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1. INTRODUCTION

This paper is a continuation of [11] and uses the techniques of [8] in
an essential way. We shall therefore assume that the reader 1s familiar with
the notation and terminology of [11], which we continue to use below
without extensive review. For the reader’s convenience, however, we recall
that s is a separable, infinite dimensional, complex Hilbert space, and
Z(H) is the algebra of all bounded linear operators on #. Moreover,
()< L(s) is the Banach space of trace-class operators under the
trace norm, D is the open unit disc in C, T =00, and N is the set of
positive integers. The spaces H”(T) and L?(T), 1 <p< oo, are the usual
Hardy and Lebesgue spaces with respect to normalized Lebesgue measure
on T. If Te #(#) we write o/ for the dual algebra generated by T and O,
for its predual €,(#)/* oy, so of= Q¥ FElements of Q, are written as
cosets [L] or [L], where L e %,(#). The class A(s#) is defined to be the
set of all absolutely continuous contractions 7T in Z£(s#) for which the
Sz.-Nagy-Foias functional calculus @,: H*(T) - .o/ is an isometry. If
Te A(s#), then @, is a weak* homeomorphism of H*(T) onto .« and
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there exists a linear isometry ¢, of Q, onto L'(T)/H}(T), the predual of
H*(T), such that ¢*=&,. The class A () is defined to be the set of
all T in A(s) such that every element [L],; in @, has the form
[L];=[x®y] for some rank-one operator x® y in €,(#). With r> 1,
the class A,(r) consists of those T in A () such that for every [L]; in
Q; and every r'>r, [L]; can be written as [L];=[x®y]; where
the vectors x,y in # satisfy |x|| |yl <r|[L]+l. One knows (cf.
[5, Proposition 4.8]) that every T in A,(s#) has nontrivial invariant
subspaces,

It is the purpose of this paper to combine the new techniques of [8] and
the results of [11] to prove the following theorem.

THEOREM 1.1. There exists r = 6 such that every contraction T in L (H)
with o(T)> T either has a nontrivial hyperinvariant subspace or belongs to
the class A (r).

COROLLARY 1.2. Every contraction operator on Hilbert space whose
spectrum contains the unit circle has a nontrivial invariant subspace.

The results in this paper were announced in [10] and presented at the
conference “Functional Analysis and Its Applications” in Nice, France,
August 25-29, 1986.

2. SOME REDUCTIONS

In this section we will consider a sequence of results which reduces the
proof of Theorem 1.1 to more manageable proportions. For any T in
ZL(H#) we write a(T) for the left spectrum of T, ¢(T) for the spectrum of
T, and

C(T)=(a,(T)r\[D)u{le D\o(T): (T—4)""|| > ] ilw}. (1)

A subset A4 of D is said to be dominating (for T) if almost every point of
T is a nontangential limit of a sequence of points from 4. We consider first
the following result.

THEOREM 2.1. There exists 0 satisfying 0<0<1 such that every
absolutely continuous contraction T in L(H) for which {(T) is dominating
belongs to A,(6/(1 —20'2+6)).

We note that Theorem 1.1 is a consequence of Theorem 2.1. Indeed, if T
is a contraction in () with ¢(T)> T, and T can be written as a direct
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32 BROWN, CHEVREAU, AND PEARCY

sum T=T,@ U where U is a unitary operator acting on some nonzero
subspace, then either U is some scalar operator A with |4| =1, in which
case the eigenspace {xe #: Tx=Ax} is a nontrivial hyperinvariant sub-
space for T, or else U has a nontrivial hyperinvariant subspace, in which
case T also has a nontrivial hyperinvariant subspace (cf. [16,
Theorem 1.4]). Thus we may suppose that T is a completely nonunitary
contraction. Moreover, if A€ a(T)\6(T), then it is easy to see that 4 is an
eigenvalue for 7%, and {xe #: T*x=1Ix}" is a nontrivial hyperinvariant
subspace for 7, so we may further suppose that g(7)=0(T). Finally, if
{(T) is not dominating for T, then one can apply a well-known construc-
tion (cf. [1, 7]) to obtain a function of T of the form

1
f(T)=2—jr(T—i)“(l—il)(i—lz)di, (2)

i

where I is a simple rectifiable closed path intersecting the unit circle at 4,
and ,, with the property that the kernel of /(7)) is a proper nonzero sub-
space of ¢, and one trivially verifies that this kernel is hyperinvariant for
T. Since, as we have noted already, all operators in A, have nontrivial
invariant subspaces, and since completely nonunitary contractions are
trivially absolutely continuous, this completes the proof that Theorem 2.1
implies Theorem 1.1.

Now let us see what goes into the proof of Theorem 2.1. Recall that if
TeA(s)) and 1€ D, then there is an element [C;], in Q, with the
property that

W), [Ci1r> =h(A),  he HX(T). (3)

The first ingredient that we need is a result from [11].

THEOREM 2.2 ([11, Corollary 4.8]). Suppose TeA(s#), 0<b<1, and
Ac D is dominating for T. If for each A€ A there exists a sequence {x,} in
the unit ball of # such that

lim |[C;]7— [x,®x,]r] <8 (4)

and
“[w®xn]T“_’05 WE%, (5)
then Te A (6/(1 — 26"+ 0)).

We also recall from [12] that if T is an absolutely continuous contrac-
tion in # () for which {(7T) is dominating, then Te A(3#).
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Given these two results, it is obvious that Theorem 2.1 is an immediate
consequence of the following:

THEOREM 2.3.  There exists 0 satisfying 0<0 <1 such that if T is any
absolutely continuous contraction in ¥ (#) with {(T) dominating, then for
every u in D there exists a sequence {x,} _, in the unit ball of # such that

n=1
”[Cu]T_ [xn®xn]T”<93 I’IGN, (6)
and

Ilw®x,171 =0,  VYwes. (7)

Thus, in order to prove Theorem 1.1 it suffices to prove Theorem 2.3. Our
next reduction consists of establishing that it suffices to do business with
the element [C, ], of Q.

THEOREM 2.4. There exists 0 satisfying 0 <6 <1 such that if T is any
element of A(H') and A <D is any dominating set with T and A related by

Vied, A, e #: |x;l=1  and I(T=Dx,|<5(1—14]), (8)

then there exists a sequence {x,}>_, in the unit ball of # satisfying

n=1
H[CO]T_ [xn®xn]Tl|<0’ VnENs (9)
and

“[W®xn]TH_'Os VM"Ef‘ (10)

Proof that Theorem 2.4 implies Theorem2.3. Let 6 be as in the
statement of Theorem 2.4 and suppose T satisfies the hypotheses of
Theorem 2.3. Then, as noted earlier, Te A(#). Let u be arbitrary in D. It
suffices to show that there exists a sequence {x,}>_, in the unit ball of #

satisfying (6) and (7). For this purpose, consider the Mdbius transfor-
mation f, in H*(T) defined by

fu(e”):(eir_#)/(l _'ﬁe”)’ (?”GT, (]l)

and set T,=f,(T). Since f ,(f,(e"))=e", we have T=f_ ,(T,), so
r=oy, and Qr=Qr, from which it follows trivially that
[x®ylr=[x®y], for all vectors x and y. We will continue to write f,
for the analytic extension of f, to D~, and since this function is a
homeomorphism of D, we have

1T )N = hfHDI = b flle = NAll., ke H=(T).
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Since T, is also an absolutely continuous contraction, we have T, € A(J¢)
along with T. Moreover, it follows easily from (3) that

[C)r= [Cf,,(/:)]f,,(r), VieD,

and hence, in particular, that
[C.dr=L1Coly,-
Thus, (6) and (7) are equivalent to
I[Colr,— [x,®x,]17,l =<6,  VneN, (12)
and
Iw®x,1rll >0,  VYwes. (13)

We next define 4, =1,({(T))< D, where the bar denotes complex con-
jugation, and observe that 4, is dominating along with {(7). Thus, in
order to apply Theorem 2.4 to conclude that (12) and (13) are valid, it suf-
fices to show that the pair (7, 4,) satisfies (8). For this purpose, recall
that Ae g (T) if and only if there exists a sequence { y,} of unit vectors in
H# such that

(T —4) yull = 0.

Using this fact and the definition of T, it follows easily that

Ju(D o T))=DnafT,), (14)

and we know from the Riesz functional calculus that
o(T,)=f.(a(T)). (15)

To verify (8), let 1€ A,. Then i=f,(a) for a unique o in {(7T), and if
aeo/(T), then e g(T,) from (14), and thus there exists a sequence of unit
vectors {z,} in # such that

(T, =)z, = 0.

Hence one can choose x; in (8) equal to any z, with » sufficiently large. If
a¢ o, (T), then xe D\a(T) and

21

-t
I(T—2) "> =

(16)
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Thus from (15) we see that Ae D\o(T,), and we want to find a unit vector
x; in J# such that

(T, = 2) x; 1l <75 (1= 14]). (17)
1t is elementary to verify {cf. [20, p.2631) that for any a in D,
(1—laDI(T—a) I <I(TL) I (18)
and
IT) ' <1+2(1={a)(T—a) " Yl (19)

where, of course, T,=f,(T). From (16) and (18) (with a =a) we obtain
21<I(T) ) (20)
and from (19) (with T=T, and a= 1) we obtain
1(T,)0) <t +200 = 1ADIT, = 4) M. (21)
Therefore if we can establish that
T I <IAT,)0 M, (22)
then from (20) and (21) we will have that
20 <+ 2(1 = ADIT, = A) 1,

from which it will follow trivially that there exists a unit vector x, in J#
satisfying (17), and the proof will be complete.

To establish (22) we recall from the generalized Schwarz lemma (which
is itself an easy consequence of Schwarz’ lemma) that

fu(C) _fu(a)
1—f(@) £,0)
and therefore there exists g in H*(T) with | gll.. <1 such that
Su§)—fu(a) <C~a>
Jurl el ()| —), (eD. (23)
70/ o\

If the H*-function on each side of (23) is applied to 7, and the resulting
equation is multiplied by (7,) ' and ((T,);) ', one has

(T,) ' =g(DT,):) ",

from which (22) follows at once, and the proof is complete.

<=
&t

) {eD,
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3. THE MINIMAL COISOMETRIC EXTENSION

We saw in the preceding section that in order to establish Theorem 1.1 it
suffices to prove Theorem 2.4. To accomplish this, we will employ the
minimal coisometric extension B of a contraction T in A(s#), as described
in [20] or [15]. For the reader’s convenience, we briefly summarize some
properties of B. There is a separable Hilbert space ¥ > with B in
ZL(X) such that B* is an isometry, Bs# < #, and B|s# = T. Moreover ¢
can be decomposed as A" = P # corresponding to a decomposition of
B* as B*=S® R*, where S is a unilateral shift operator (of some mul-
tiplicity not exceeding 8,) and R* is a unitary operator. (Of course, either
direct summand % or # may be the subspace (0).) That B is minimal
means that

(H M)A BHMCMYNB* M M)y =>M=X. (24)

Since T e A(s¢) it follows easily that R is an absolutely continuous unitary
operator (cf. [19] or [20, p. 84]) and that Be A(X"). In what follows, the
projections of A~ onto &, &, and J# will be denoted, respectively, by Q, A4,
and P. (This terminology is suggested by [15], where pretty geometric
constructions of the minimal coisometric extension and minimal unitary
dilation of a contraction are given.) Thus, for every x in # and every 4 in
H™>(T), we have

h(T) x = h(B) x = h(S*)(Qx) @ h(R)(4x) = Q(A(T) x) ® A(K(T) x). (25)

The first result that we shall need on the way to proving Theorem 2.4 is

ProOPOSITION 3.1. Suppose T belongs to A(H) and has minimal
coisometric extension B=S*@ R in L(¥ D R). Suppose also that A<D is
a dominating set such that the pair (T, A) satisfies (8). Then & # (0) and for
every A in A there exists a unit vector e, in ker(S — A)* such that

Ix;—e;| <0.101. (26)
Moreover, for every n in N the family {e,},. , of these unit vectors satisfies
lim |PS",||>>1~(0.101)% 27)

|A] =1

ieA

Proof. If ¥ =(0), then T is an isometry, which is incompatible with an
equation of the form

T —=2) x50l < £5 (1 — A1),
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where x; is a unit vector; thus & #(0). Now fix 4 in A, define f=4;, and
let x; be a unit vector in # satisfying

(T —2) x| < B(1 =] 4)). (28)
Then we have
X =0x,@Ax;,  1=10x; 0%+ [ 4x; |1 (29)
Moreover, using (28) we see that the Mobius transform T; = f;(T) satisfies
IfAT) x, 1 =11 =AT) " {T =) x, | <A = {AD) " (T = A) x: 01 < B,
and, using (25), we obtain
AT x; =f1B) x, = f(S*)(Qx;) DS :(R)(Ax;)
and
1(S*)Qx )12 + Nl Ax |1 < B, (30)
since f;(R) is a unitary operator. Thus, in particular,
lAx N2 <B? fHSFHQx)IP< B, 1B <|(Qx)I% (31

Let y, in % be defined as the projection of Qx; onto ker(f;(S))* =
ker(S—4)*, so Ox,—y,; e ¥ O ker(S— A)* and

||)’;.“2+”QX;._)’;.H2=|1QX;\“2- (32)

Since f;(S*) = (£,(S))* and (as is easily seen) f;(S) is an isometry with S,
one deduces that

dist(ker(f3(S))*, Ox;) =1 f:(S*) Ox; 1.

Thus
1Qx; —yill = 11f:(8*) Ox. 1, (33)

and in view of (29), (33), and (30), we have

lx; =y > =10x;—yill> + Il Ax, > < B2 (34)
In particular, (34) shows that y, cannot be zero, so we define the sought
for unit vector e; in ker(S—4)* as e; =y;/|| v, |l. Since ¢; e ker(S— A)*, we
obtain from the obvious orthogonality relations the equations

Ix; — el = 1Qx; — e, |I* + | 4x; |2 (35)
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and

10x,—e;ll*=10x,—y:ll* + iy, —e,l (36)
Combining these equations with (34) gives

Ix,—e > =lyi—ell> +10x,—y > + | Ax, 01> < ||y, — e;ll> + B> (37)

Furthermore, since y,= | y,ll ¢; and | y,| <1, we have

lyi—ell=1—1y.l.

Therefore, from (37) and (32), we obtain

1%, — e =1=20p; [l + Iy 17+ [ A% 7+ [1Qx; = y; 12

=1=2(10x; 1> = 1Qx; = ;1) + (1Qx; I = 1@x, = y; %)
+ 1 Ax 12+ 10x; -y, |12

= [ldx; 17+ 11Qx; 117 + 1= 2([1Qx, 1> = 1Qx; — y; 1)

=2(1 = (1Qx:11” = 1Qx; ~ . 1I1)'?)

_ 200 = (1Qx:11* ~ 1@x;: = y211*)

(10X P = 1Qx— y 1)

20 Ax P+ 1@xs = pall?)
T+ (1Qx: 12~ 10x, — y, %)

We next apply (34) twice and (31) to the right-hand side of this last
equation to yield

282 282

bl < == = Tr -

and that (26) is valid now follows from an arithmetical calculation which
shows (with f=0.1) that

2p?

1/2
Yo= (w) <0.101. (38)

In other words we have now constructed, for each A in A, a unit vector e,
in ker(S —~ 1)* such that, with x; as in (8),

lx;—e;] <yo<0.101.
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To establish (27), we consider, for any fixed » in N and arbitrary 4 in A,
the inequality

(1 = P)(A"S"e,)|| = || PA"S"e; — A"S"e, |
S| P(A"S"; —e;)| + | Pe,—e; || + lle, — A"S", |
<2H/{"S"ei—ea”+||P‘~’x‘“e;.||- (39)

Since x; € # and P is the projection onto #,
[Pe;—e;ll < lx;—e;ll <o (40)
Furthermore, since S is a unilateral shift (of some muitiplicity), the eigen-

vectors of S* corresponding to the eigenvalue 1 can be computed explicitly
(cf. the proof of Proposition 5.1), and an easy calculation shows that

n—1 1/2
17SPe; — e = (1 W)‘”( 5y W") . (1)
i=0 ,

Therefore, for n fixed and an arbitrary 4 in A4, we obtain from (39), (40),
and (41),

H—1 1/2
H(I—P)Z”S"e;.ll<v0+2(1—|/1|2)”2(Z W") ,

i=0

from which it follows immediately that

lim ||(1 = P) S", || <y,<0.101.
A =1
reA

Since

L=|S"¢,|I>=|PS"e; |+ (1~ P) S"e;|I%,  Vied,

we obtain, finally,

lim
14

A

m [|[PS",||?>1— lim [|(1—-P)S",|?
-1 1Al =1
€A

ied

>1—92>1—(0.101)% (42)
0

and the proof of Proposition 3.1 is complete.
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4. THE MINIMAL UNITARY DILATION

In our program to prove Theorem 2.4, and therefore Theorem 1.1, we
have gone as far as we can go using only the minimal coisometric extension
of an absolutely continuous contraction. From here on, we shall need the
minimal unitary dilation of such a contraction, and thus we now make
some remarks about this concept.

If 2 is a (separable, complex) Hilbert space, then the Hilbert space
L*(2) consists of all those (equivalence classes of) measurable functions
g: T — 2 that are square integrable with respect to normalized Lebesgue
measure on T. The inner product on L*(2) is, of course, given by

1 r2= . R
(g1,82)=5- | (&1(e"), gale )t

The Hardy space H*(9) is the subspace of L?(2) consisting of those
functions g whose Fourier coefficients

1 2= )
cng) =5 e gl di

vanish for all negative integers n. The operator U= M. of multiplication
by the position function on L*(2) is a unitary operator which is a bilateral
shift, and the restriction § of U to the invariant subspace H*(2) is a
unilateral shift operator of multiplicity dim(Z). Moreover, every unilateral
shift operator S is unitarily equivalent to such a multiplication operator S.
Therefore, if T is an absolutely continuous contraction in #(#) and
B=S*®R is its minimal coisometric extension in (%), where
A =S DR with & #(0), then we may identify ¥ with H*(2) for some
Hilbert space 2 # (0), and S with the restriction § = U|H*(2). This means
that " becomes identified with H*(2)@® # and S* becomes identified with
the compression

(U*) 2= Prosz(g)U*|H2(.9)

of the unitary operator U* = M,_. to the semi-invariant subspace H*(2).
Thus # becomes identified with a subspace of H*(2)® £ that is invariant
under B=(U*)y25,®R. The operator W=U*@®R acting on
W =LYD)® R > H is the minimal unitary dilation of T (cf. [20]), and is,
of course, an absolutely continuous unitary operator. It is easy to see that
H# < W is the difference of the invariant subspaces (L*(2) © H*(2))® #
and L*(2) © H*(@) for W, and thus 3 is a semi-invariant subspace for
W. Henceforth we shall write Q, A, and P for the projections of #” onto
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the subspaces H*(2), &, and #, respectively. Thus for any 4 in H*(T) we
have

W(T)=Ph(W)\#, h(B)=(Q+A)h(W)X. (43)

We will need the following lemma.

LemMMmA 4.1. Suppose T belongs to A(H) and has minimal unitary
dilation W=U*®R acting on W =L D)® R, where 9 #(0). Then
We A(#) and for each pair of vectors x,y in K,

ILCo)r—[x®@y1rl = I[Colw—[x®ylwll. (44)

Proof. Since Te A(s#), one has |A(T)| = ||h|,, for all hin H=(T), and
since |A(W))| = |A(T)| from (43), it is immediate that We A(#"). The
validity of (44) follows from the calculation

{Colr—[x®ylrl= sup |<AT), [Colr— [x®y1l

€
Al =1

i
2]
=

el
=

(0) = (A(T) x, y)|

= sup [<CAHW), [Colw—T[x®@y]w)l

A = 3
=[[Colw—[x®y]wl.

Before we can state the next proposition, we need an additional
definition. Quantifying expressions such as “e”e T” are frequently to be
interpreted as “almost everywhere on T.”

DErFINITION 4.2. Let Fo=1—(0.15)% a slightly smaller number than
that appearing on the right-hand side of (27). If T'e A(2#) and has minimal
coisometric extension B=S*@ R on HY(2)®# and minimal unitary
dilation W=U*®R on # =LY 2)® AR, we write, for each positive
integer n, X ,(T) for the set of all vectors x in the unit ball of H*(2) such
that

1PS™x1? = Follx|* (45)
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and such that there exists a decomposition of x as x = x, + x,, where x,, x,
belong to L*(2) and satisfy

[xdeM <1,  e"eT, (46)
and

o 112 < (1 = Fo)lx, 1. (47)

ProposiTiON 4.3. If T is any operator in A(K) (with minimal

coisometric extension B=S*@® R in X(HX(D)®R) and minimal unitary

dilation W=U*® R in L(HH(2D)® R)) and A D is any dominating set
with T and A related by (8), then

ILColr— [PS"x® PS"x]+[ < 1 —(0.02)] x| (48)
for every positive integer n and every x in X,(T).

Proof. Since T and A are related by (8), Proposition 3.1 applies, and, in
particular, 2 # (0). Let n be an arbitrary positive integer, which will remain
fixed for the duration of the proof. Suppose now that xe X ,(7). Then we
may write

PS"x =aS"x + z, (49)
where z is orthogonal to $"x. Using (45), we obtain easily that
Fo<a<1 (50)
and that
Izl = (1PS™x]1* ~ a?[lx]*) 2 < (1 = F3) "2 x]. (51)

Moreover, since x € X,(T), we may write x = x,+ x,,, where x,, x, € L*(2)
and satisfy (46) and (47). Therefore

lenll S (L=Fo)'llx,ll,  lxl < (1+ (1= Fo))llx,. (52)

We introduce the vectors y, =al”x; and y,=alU"x,+z Then, upon
recalling that U|H?*(2)= S, we obtain

yi+y=aUx,+x,)+z=08"x+z=PS"x, (53)
Iy2ll < Nzl + allxall < Nzl + (1= Fo) 2 allx, | = llz)l + (1 = Fo) 2y, ll,  (54)
and (from (51) and (52))
lzll < (1 — F3)"2llx] < (1= F3)2{1 + (1 = Fo) " }I1x, |

< (1= F)P{1+ (= F) Yl (59)
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Furthermore, upon combining (54) and (55), we have

14+ Fo) {1+ (1-F,)"?
14 UFFo) {g( ) WWmm

HYZHS(FFo)”Z{

so we define

1+(1+Fo)‘/2{1+(1—Fo)”2}

P0=(1_F0)1/2{ Fy

}z0.39815931 {(56)

and obtain

[y <pollyill,  IPS" <yl + Iy i (T +podllyill. (57)

Since PS"x e #, we obtain from Lemma 4.1, (53), and (57) that

I{Colr— [PS"x@PS"x]7[l = I[Colw—[{(y1 +¥2)®(yi + 1) 1wl
<IColw—L[yi®y Iwll (58)
+20yill iyl + 1y
SICodw—[31®pi 1wl + Qoo+l yi 12

Now let us estimate |[Col,y —[y,®y,]wl, keeping in mind that
WeA(#), y, € L3(2), and

Erile™)l =alle™x e ) <lxfe N <1, e"eT:

IColw—=[yi®@yi]wl = sup [<AW), [Colw—Lyi®yi 1w

liall =1

= sup [A(0) — (A(W) ¥y, ¥))
Al = 1

= sup |A0)— (MU*)y., y)l
(e

1 2= . . )
5= [ e )= By (e )12 e

= Sup
he H*
lial =1

<o [TU= e di= 1=y 0% (59)
Sl Y1 il
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Therefore, noting that 1—2p,—p2 (=x0.04515058)>0, and combining
(58), (59), (57), and (45), we obtain

I[Colr— [PS"x® PS"x]7[| <1~ (1—2po—p3)ll 1117

1—2PO-P(Z)> 2
<l1—{ ————5}|PS"x
(ter s

1—2po—pé>
sl—(———— Fyllxl>
(+por ) 5o

The proof can now be completed by doing the arithmetical calculation
which shows that

. 2
0.02<1__2’Lp_0

(1 +Po)2 o

5. AN ESTIMATE ON THE NUMBERS ¢,(7T)

In this section we shall finally complete the proof of Theorem 2.4 (and
therefore also of Theorem 1.1). If T is contraction in A() with minimal
unitary dilation W=U*@R acting on # =L 2)®A>H, then
associated with T is the sequence {Z,(7)}>_, of subsets of H*(Z) given by
Definition 4.2. For such 7, we now define

o T)=sup{lx|=xeZ(T)}, neN.

It is obvious from the definition that 0e X (7T) for every n in N, so
a,(T) = 0. Our first proposition shows that under the hypotheses on T with
which we have been working, these numbers o,(7T) are all positive.

PROPOSITION 5.1. Suppose TeA(H#') and satisfies the hypotheses of
Proposition 4.3. Then o,(T)> 0 for every positive integer n.

Proof. Fix an arbitrary positive integer n. Since 7 satisfies the
hypotheses of Proposition 3.1, we know that

lim [|PS", 2> F,=1—(0.101)%
|Al—1
ieA

where {e,},. . is a family of unit vectors satisfying e; € ker(S — 1)*. Choose
r,€(.9,1) such that if Ae 4 and |A| >r,, then |PS",||>> F,, and write

Q,=An{{eD: |l >r,). (60)
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Then clearly Q, is a dominating set and

1PS", (12> Fille; 1%, VieQ,. (61)

Since S*e,=Ae, for each A in A, the vector e, in ¥ = H?*(2) can be
calculated explicitly to be

e;(e”)=(1— A1) (d+ Le"d+ 1 d+ ---), e,
where d is some unit vector in &, and therefore

1+ 4]
-4

1—]4l? ,
14 = P;(e") <

N2 — =
lles (e —Il*zeitlz ,

e'eT,

where P; is the Poisson kernel at the point 4. Thus

_ 12
TS

and using (61) we see that ((1 —|4|)/(1+14}))? e, e X, (T) for every 4 in
Q,. In particular,

=12 A
Tyz|——|, YieQ,,
7dT) <1+w> he

so the proof is complete.

The next proposition will be needed in what is to follow.

ProPOSITION 5.2, Consider the topological spaces L™(T) with its weak*
topology and L'(T) with its weak topology. Let & be the closed unit ball in
L*(T) and let j be the natural embedding of L™(T) into L'(T). Then j is a
homeomorphism between # and j(B) (where B and j(B) are given the
relative topologies as subspaces of L*(T) and L'(T)), and, in particular,
J(#) is compact and metrizable.

Proof. 1f {g,} is a net in & converging weak* to an element g, in 4,
then it is trivial to verify that j(g,) converges weakly to j(g,) in L'(T).
Thus j is a continuous, one-to-one map from the compact space £ onto the
Hausdorff space j(#), and all such maps are homeomorphisms. Since
L*(T) is the dual space of a separable space, # is (weak*) metrizable, and
thus j(#) is also compact and (weakly) metrizable.

We are finally ready to establish the result from which Theorem 2.4
follows easily.
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THEOREM 5.3. Suppose T is any operator in A(#) (with minimal
coisometric extension B=S*® R in L(H*(2)® R) and minimal unitary
dilation W=U*@®R in L(L(D)D R)), and Ac D is any dominating set
with T and A related by (8). Then

1
a,,(T)>(1—W YneN,

Proof. We fix an arbitrary positive integer n, write, for brevity,
0,=0,(T), and choose a sequence {x;}, of nonzero vectors in X, (T)
such that

Ix; 1 76, (63)

By definition of 2 ,(T), we may write
x=xj+xi, jeN,
where x/ and x” belong to L*(2) and satisfy (46) and (47). We next define
G,={e"eT:|xi(e")| <1/2}, jeN. (64)

(Of course, the sets G, are only determined up to a set of measure zero, but
this will cause no difficulties.)

We wish now to drop down to a subsequence of positive integers along
which five sequences are converging weakly in L*(2) or L(T). To do this,
we note from (46) that all of the vector-valued functions x; belong to the
unit ball of L*2), as do all of the functions yg x;: e — yq(e") xi(e").
Moreover, by virtue of (47), all of the functions x?, as well as the ijxj’.', lie

in the ball of L*(2) of radius (1 — F,)"2 Furthermore, if we denote by
Ilx{(-)II* the function

e > xjeNz,  JjeN,

then it follows from (46) that these functions are in the unit balt of L=(T),
and so Proposition 5.2 applies. Therefore, by dropping down to five suc-
cessive subsequences, and then changing the notation, we may suppose that
there exist vectors x,, y, x,, win L?*(2) and a function g in L*(T) such that

{x!}  converges weakly to x, in L*(2), (65)
{xe,x}} converges weakly toy  in L*(2), (66)
{x2} converges weakly to x, in L*(D), (67)

{xc,x; converges weakly tow in L¥(92), (68)
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and

{Ix4{(-)I1’}  converges weaklytog in L'(T). (69)

We next define x=x,+ x, and note that since x is the weak limit of the
sequence {x;} of vectors in H*(2), x also belongs to H*(2). With Q and P
the projections of # = L(2)®Z onto H*(2) and #, respectively, we
introduce five nonnegative functions in L'(T) defined, for ¢” e T, by

fi(e™)=1(Qx,)(eMIZ,

fae")=11(Qy) (e Nz,

file®) = [(S*"QPS™)(eM)]12,, (70)
si(e")=11(@w)(eMZ,

sy(e") = (Qx,)(eM)% -

We wish to estimate ||k||, where k=f, +f,+f3+5, +5,+g, and we first
observe that

1 pr2=n .
— k(e™
Ikl == [ ey s

=Ifili+ - +lgl (71)
From (69) and a variation of (52) we get immediately
1 r2n A 1 r2n )
- . iy g Tim —— et (o)) 2
I8l =55 [ 1 gty de=lim s [ 1 (e i

ij” 2< g, (72)
T—(1=F)) SU=(1-F)™"

=lim ||x}}|> <lim (
j j

Also, using (72), (52), and the fact that closed balls in L*(2) are weakly
closed, we obtain

=0x, )1’ < 2<lim || x!)12 < I
Il =10x, 11 < {|x, Ir (B A= (1= Fy) )

Gn
(1—(1=Fo)")*
(1-Fo)o,
(1= (1= F,)'""*

120l = 1oyl <l yl? Sli%ﬂ g, % < lim [lx})* <
!

Isll=1Qwll* < lwll* < Lim |lxg,x) |I? <lim fx] 1> <
7 J

580/76/1-4
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and

(1-Fo)a,

Is2lly=1Qx, 12 < lx, |17 <1iTm llx7 HZS-(I_——(T———TO)T/Z—)Z-'

Finally, since {x;} converges weakly to x, we get
I1f30 = I1S*"QPS"x|* < [[x[|* <lim || x;|*=0,.
J

From these inequalities we obtain
Ikl < o0, (73)
where J is defined to be the positive number

5—2F, 3.045

=+ r) e T omaas

Note that é < 6, so (by Proposition 5.1) o, < 60, and set
E={e"eT:k(e")<60,}.

It follows immediately from (73) that E has positive measure, and, of
course, each of the six functions f1, /5, f3, 81, 5,, g is strictly less than 6q,
on E. Since the vector-valued functions Qx,, Ox,, Ow, Qy, and S*"QPS"x
all belong to H?*(2), one knows (cf. [20,p.186]) that there exist

et o i e’

holomorphic functions Qx,, QOx,, Ow, Qy, and S*"QPS"x on D taking
values in 2 with the property that each of the five holomorphic functions
has a nontangential (strong) limit at almost every point of T and this limit
coincides (almost everywhere) with the value of the corresponding
boundary function there. Moreover, the L'-function g has a harmonic
extension £ to D, and g has a nontangential limit almost everywhere on T
that coincides with the value of g there (cf. [17, p. 38]).

Consider now the dominating set €2, defined in (60) and having the
property that (61) is valid. Since E has positive measure, there exists a sub-
set E, of E having the same positive measure such that every point of E, is
a nontangential limit of a sequence of points from ,,. It follows that there
exists a point e in E, at which all six of the functions Qx,, ..., # have non-
tangential limits equal to the correponding numbers (Qx,)(e"), ..., g(e”).
Thus we may choose 4, in 22, sufficiently close to ¢” that

I PS"e, |I>> Fy=1—(0.101)%, (74)
&(40) <60, (75)



CONTRACTION OPERATORS 49

1(@x,)(20)l < (65,7, (76)
1(0%5) (o)l < (65,)'2, (77)
1(Qw)(4o)ll < (60,)"2, (78)
1(0y)(Ao)l < (60,)2, (79)
and
1(S*"QPS™x)(1o)l| < (63,)">. (80)
Next let us define
R 1 lv M | 12

As was observed in the proof of Proposition 5.1., there exists a unit vector
d in 2 such that

e;e)=(1 =412 (d+ Lge"d + iZe™d+ --), e"eT. (82)

Therefore if k is any function in H*(2), say
k(e")~ Y e'd, (83)

J
ji=0

where each d;e 2 and 3.2 || d; |I? = [lk||% and & is the holomorphic exten-
sion of k to D, then, of course,

and we may calculate

E(1= 130\
@Rl=5(12) e b
1 ]
=301l | £ A,
1
=3 (1= VoDl(d o))l <5 (1~ g DIEGL (84)
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If we apply the inequality (84) with & equal to Qx,, Ox,, Ow, Qy, and
S*"QPS"x in turn, and take into account (76)-(80), we obtain, upon
setting r = |Aq],

|(xa, ) = [(Qx,, &)l <4 (60,)"*(1 — 1),
(x5, €) = 1(Qx,, &) <4 (60,)*(1 — 1),
|(w, &)l =1(Qw, é)] <3 (60,)"*(1~r),
(3, &)l =1(Qy, &)l <3 (6a,)*(1 1),
and
[(PS"x, PS"é)| = |(S*"QPS"x, &)l <1 (60,)*(1—r).
Furthermore, if we write P, for the Poisson kernel

1|4

Pl =TT

e'eT,
then, of course, P, € L*(T), and by virtue of (69) and (75), we have
1 (2= . A
lim—-—f P (eM)xi(e™))? dt = §(4,) < 60,,. (85)
j 27[ 0 J

By virtue of (63), (85), and the weak convergence in (65)—(69), we may
obviously choose a positive integer j, so large that

(h. ) <4 (600) (1 = 1), (86)
(s ) <3 (60,)(1 =) (87)
(6,5 €)1 <1} (60,)'7(1 = 1), (88)
[y X O <4 (60,) (1 =), (89)
|(PS",,, PS"é)| <4 (60,)"*(1 =), (90)

1 2= el (oH)]]2
57 | Pale g )2 di <6, 1)

and

o617+ 1617 > 0, + 4 €1 92)

Consideration of (64) and (91) yields

1

— P, (e") dt <240,
271' JT\G,'O lo(e ) O'n
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which, in turn, gives

1 it
= f% P, (") dt>1—240,,

A 1 2n it -3 it
716,817 =5 | 216, () Nete ) d (93)

1/1—r\ 1 ) 1—r
=— — P, (e dt < 60,,
4 (1 +r> 2n Jv\q,o "O(E ) <1 +r> On

and

1/l—r\ 1 , 1/1—r
3|12 == — [ Penydr>={+—)(1-24a,). (94
“XG,Oe” 4(l+r> 27Z JGJO P/y()(e )dt>4(1 +r>( 0;1) ( )

Moreover, from (86) and (88) we deduce that

|(x1'-:), Xt \G,Oé)| =[x+ \(;,Ox;:,a é)l
= 1(x%, &) = (16, X4, )

<(60,)"*(1=r), (95)
and, similarly, from (87) and (89) that
|(xtys X7 06,€)| < (60,)" (1 —r). (96)

We are finally prepared to make some definitions that will give information
about the number o,. Set

I=x!+ X%é, h=x!+y, ‘\G/oé’ (97)
and define
X=l+h=x,+é

Clearly x € H*(2), and we investigate conditions under which xe 2 (7). In
the first place, we see from (62), (64), and (81) that /e L*(2) and satisfies

[ie) <1,  e"eT.

Secondly, we note from (89) and (94) that

1112 = J1x}, 12 + 2Re(x,, 76,8) + X, €l
1—r
1+7

> Ik |2 = (6a,) (1 —r)+%( )(1 240, (98)
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and a similar computation using (93) and (95) gives

1—
417 < I 17+ 260,71 =) + (1) 60 99)

Since
[, )] < (60,)' (1= 1)
from (86) and (87), we get the following upper and lower bounds on ||x[ %
1,17 + 1€11% — 2(60,,)V*(1 —r) < || %))

< lx 1% + 16117 + 2(60,) V(1 = ). (100)

Therefore a sufficient condition in order that || x| <1 is

1/1—r 12
o,,+4<1+r)+2(6o,,) (1-r<l, (101)

and, in view of (47), (98), and (99), a sufficient condition in order that
Il < (1= Fo)l 1% is

60 1—-24¢
2 6 1/2 __"_< 1_ " n_ 172 .
(60,2 + 722 < (1= F o5~ (60,12 (102)
What about a sufficient condition in order that
| PS"X11% 2 Fo || %|1*? (103)

Easy calculations using (45), (61), and (90) show that

o 1/1—r
|PS"%] > Follx, |* — (60,) (1 =r) + 7 (1 +r) fi

and

1/1—
Fo (g 2+ 5 (12 ) + 2060021 =) ) > Falel?,

so a sufficient condition for the validity of (103) is

(F, — Fy)

—4(—1+—’:)—>(2F0+ 1)(60,)">. (104)
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In other words, if ¢, is such that (101), (102), and (104) are satisfied, then
xe X ,(T) and consequently (from (100))

0,2 X7 = llx;, 1% + €117 — 2(60,) (1 — ).

Thus, applying (92), we would have

1 /1—r
> T -2 1/21— s
0,204 ) -2(60,)"7(1 1)

which yields

1

6 1/22—_2_
o) 2507 T

(105)

and

SJLy_ 1 (106)
7nZ5\64) ~ 24576

Now recall from Proposition 5.1 that r=]4,| > 0.9, so (101) will certainly
be satisfied if

0, +02 /6612 4+0025<1, (107)
while (102) is equivalent to
4(1+r)(3—Fo)(60,) > < (1 — Fo)(1 —240,) — 240, (108)
and since 1 +r<2 and F,=0.9775, (108) will be valid if
24(1.0225)a"+(16.18)\/ga,‘/2<0.0225. (109)

Finally, (104) is equivalent to

( (F\— F) ) N

20,
A1+r)Q2F,+1). /6
and since F, — F;=0.012299, (104) will certainly be valid if

2
(————0'012299 ) 20, (110)
8../6(2.955)

Suppose now that

1

6,,=J,,(T)<(10)8.

(111)
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Then arithmetical calculations show that (107), (109), and (110) are
satisfied, so X constructed above belongs to 2 ,(T), and (106) must be valid.
But (106) and (111) are incompatible, so for every T satisfying the
hypotheses of the proposition, we must have

1
O-n( T) > m)—sa

and since » was arbitrary in N, this completes the proof of Theorem 5.3.

We are finally in a position to prove Theorem 2.4, and with it, of course,
Theorem 1.1.

Proof of Theorem2.4. Set §=1—2/(10)'", and suppose T belongs to
A(s#) and 4 = D is a dominating set such that the pair (T, A) satisfies (8).
Then, according to Theorem 5.3, for every n in N, a,(T)> 1/(10)8, which
means, by definition, that for each n in N there exists a vector y,e X (T)
such that ||y, ||?> 1/(10)®%. Define now

x,=PS"y,, neN.
Then x,e #, ||x,| <] y.| €1, and by Proposition 4.3 we have
”[COJT_ [xn®xn]T” = “[CO:IT_ [PS" n®PSn n]T“

2 —
(10)10—

Therefore it suffices to verify that the sequence {x,} satisfies (10). For this
purpose, let w be an arbitrary vector in s, and let B=S*®R in
ZL(HY(2)® Z) be the minimal coisometric extension of T. It follows from
Proposition 3.1 that 2 # (0) and, utilizing [11, Lemma 3.6], we obtain

Iw®x, 171 =[w®x,]sll = [w® PS"y,1,ll
= w® Sy, 1sl =[Qw® Sy, 15l
=[[S*(@w)®y, 1l <IS*"(Qw)] | y. Il = O,

since the sequence {S*"} converges to zero in the strong operator
topology. Thus the proof of Theorems 2.4 and 1.1 are complete.

There are several consequences of Theorem 1.1 concerning reflexivity,
invariant subspace lattices, and the coincidence of the weak operator and
weak * topologies that will be taken up in a later paper (cf. On the structure
of contraction operators. 111.).
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