II -09 VWE#. (13) 

We next define A, =f,([( T)) c D, where the bar denotes complex con- 
jugation, and observe that A, is dominating along with c(T). Thus, in 
order to apply Theorem 2.4 to conclude that (12) and (13) are valid, it suf- 
fices to show that the pair (T,, AJ satisfies (8). For this purpose, recall 
that AE a,(T) if and only if there exists a sequence ( y,} of unit vectors in 
2 such that 

Using this fact and the definition of T,, it follows easily that 

f,(ona,(T))=[CDna,(T,), (14) 

and we know from the Riesz functional calculus that 

4Tp) =f,@(T)). (15) 

To verify (8) let XEA,. Then 2 =&(a) for a unique a in c(T), and if 
a E a,(T), then X E a,( T,) from (14), and thus there exists a sequence of unit 
vectors {z,} in Z such that 

IlU’,-&znlI -to. 

Hence one can choose x1 in (8) equal to any z, with n sufficiently large. If 
a 4 a,(T), then a E D \a( T) and 

II(T-a)-‘11 ~21. 
1 - I4 (16) 
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Thus from (15) we see that X E D \cr( T,), and we want to find a unit vector 
x1 in LY? such that 

II(T~-~)xj.lI<~,(l-I~I). (17) 

It is elementary to verify (cf. [20, p. 2631) that for any a in D, 

(l- l4M~-~)rII G Il(~J ‘II (18) 

and 

II(TJ-‘II < 1+2(1 -14)11(~-~)-1)1/~ (19) 

where, of course, T,=f,(T). From (16) and (18) (with a =a) we obtain 

21 < INL-‘II (20) 

and from (19) (with T= T, and a = X) we obtain 

ll((T,h-‘II < 1 +2(1 - I4)II(T,-~)-‘lI. (21) 

Therefore if we can establish that 

IIK-‘II d ll(V,,;,-‘II, (22) 

then from (20) and (21) we will have that 

21 < 1 +2(1 - Ill)ll(T,-E;)-‘11, 

from which it will follow trivially that there exists a unit vector x;. in .X 
satisfying (17), and the proof will be complete. 

To establish (22) we recall from the generalized Schwarz lemma (which 
is itself an easy consequence of Schwarz’ lemma) that 

and therefore there exists g in H”(U) with (IgIl 

f,(C) -&(a) = g(i) i - a 
1 -fJa)f,K) ( > 1’ 

< 1 such that 

[ED. (23) 

If the Hm-function on each side of (23) is applied to T, and the resulting 
equation is multiplied by (T,)-’ and ((T,);)- ‘, one has 

(TX’=g(WTp);)F’, 

from which (22) follows at once, and the proof is complete. 
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3. THE MINIMAL COISOMETRIC EXTENSION 

We saw in the preceding section that in order to establish Theorem 1.1 it 
suffices to prove Theorem 2.4. To accomplish this, we will employ the 
minimal coisometric extension B of a contraction T in A(2), as described 
in [20] or [15]. For the reader’s convenience, we briefly summarize some 
properties of B. There is a separable Hilbert space X 1 X with B in 
L?(X) such that B* is an isometry, BX c 3!‘, and BI%? = T. Moreover X 
can be decomposed as X = Y @ W corresponding to a decomposition of 
B* as B* = SO R*, where S is a unilateral shift operator (of some mul- 
tiplicity not exceeding K,) and R* is a unitary operator. (Of course, either 
direct summand Y or B may be the subspace (0).) That B is minimal 
means that 

{(J~~Acx) A (BACA) A (B*JZCJZ))+H=X. (24) 

Since TE A(%‘) it follows easily that R is an absolutely continuous unitary 
operator (cf. Cl93 or [20, p. 841) and that BE A(X). In what follows, the 
projections of 3” onto Y’, 9?, and A? will be denoted, respectively, by Q, A, 
and P. (This terminology is suggested by [IS], where pretty geometric 
constructions of the minimal coisometric extension and minimal unitary 
dilation of a contraction are given.) Thus, for every x in JV and every h in 
H”(T), we have 

h(T)x=h(B)x=h(S*)(Qx)~h(R)(Ax)=Q(h(T)x)~A(h(T)x). (25) 

The first result that we shall need on the way to proving Theorem 2.4 is 

PROPOSITION 3.1. Suppose T belongs to A(X) and has minimal 
coisometric extension B = S* @ R in 9(Y 0 a). Suppose also that A c D is 
a dominating set such that the pair (T, A) satisfies (8). Then Y # (0) andfor 
every 1 in A there exists a unit vector e, in ker(S- A)* such that 

/[xl-e, 11 < 0.101. (26) 

Moreover, for every n in N the family { eA}l, ,, of these unit vectors satisfies 

lel IIPS”e, (I’> 1 - (0.101)2. 
IsA 

(27) 

Proof: If Y = (0) then T is an isometry, which is incompatible with an 
equation of the form 
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where x1 is a unit vector; thus Y # (0). Now fix I in A, define fl= &, and 
let x2 be a unit vector in &’ satisfying 

ll(~-~)x,II~~(1-1~1)~ (28) 

Then we have 

xj, = Qx;. 0 Ax,, 1 = IIQX, /I2 + IlAx; I12. (29) 

Moreover, using (28) we see that the Mobius transform Ti =f;( T) satisfies 

ilf;(T)-~;J/ = I\(1 -I*T)-'(T-A)x>.(I 6(1 -lj-Jp ll(T-~)~j,I/ <B> 

and, using (25) we obtain 

f;(T) Xj. =.f;(B) Xi. =f,:(s*)(Qxj.)Of;(R)(AXj.) 

and 

Ilf~:(s*)(Qxi)ll’ + IlAx>. II2 < 0’7 (30) 

since f,(R) is a unitary operator. Thus, in particular, 

IlAx>. II 2 < B2, h:(S*)(Qx,)l12 < 8’7 1 -f12< ll(Qxdl12. (31) 

Let l’j, in Y be defined as the projection of Q.xj. onto ker(f;(S))* = 
ker(S-i)*, so Qxj.-yi~Y 0 ker(S-A)* and 

II Y, II 2 + II Qxi - Yj. II ’ = II Q-x;. II *. (32) 

Since f,:(S*) = (f,(S))* and (as is easily seen) f;(S) is an isometry with S, 
one deduces that 

dist(ker(fAS))*, Q-X>.)= IIf; Qxj. Il. 

Thus 

IIQxA-Y>. II = llf,t(S*) QXi II> 

and in view of (29) (33), and (30), we have 

Ilx,-~nll~= IIQxi-Y,II’+ lIAx,/12<B2. 

(33) 

(34) 

In particular, (34) shows that y, cannot be zero, so we define the sought 
for unit vector eA in ker(S- A)* as el = yJ[l y, I(. Since ej, E ker(S - A)*, we 
obtain from the obvious orthogonality relations the equations 

IIx,T - e, II * = IIQXL - ej. II 2 + IlAx>. II 2 (35) 
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and 

IIQxre~ll~= lIQx,-.~ylll~+ Ilyre,112. (36) 

Combining these equations with (34) gives 

IlX~-e,ll*= IIy,t-e,l12+ IIQx,t-YAII*+ IIAxAII~< Ily~-eA12+~2.W) 

Furthermore, since yi = IIyAll ej. and II yA.II < 1, we have 

II YA - elll = 1 - II YAII. 

Therefore, from (37) and (32), we obtain 

IfX>.-ee,ll*= ~-~IIYJ.II + IIYAII~+ IIAxAII’+ IlQx~-~,l12 
= 1 -2(llQxJ12- IIQxi-~,ll~)~‘~+(IlQ~ill~- IIQq-y,l12) 

+ Ilk.ll’+ IlQxr~,ll~ 
= II’x~.ll~+ IIQ~~l12f~~~~llQ~~l12~IIQ~~~~~.l12~”2 
~~~~~~IlQ~~l12~llQ~~~~~l12~1’2~ 
=W-(llQ~~ll~-llQ~r~ill~)) 

~+(IIQx~II~~IIQ~~.~~~II*)“~ 
2( IlAx, II ’ + II Qxi -.YA II 2, 

=1+(IlQ~,ll’-llQ~r~i./l~)~~~~ 

We next apply (34) twice and (31) to the right-hand side of this last 
equation to yield 

llX%-e%/12 < 2P2 w2 
1+((1+*)-/?2)1’2 = 1+(1-2p2)“*’ 

and that (26) is valid now follows from an arithmetical calculation which 
shows (with j? = 0.1) that 

( 
2B2 

> 
l/2 

y”= 1+(1-2p*)‘/* < 0.101. (38) 

In other words we have now constructed, for each Iz in A, a unit vector e 
in ker(S-A)* such that, with x1 as in (8), 

IJxj.-e,II <y,<O.lOl. 
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To establish (27), we consider, for any fixed n in N and arbitrary ;1 in A, 
the inequality 

\I( 1 - P)(XnS”el)ll = ((PX”S”el - XnS”el I( 

G (IP(X”S”ej.-e,)ll + )IPe~-ej.(I + llej,-JX”S”ej./I 

d 2((;i”S”e, - e, 11 + IJPe, - ej. I). (39) 

Since xi E X and P is the projection onto J?, 

II Pe, - ej. II Q (Ix j. - ej. II < 70. (40) 

Furthermore, since S is a unilateral shift (of some multiplicity), the eigen- 
vectors of S* corresponding to the eigenvalue X can be computed explicitly 
(cf. the proof of Proposition 5.1), and an easy calculation shows that 

n-l 
( ) 

Ii2 

IIA”S”ej.--ejJ =(l - lA12)“2 1 1j.12’ 
r=O 

(41) 

Therefore, for n fixed and an arbitrary A in A, we obtain from (39) (40), 
and (41) 

,,-I 
( > 

112 

II ( 1 - P) X”S”ei. II <y,+2(1-(II2)“2 c (l”I2’ ) 
i=o 

from which it follows immediately that 

iii Il(l -P) S”e,I( <y,<O.lOl. 
Ii.1 + I i s A 

Since 

1 = (IS”e, (I ’ = (I PS”e, (1’ + I( (1 - P) Fe j. I/ ‘, Vi E A, 

we obtain, finally, 

(42) 

and the proof of Proposition 3.1 is complete. 
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4. THE MINIMAL UNITARY DILATION 

In our program to prove Theorem 2.4, and therefore Theorem 1.1, we 
have gone as far as we can go using only the minimal coisometric extension 
of an absolutely continuous contraction. From here on, we shall need the 
minimal unitary dilation of such a contraction, and thus we now make 
some remarks about this concept. 

If 9 is a (separable, complex) Hilbert space, then the Hilbert space 
L*(9) consists of all those (equivalence classes of) measurable functions 
g: U + 9 that are square integrable with respect to normalized Lebesgue 
measure on 8. The inner product on L*(9) is, of course, given by 

The Hardy space H*(9) is the subspace of L*(9) consisting of those 
functions g whose Fourier coefficients 

c,(g) =k l:’ e-‘“‘g(e”) dt 

vanish for all negative integers n. The operator U = M,, of multiplication 
by the position function on L*(9) is a unitary operator which is a bilateral 
shift, and the restriction 3 of U to the invariant subspace H*(9) is a 
unilateral shift operator of multiplicity dim(g). Moreover, every unilateral 
shift operator S is unitarily equivalent to such a multiplication operator 5. 
Therefore, if T is an absolutely continuous contraction in Y(X) and 
B= S* @ R is its minimal coisometric extension in P’(X), where 
A? = Y @ W with Y # (0), then we may identify Sp with H*(9) for some 
Hilbert space 9 # (0), and S with the restriction s= UIH*(9). This means 
that X becomes identified with H’(9) @ 9 and S* becomes identified with 
the compression 

of the unitary operator U* = M,-, to the semi-invariant subspace H*(9). 
Thus 3’8’ becomes identified with a subspace of H2(9) $ @ that is invariant 
under B = ( U*)H~c,j 0 R. The operator W= U* 0 R acting on 
%‘” = L*(9) @3 9 3 SE” is the minimal unitary dilation of T (cf. [20]), and is, 
of course, an absolutely continuous unitary operator. It is easy to see that 
&’ c W is the difference of the invariant subspaces (L2(9) 0 H*(9)) 0 %’ 
and L’(9) 0 H*(9) for W, and thus X is a semi-invariant subspace for 
W. Henceforth we shall write Q, A, and P for the projections of W onto 
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the subspaces H*(9), W, and J!?, respectively. Thus for any h in H”(U) we 
have 

h(T)=Ph(W)IAf, h(B)=(Q+A)h(W)pf. (43 1 

We will need the following lemma. 

LEMMA 4.1. Suppose T belongs to A( 2) and has minimal unitar?) 
dilation W= U* @ R acting on 9V” = L*(9)@2, where 9 f (0). Then 
WE A(9) and for each pair of vectors x, y in 2, 

IICGJ.- cxoYlTll= IIEGl,- cxoYlwll. (44) 

Proof. Since TEA(Z), one has Ilh(T)Il = Ilhll r; for all h in H”(T), and 
since llh( W)ll 2 llh(T)ll from (43), it is immediate that WE A(?Y). The 
validity of (44) follows from the calculation 

lIIlCol~- CXOYITII = ;,UHP, I(h(T), CGIT- CxO~lr>l 
llhll = 1 

= hyyx IW) - (h(T) x, ~11 
llhll = 1 

= Heinz IW) - (4 W x, v)l 
llhll = 1 

= sup I(h(W, [IGl,- Ix@ylw>l 
hsH” 
llhll = 1 

= II CGI w- Cx@yl WII. 

Before we can state the next proposition, we need an additional 
definition. Quantifying expressions such as “e” E T” are frequently to be 
interpreted as “almost everywhere on T.” 

DEFINITION 4.2. Let F, = 1 - (0.15)*, a slightly smaller number than 
that appearing on the right-hand side of (27). If TE A(X) and has minimal 
coisometric extension B = S* @ R on H*(9)@&? and minimal unitary 
dilation W= U* 0 R on -llr = L*(9) @ W, we write, for each positive 
integer n, C,(T) for the set of all vectors x in the unit ball of H*(9) such 
that 

lIf’s”4122Follxl12 (45) 
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and such that there exists a decomposition of x as x = x, + x,,, where x,, xh 
belong to L’(Q) and satisfy 

Ilxr(e”)ll G 1, ei’ E 8, (46) 

and 

Ilxhl12~u -~o)llx,l12. (47) 

PROPOSITION 4.3. If T is any operator in A(#) (with minimal 
coisometric extension B= S* 0 R in L?(H’(g) @a) and minimal unitary 
dilation W= U* @R in 9(H2(9) 0 92)) and A c D is any dominating set 
with T and A related by (8), then 

IICC,lT- cPs”xoPs”x1.II < I- wwl1412 (48) 

for every positive integer n and every x in C,(T). 

Proof: Since T and .4 are related by (8), Proposition 3.1 applies, and, in 
particular, 9 # (0). Let n be an arbitrary positive integer, which will remain 
fixed for the duration of the proof. Suppose now that xeL’,,(T). Then we 
may write 

PS”x = aSnx + z, (49) 

where z is orthogonal to S’x. Using (45), we obtain easily that 

FOGa< (50) 

and that 

JIzJI = ()~PS”X~(*-~*~~X~(~)‘~*~ (1 -I;?o)‘/2~~xll. (51) 

Moreover, since x E Z;,( T), we may write x = x,+x,,, where x,, x,, E I,*(g) 
and satisfy (46) and (47). Therefore 

bh II G (1 - &)“211x,II, IINI G (1 + (1 -&)“2)ll~,II. (52) 

We introduce the vectors y, = aU”x, and y2 = aU”x, +z. Then, upon 
recalling that UJ H’(9) = S, we obtain 

y, + y2 = aU”(x, + xh) + z = aS”x + z = PS”x, (53) 

IIy2 11 d llzll falbh 11 < bll + t1 -Fd”* aIIx[II = iIz(l -k (1 -Fc#‘*/(~I 11, (54) 

and (from (51) and (52)) 

llzll < (1 -Ey211xII < (1 -cy”{ 1 + (1 -FcJ”2}ll~,II 

~~(l-Fo)“‘{l+(l--F,)~“}lly,ll. (55) 
0 
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Furthermore, upon combining (54) and (55), we have 

llY2116u-FoP2 1+ i 
(1 +Fo)“2{1 +(I -FOP*) ,,y ,( 

FO 1 1 3 

so we define 

(~+Fo)*‘*{~+(~-Fo)“*~ 
J-0 

and obtain 

II Y, II GPO II Yl II, II~~“xll G II Yl II + II Yz II G (1 + Pdll ??I II. (57) 

Since PS”x E X, we obtain from Lemma 4.1, (53), and (57) that 

IIccol,- cp~“xop~“xl.ll= IIccol,- C(Y, +Y*)O(Y, +Y2)lwll 

g IIccolw- CY,OY,l,ll (581 

+2llY,/l IlY,lI + /lY2112 

Now let us estimate 1) [C,] W - [ y, By,] ,y Jj, keeping in mind that 
WE A(W), y, E L*(9), and 

II Yl(ei’)ll = ~lleinrxdei’)ll < llx,(e”)ll < 1, e”E 8: 

IIccol,- [Y,OY,l,ll =hs,uHp, I(h(W), CCol,- [Y,OYllW)l 

llhll = 1 

= hs,uHp, IWO) - (4 w Y, 9 YI )I 
llhll = 1 

= hyg P(O)- (h(U*).Yl> Y*)l llhil = 1 
{h(e-“)--h(ec”)II y,(ei’)l12} hi 

1 
SC 0 s 2n (1 - llYl(e”)l12) df= 1 - IlY, I12. (59) 
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Therefore, noting that 1 - 2p, - pi ( z 0.04515058) > 0, and combining 
(58), (59), (57), and (45), we obtain 

IICGJl.- c~~“~o~~“xl.ll d 1 -Cl -2P,-P~)llY,I12 

<l- (1+pJ2 ( 
1 -%I-Pi Ipyxl12 

> 
~1-(‘,~“p,,Pa),,,xl,‘. 

The proof can now be completed by doing the arithmetical calculation 
which shows that 

5. AN ESTIMATE ON THE NUMBERS a,(T) 

In this section we shall finally complete the proof of Theorem 2.4 (and 
therefore also of Theorem 1.1). If T is contraction in A(X) with minimal 
unitary dilation W= U* @ R acting on W= L2(9)@Wx X, then 
associated with T is the sequence {C,,(T)},“= , of subsets of H2(g) given by 
Definition 4.2. For such T, we now define 

~,~~~=~~~{ll~ll~:~~~~~~~}, rlEf+J. 

It is obvious from the definition that 0 E Z,(T) for every n in N, so 
(r,(T) 2 0. Our first proposition shows that under the hypotheses on T with 
which we have been working, these numbers a,(T) are all positive. 

PROPOSITION 5.1. Suppose TEA(%) and satisfies the hypotheses of 
Proposition 4.3. Then a,,(T) > 0 for every positive integer n. 

Proof: Fix an arbitrary positive integer n. Since T satisfies the 
hypotheses of Proposition 3.1, we know that 

lim 
li.lI 

I(PS”e, II2 > F, = 1 - (0.101)2, 
IsA 

where leAjAeA is a family of unit vectors satisfying el E ker(S - A)*. Choose 
r,E (.9,1) such that if LEA and IL) >r,, then ()PS”e, II* > F,, and write 

Ll,=An{[ED:l[l>r,}. (f-50) 
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Then clearly Q, is a dominating set and 

Since S*e,= Xe, for each 1 in A, the vector e, in .Y = H*(Q) can be 
calculated explicitly to be 

e;.(P)= (1- 1~12)1i2(d+Xei’d+X2e’2’d+ . ..). fYr E T, 

where d is some unit vector in 9, and therefore 

where P; is the Poisson kernel at the point 1. Thus 

and using (61) we see that ((1-13Ll)/(1+1~~l))‘:‘ej~c,l(T) for every A in 
Sz,. In particular, 

so the proof is complete. 

The next proposition will be needed in what is to follow. 

PROPOSITION 5.2. Consider the topological spaces L”(T) with its weak* 
topology and L’(U) with its weak topology. Let 4? be the closed unit ball in 
Lm(U) and let j be the natural embedding of L”(T) into L’(T). Then j is a 
homeomorphism between 93 and j(B) (where ?3 and j(g) are given the 
relative topologies as subspaces of L”(B) and L’(T)), and, in particular, 
j(B) is compact and metrizable. 

Proof. If {g,} is a net in 93 converging weak* to an element g, in a, 
then it is trivial to verify that j(g,) converges weakly to j(gO) in L’(T). 
Thus j is a continuous, one-to-one map from the compact space g onto the 
Hausdorff space j(B), and all such maps are homeomorphisms. Since 
L”(T) is the dual space of a separable space, 98 is (weak*) metrizable, and 
thus j(B) is also compact and (weakly) metrizable. 

We are finally ready to establish the result from which Theorem 2.4 
follows easily. 
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THEOREM 5.3. Suppose T is any operator in A(#) (with minimal 
coisometric extension B= S* 0 R in 2’(H2(9) 0 W) and minimal unitary 
dilation W= U* 0 R in 9(L2(.G8) 0 a)), and A c D is any dominating set 
with T and A related by (8). Then 

1 
%(T)‘(10)8 QnEN. 

Proof: We fix an arbitrary positive integer n, write, for brevity, 
cm = a,(T), and choose a sequence {xi},:, of nonzero vectors in L’,(T) 
such that 

(63) 

By definition of C,(T), we may write 

x,=x;+xi”, jE N 

where xj and x$ belong to L2(9) and satisfy (46) and (47). We next define 

G, = (e” E T: Ilxj(e”)ll < l/2}, jE N. (64) 

(Of course, the sets Gj are only determined up to a set of measure zero, but 
this will cause no difficulties.) 

We wish now to drop down to a subsequence of positive integers along 
which five sequences are converging weakly in L*(Q) or L’(U). To do this, 
we note from (46) that all of the vector-valued functions xj belong to the 
unit ball of L*(9), as do all of the functions xG,x;: ei’+ Xq(e”) xj(e”). 
Moreover, by virtue of (47), all of the functions xi”, as well as the xc,x;, lie 
in the ball of L*(9) of radius (1 -F,)“*. Furthermore, if we denote by 
IIxj( .)/I* the function 

ei’ -+ Ilxj(e”)ll~, .is N 

then it follows from (46) that these functions are in the unit ball of L”(T), 
and so Proposition 5.2 applies. Therefore, by dropping down to five suc- 
cessive subsequences, and then changing the notation, we may suppose that 
there exist vectors xb, y, x,, w in L*(9) and a function g in L’(T) such that 

ix,!> converges weakly to xb in L*(g), (65) 

b.c,x,!J converges weakly toy in L*(9), (66) 

{x:!> converges weakly to x, in L*(9), (67) 

b&> converges weakly to w in L*(Q), (68) 
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and 

{llx,!(~N12~ converges weakly to g in L’(T). (69) 

We next define x= xb + x, and note that since x is the weak limit of the 
sequence {x,} of vectors in H*(g), x also belongs to H*(g). With Q and P 
the projections of V = L*(s~)@&! onto H*(g) and X”, respectively, we 
introduce five nonnegative functions in L’(T) defined, for e”E T, by 

.f,(e”) = ll(Qxde”)ll~~ 

f2(e”) = II (QY)(e”)ll E 7 
f3(e”) = ll(s*nQPS”x)(e”)l15, 

s,(e”) = ll(Qw)(ei’)ll$, 

s2(ei’) = ll(Qx,)(ei’)ll$. 

(70) 

We wish to estimate IlkI] 1 where k =fi +J? +,f3 + s, + s2 + g, and we first 
observe that 

llkll 1 = -& jZn k(e”) dt 
0 

= llfi II I + . . . + II gll I’ (71) 

From (69) and a variation of (52) we get immediately 

l\gll,=$j~X 1.g(eir)df=lim~j2^1.1/x~(ei’)ll~dl 
0 

=‘:” llx;ll*aJm 1 -(I -Fo'o)l/2 
. ( 

gn 
(1 -(l-F )l’*)*’ (72) 

0 

Also, using (72), (52), and the fact that closed balls in L2(g) are weakly 
closed, we obtain 

llh II 1 = IIQxb II* G lIxbl12 <lim llx~ll” < i (1 - (1 %o)ll*)2’ 

llf~IIl= IlQyl12~Il~l12~lim IlxG,xjl12<lim lI-$ll’~ i i (1 -(l ““Fo)1~2)2’ 

Il~,II~=IIQwll~~ll~ll~~lim lk&I12dim Ilx,hIl*~ (1 -Fo) c, 
i j (1 -(l -Fo)“2)2’ 

580/76.'1-4 
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and 

llS2IIl = llQ~~llZ~ II&II2 <lim ll~j”II’-< 
(1 -Fo) 0, 

j (1- (1 -F,)“2)2’ 

Finally, since {xi} converges weakly to x, we get 

From these inequalities we obtain 

(73) 

where 6 is defined to be the positive number 

5-2F, 3.045 
6=1+(1-(1-F,)“2)2=1+o.7225. 

Note that 6 < 6, so (by Proposition 5.1) 6a, < 60,, and set 

E= {e”E T: k(e”) < 6a,}. 

It follows immediately from (73) that E has positive measure, and, of 
course, each of the six functions fi, f2, f3, si, s2, g is strictly less than 60, 
on E. Since the vector-valued functions Qx,, Qx,, Qw, Qv, and S*“QPS”x 
all belong to H2(9), one knows (cf. [ZO, p. 1863) that there exist 

-- 
holomorphic functions zO,zb, Qw, Qv, and s-x on D taking 
values in 9 with the property that each of the five holomorphic functions 
has a nontangential (strong) limit at almost every point of T and this limit 
coincides (almost everywhere) with the value of the corresponding 
boundary function there. Moreover, the L’-function g has a harmonic 
extension 2 to ID, and g has a nontangential limit almost everywhere on U 
that coincides with the value of g there (cf. [17, p. 381). 

Consider now the dominating set Sz, defined in (60) and having the 
property that (61) is valid. Since E has positive measure, there exists a sub- 
set E, of E having the same positive measure such that every point of El is 
a nontangential limit of a sequence of points from LJn. It follows that there 
exists a point eir in E, at which all six of the functions Fa, . . . . 2 have non- 
tangential limits equal to the correponding numbers (Qx,)(e”), . . . . g(e”). 
Thus we may choose A,, in a, sufficiently close to eit that 

I( PS”e, )I2 > F, = 1 - (0.101)2, 

&M < 60,) 

(74) 

(75) 
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- 

Il(Qx,)(~oNl < (6d’2, (76) 

II(&U,,ll < (W”z, (77) 

II~~Wo,Il < C6~n)1’2v (78) 

II(Q < (W1’2~ (79) 

and 

II(S*“QPSnx)(;Zo)ll < (60,)~‘~. (80) 

Next let us define 

” 1 1 - I/z,I lj2 

e=2 1 + ia,, 
( > 

e&,, (81) 

As was observed in the proof of Proposition 5.1., there exists a unit vector 
d in 9 such that 

e,,(e”‘)=(l - (~,12)“‘(d+K,ei’d+X~ei2’d$ ...), e”c T. (82) 

Therefore if k is any function in H’(9)), say 

k(e”) - f e”d, 
j=O 

(83) 

where each d, E 9 and c,?= ,, (( dj (( ’ = j(k (( *, and E is the holomorphic exten- 
sion of k to ID, then, of course, 

and we may calculate 

I(& k)l =; (&+-$ 
If2 

l(e~,, k)l 
0 

=f(l-lL,I)l f Jd(d,dj),i 
j=O 

+- I~oI)l(d, &~,))I <; (1 - l~oI)llf(~,)ll. (84) 
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If we apply the inequality (84) with k equal to Qx,, Qx,, Qw, QJJ, and 
S*“QPS”x in turn, and take into account (76)-(80), we obtain, upon 
setting r = [lo/, 

lb,, ;)I = I(Qx,, @I < f 67,)“*(1 -r), 

I(+,, ;)I= ICQx,, @I <t (6cJ”*U -r), 

I(w, $)I= l(Qw, 31 <; W,)“*U -r), 

I(Y, 4 = ICQv, 31 <f kJ”*(1 --r), 

and 

((PS”x, PS”$)I = I(S*“QPS”x, i?)I <+ (60,)“*(1 -r). 

Furthermore, if we write PI, for the Poisson kernel 

l- lkA2 
p20(e”) = 11 _ Joei, eir E T, 

then, of course, P,eLm(U), and by virtue of (69) and (75), we have 

Pj.o(ei’)l(x~(ei’)))2 dt=g(&) < 60,. (85) 

By virtue of (63), (85), and the weak convergence in (65 k(69), we may 
obviously choose a positive integer j, so large that 

1(x;, 31 < 1 @~a)~‘*(1 - ~1, (86) 

lb;,,, 31 < 4 &~,)“*(1 -r), (87) 

I(xc,,,x;, 4 < 4 WJ,)“*(~ - ~1, (88) 

I(xG,,,xjo, 211 < f (60,,)“*(1 -r), (89) 

I(PS”xj,,, PS”@)I < 4 (6a,)“*( 1 -r), (90) 

1 
s 

2x 

5, 
Ph(ei’)llx~,,(ei’)lj2 dt < 6a,, (91) 

and 

IIXj~ll*+ IIPI12~arr+~ llEl12. 

Consideration of (64) and (91) yields 

(92) 

1 
T;F s P&“) dt < 240,) 

T \Gjo 
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which, in turn, gives 

(93) 

and 

Moreover, from (86) and (88) we deduce that 

I(& XT \G,o~)l = I(xT \G,ox;j> ‘11 

= I(xfo, 2) - (xG,ox:;> ;)I 

< (60,,)“~(1 -r), (95) 

and, similarly, from (87) and (89) that 

Itx;,, XT \G,o =?)I < (6a,)‘12( 1 -r). (96) 

We are finally prepared to make some definitions that will give information 
about the number 0,. Set 

I= x;, + x$,6 h=X;o+Xr ,& (97) 

and define 

X = I + h = X,0 + g. 

Clearly X E H2(g), and we investigate conditions under which X E C,(T). In 
the first place, we see from (62), (64), and (81) that IE L’(g) and satisfies 

Il4e”)ll < 1, err E U. 

Secondly, we note from (89) and (94) that 

IlllIz = IIxjol12 + 2Re(x$ xG,,c) + IIxG,,tl12 

2 Il~~Jj~-(60,)~/*(1 -r)+i (1 - 24a,), (98) 
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and a similar computation using (93) and (95) gives 

l(hl(2< Il~i:,11~+2(60,,)~‘~(1 -r)+ (99) 

Since 

I(xjo, $)I < (6~,,)“~( 1 - r) 

from (86) and (87), we get the following upper and lower bounds on j(Xll’: 

ll~j~l12+ 11~112-2(6~,)1’2(1 -r)< llXl12 

,< llxi,, II2 + lItlIZ + 2(6a,)1i2(1 -r). (l@)) 

Therefore a sufficient condition in order that llXl/ < 1 is 

+2(6c,)1’2(1-r)< 1, (101) 

and, in view of (47), (98), and (99), a sufficient condition in order that 
llhl12 Q (1 - &Jll~l12 is 

2(60,)“‘++(1 -FO) 
l-240 
d- (60.)“‘). 
4(1 + r) (102) 

What about a sufficient condition in order that 

IIPS”X(12 2 F, ~~x~~2? (103) 

Easy calculations using (45), (61), and (90) show that 

and 

Fo( llXj~l12+~(~) ) +2(60,)“~(1 -r) >Fo1(Xl12, 

so a suffkient condition for the validity of (103) is 

(4F;1-+:)) 2 (2F, + 1)(60,)1’2. (1oJ) 
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In other words, if 0, is such that (lOl), (102), and (104) are satisfied, then 
X EC,(T) and consequently (from (100)) 

(T, 3 111112 b Ilxjo I(* + lIElIZ - 2(6~,)“~( 1 - Y). 

Thus, applying (92) we would have 

- 2(6a,)‘12( 1 - r), 

which yields 

and 

112 1 
““2; 64 

( > =24576. 

(105) 

(106) 

Now recall from Proposition 5.1 that r = I& / > 0.9, so (101) will certainly 
be satisfied if 

CT,, + 0.2 $5 of” + 0.025 6 1, (107) 

while (102) is equivalent to 

4( I + r)(3 - F,)(~o,)“~ d (1 - F,,)( 1 - 240,~) - 24a,,, 

and since 1 + r < 2 and F, = 0.9775, (108) will be valid if 

24( 1.0225) CT,, + (16.18) fi rs;” < 0.0225. 

Finally, (104) is equivalent to 

(108) 

(109) 

( 
(F,-Fo) 2 

4(1 +r)(2F,+ l)$ > 3afl 

and since F, - F, = 0.012299, (104) will certainly be valid if 

0.012299 ’ 

8 ,,h (2.955) > 
30,. (110) 

Suppose now that 

(111) 
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Then arithmetical calculations show that (107), (109), and (110) are 
satisfied, so X constructed above belongs to Z,,(T), and (106) must be valid. 
But (106) and (111) are incompatible, so for every T satisfying the 
hypotheses of the proposition, we must have 

and since n was arbitrary in N, this completes the proof of Theorem 5.3. 

We are finally in a position to prove Theorem 2.4, and with it, of course, 
Theorem 1.1. 

Proof of Theorem 2.4. Set 8 = 1 - 2/( lo)“, and suppose T belongs to 
A(%) and A c D is a dominating set such that the pair (T, A) satisfies (8). 
Then, according to Theorem 5.3, for every n in N, a,(T) > I/( lo)‘, which 
means, by definition, that for each n in N there exists a vector y, E C,(T) 
such that I( y, )I 2 > l/( 10)‘. Define now 

X” = PLYL’“, nEN. 

Then X, E 2, 11x, 116 11 yn 1) < 1, and by Proposition 4.3 we have 

IIccol.- cx,ox,l7-ll= IIccol.- CPrYnOPYvnli-II 
2 

G 1 - (0.02Nl.Y, II2 G 1 - (Io),o = 4 nEN(. 

Therefore it suffices to verify that the sequence {x,} satisfies (10). For this 
purpose, let w be an arbitrary vector in Z, and let B= S* 0 R in 
Y(H’(g) @ W) be the minimal coisometric extension of T. It follows from 
Proposition 3.1 that &$ # (0) and, utilizing [ 11, Lemma 3.61, we obtain 

IIcwox,l.ll= IIc~oxnl.ll= IIcw0p~“Y,1BII 
= IIC~O~“YnleII = IIcQworYnlBIl 
= II [s*TQw, OY,I, II G IIS*‘YQw)II II Y, II --) 0, 

since the sequence {S*“} converges to zero in the strong operator 
topology. Thus the proof of Theorems 2.4 and 1.1 are complete. 

There are several consequences of Theorem 1.1 concerning reflexivity, 
invariant subspace lattices, and the coincidence of the weak operator and 
weak* topologies that will be taken up in a later paper (cf. On the structure 
of contraction operators. III.). 
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